
3
accounting as a communication
channel

The topic of this chapter is how the double entry system acts as a communication
channel. Using the linear algebra representation from chapter 2, that is,

Ay = x

the central question is easy to state: How much of the information in the vector,
y, gets through the double entry matrix, A, to the financial statement vector, x?
Once the concept of the row space of a matrix is introduced, the question has a
straightforward answer: Only the component of y residing in the row space of A
gets through the channel.
Computation of the row component of y can be done a number of ways; the

chapter contains five methods. It is not entirely obvious that all methods will
always yield the same answer, so some connections are made in that regard.

3.1 the row space of A
The first example will be a simple one: only three journal entries. Cash is paid
out for an expense and for an asset. Some of the asset is then amortized (moved
to expense).

Example 3.1
expense 4

cash 4

asset 8
cash 8
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expense 5
asset 5

If these were the only journal the entries, the resulting financial statements
(making use of negative numbers) are

income statement
expense 9

balance sheet

ending beginning ending beginning
cash -12 0
asset 3 0 retained earnings -9 0
total assets -9 0 total equities -9 0

It is useful to access the linear algebra representation for this example.

y =

2

4
y1
y2
y3

3

5 =

2

4
4
8
5

3

5

A =

2

4
−1 −1 0
1 0 1
0 1 −1

3

5

The financial statement vector x is

x =

2

4
cash
expense
asset

3

5 =

2

4
−12
9
3

3

5

And we have the linear algebra representation

Ay = x

To deal with the question of how much of y gets through A to x, the concept of
orthogonality is important.

Definition 3.1 Two vectors are orthogonal if their vector product is zero.

Visually, two vectors are orthogonal if they are perpendicular or at right angles.
In the (two dimensional) plane, vectors

'
1 0

(T and
'
0 1

(T are obviously
at right angles, and, just as obviously, the vector product is zero. Another example
is
'
1 1

(T and
'
1 −1

(T . The algebraic orthogonality condition for vectors
is true in any dimensional space, not just the plane. That’s what allows us to think
about vectors at right angles even in high dimensions.
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Back to the example. Without worrying about where the numbers come from
for now, notice y can be decomposed into the following two orthogonal compo-
nents.

y =

2

4
4
8
5

3

5 =

2

4
7
5
2

3

5− 3

2

4
1
−1
−1

3

5

It is convenient to have names for the two components. Let them be yrow and yN .
The reasons for these particular names will become apparent momentarily.

yrow =

2

4
7
5
2

3

5 yN = 3

2

4
1
−1
−1

3

5

It is easy to check for orthogonality.

yTNyrow = 3

2

4
1
−1
−1

3

5
T 2

4
7
5
2

3

5 = 3 (7− 5− 2) = 0

Vector orthogonality is an important idea, but perhaps more important is the con-
cept of orthogonality of vector spaces. Here we are interested in two vector
spaces, and both of them arise from the matrix A: the row space of A, and the
null space of A.

Definition 3.2 The row space of A consists of all the vectors which are linear
combinations of the rows of A.

yrow is one vector (among many) in the rows of A, hence the name.

yrow =

2

4
7
5
2

3

5 = −5

2

4
−1
−1
0

3

5+ 2

2

4
1
0
1

3

5

The first vector on the right hand side is the first row of A, and the second is the
second row of A. (There are many other ways to form yrow from the rows of A.)
Another important space of the matrix A is the null space.

Definition 3.3 The null space ofA consists of all the vectors yN satisfyingAyN =
0.

Here we have

yN = 3

2

4
1
−1
−1

3

5

So it is easy to check that yN is in the null space.

AyN =

2

4
−1 −1 0
1 0 1
0 1 −1

3

5

2

4
1
−1
−1

3

5 3 = 3

2

4
−1 + 1
1− 1
−1 + 1

3

5 =

2

4
0
0
0

3

5



32 3. accounting as a communication channel

So far we have decomposed y into a row and null component. We have not,
as yet, actually computed the components: that is done in succeeding sections of
the chapter. But once we have the orthogonal decomposition, we can answer the
question about the communication channel. As it turns out, yrow goes through the
channel, yN does not.
To see that only yrow gets through, suppose all we have is the financial statement

vector, x. Then yrow is unique, because there is only one solution to

Ay = x

yT yN = 0

and it is yrow. For our example we have three independent equations and three
unknowns. There are two independent T-account equations (the third one is not
independent because of double entry), and the orthogonality equation to solve for
the three elements of y.
On the other hand, x tells us nothing about yN . Since AyN = 0, yN disappears

from Ay = x.

Ay = A (yrow + yN ) = Ayrow +AyN = Ayrow = x

Given x, yN can be anything in the null space of A.
So the financial statements tell us everything about yrow and nothing about yN .

That is the sense in which the row component is all that gets through the chan-
nel. And "row component through the channel" will be a recurring theme in later
chapters.
One more thing: we can specify how much gets through. Because yrow and yN

are orthogonal (perpendicular), they obey the theorem of Pythagoras: the sum of
the square of the two sides of a right triangle equals the square of the hypotenuse.
The "square" of a vector is the vector product of the vector with itself.

yTrowyrow =

2

4
7
5
2

3

5
T 2

4
7
5
2

3

5 = 72 + 52 + 22 = 78

yTNyN =

2

4
−3
3
3

3

5
T 2

4
−3
3
3

3

5 = 32 + 32 + 32 = 27

yT y =

2

4
4
8
5

3

5
T 2

4
4
8
5

3

5 = 42 + 82 + 52 = 105

Note the Pythagorean result:

yTrowyrow + y
T
NyN = yT y

78 + 27 = 105
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The fraction getting through, then, is

yTrowyrow
yT y

=
78

105
≈ .75

In this section we derived the main idea of this, and some future, chapters: only
the row component gets through. We did not, however, actually compute the row
component, yTrow, or the null component, yN . They were simply stated, and their
properties noted and checked. The next several sections of the chapter offers a
variety of ways to compute the components. The methods we will use most often
are those that solve for the null component first.

3.2 expanded setup

We’ll use a slightly expanded example to help demonstrate a number of methods
for computing yrow from a given set of financial statements.

Example 3.2

balance sheet

ending beginning ending beginning
cash 40 20 accrued liabilities 45 30
acc’ts rec. 35 30 capital stock 40 40
inventory 50 30 retained earnings 40 10
total assets 125 80 total equities 125 80

income statement
sales 120
cost of goods sold 60
gen’l & admin. expenses 30
income 30

The journal entries (except for closing entries) are presented absent amounts.

accounts receivable y1
sales y1

cash y2
accounts receivables y2

accrued liabilities y3
cash y3

g & a expense y4
accounts receivable y4
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g & a expense y5
accrued liabilities y5

inventory y6
accrued liabilities y6

cost of goods sold y7
inventory y7

Some of the journal entries might deserve comment.

• y1: Sales are often made on account, and the cash will be collected later.
Accounts receivable is the resulting asset.

• y2: Cash is collected for accounts receivable.

• y4: On occasion not all accounts will turn out to be collectible; firms
sometimes go bankrupt or otherwise disappear. In that case the receivable
asset is reduced, the offsetting debit is often to an income statement ac-
count called something like bad debt expense. Here the debit is included in
general and administrative expenses.

• y5 and y6: Things like labor, raw materials, and supplies are often ac-
quired on account; a liability is thereby created.

Alternative representations for the financial statements are the directed graph
and the incidence matrix. The directed graph is in figure 3.1, with cash on the
left, balance sheet accounts in the middle column, and income statement accounts
on the right. Attached to the account nodes are the (changes in) account balances.
The 6 × 7 incidence matrix, A, is presented below, along with the account

balance vector, x.

x y1 y2 y3 y4 y5 y6 y7
20 cash 0 1 -1 0 0 0 0
5 acc’ts rec. 1 -1 0 -1 0 0 0
20 inventory 0 0 0 0 0 1 -1
-15 acc. liab. 0 0 1 0 -1 -1 0
-120 sales -1 0 0 0 0 0 0
60 cgs 0 0 0 0 0 0 1
30 g&a 0 0 0 1 1 0 0

Our task is to solve for the transaction amounts, y1 through y7 which satisfy
Ay = x. Some of the y values are straightforward. For example, from the directed
graph it is immediate that y1 = 120, y6 = 80, and y7 = 60. Those arrow values
are the only way to achieve the node balances in sales, inventory, and cgs. The
others, however, do not have unique answers.

Definition 3.4 A loop exists in a directed graph if it is possible to travel from one
node, touch others, and return to the original node without traveling on an
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arrow more than once. It is all right to travel backward on the arrow; that
is, the debit/credit direction of the arrow does not matter when determining
a loop.

Arrows y2, y3, y4, and y5 constitute a loop in the directed graph. Some possible
solutions are

y2 115 0 105
y3 95 -20 85
y4 0 115 10
y5 30 -85 20

(Check to see these alternate solutions all result in the appropriate node bal-
ances.)
We will calculate a unique answer to the problem, Ay = x, generating a y

vector with certain, perhaps desirable properties. Some of the properties of the
answer are

• It is the "shortest" possible y vector which generates the given statements,
that is, which solves Ay = x.

• It resides entirely within the rows of A, and, indeed, is the only solution
to Ay = x which does so. That is, it can be constructed by taking a linear
combination of the rows ofA. This "residing in the rows" property supplies
a convenient name for the vector: yrow.

• It is, in the sense discussed previously, the only component of y which
gets through the double entry channel. In other words, yrow contains all
the information available in the financial statements about the transaction
amounts.

We cover several methods; the first solves directly for the shortest y vector.

3.3 quadratic programming

The idea is to find the shortest vector satisfying Ay = x. Length is defined as
the sum of the squared elements of y; squaring eliminates the problem of how
negative elements affect the length. It is simple enough to state the problem, and,
indeed, it is a simple matter for a computer to solve the problem so stated. So, for
the first time through, we will let a computer do the work.

minimize yT y =
X

y2i

subject to Ay = x

Ay = x is a system of seven linear equations - one for each account - with
seven unknowns - one for each transaction. Because of the balancing property
(or, equivalently, becauseA is an incidence matrix), there are only six independent
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equations, and, hence, rather than a unique solution to the system, there are several
possible solutions.
Most spreadsheets have an optimizer capable of solving the problem; Excel has

a pretty good one called Solver. It doesn’t take long to type in the data. If we use
the Excel function sumproduct to accomplish vector multiplication, we don’t have
to type in the zeros in the A matrix.
Whatever computer routine we use, the solution appears, called yrow .

yrow =
'
120 55 35 60 −30 80 60

(T

There are a couple of things to notice about the solution.

• For the transactions not in a loop (y1, y6, and y7), the solution is consistent
with what is apparent from the directed graph: y1 = 120, y6 = 80, and
y7 = 60.

• There is a negative element: y5 = −30. Since we set up the transactions to
flow through the accounting system in basically one direction, the existence,
in our preferred solution, of a transaction going in the other direction might
cause some discomfort. There is no need to stifle the discomfort at this
stage.

Example 3.3 Reconsider the set-up from example 3.1 to compute the yrow we
already know. Use a computer optimizer like Solver in Excel Recall

x =

2

4
−12
9
3

3

5

A =

2

4
−1 −1 0
1 0 1
0 1 −1

3

5

It is a fairly simple matter for a computer optimizer like Solver to compute yrow
using a quadratic program. See exercise 3.9 for a pencil and paper approach.

3.4 regression

3.4.1 computing yrow with regression
The first method minimized the sum of the squares of the y vector. Regression
also minimizes the sum of squares; this method exploits the connection, and gets
us closer to a paper and pencil method to solve the problem. The first step is to
find any solution to Ay = x; call it yp for y particular. Then project yp into the
rows of A, that is, run a regression.
Spanning trees are useful for a variety of things, one of which is to find a par-

ticular solution, yp.
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Acc’ts rec     +5 Sales -120
y1

Cash     +20 Acc liab -15 G & A Exp     +30

Inventory     +20 CGS     +60

y3

y4

y5

y6

y7

Figure 3.2

Example 3.2 Spanning tree with y2 =  0

Definition 3.5 A spanning tree is a directed graph with two properties.

• It spans. That is, every node can be reached from every other node by
tracing a path on the arrows. (It’s okay to go backward on an arrow.)

• It is a tree. That is, the arrows don’t loop. (Most, I think all, trees in nature
have this property.)

To form a spanning tree from a directed graph containing loops, erase an arrow
from each loop, and set the erased yi = 0. Figure 3.2 contains a spanning tree for
example 3.1 with y2 = 0.
It’s easy to compute the y vector from a spanning tree: add up the amounts of

the node on one end of the arrow (if it’s the tail, change the sign of the sum). Since
there are no loops, there is no ambiguity about which end of the arrow a node is
connected to. For this spanning tree

yp =
'
120 0 −20 115 −85 80 60

(T
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Now run a regression; Excel is pretty good at this, as well. The dependent
variable is yp and the independent variables (regressors) are the rows of A.

dependent variable independent variables omit one column
120 0 1 0 0 -1 0 0
0 1 -1 0 0 0 0 0
-20 -1 0 0 1 0 0 0
115 0 -1 0 0 0 0 1
-85 0 0 0 -1 0 0 1
80 0 0 1 -1 0 0 0
60 0 0 -1 0 0 1 0

The independent variables are recognized as the rows of A in columns: AT . It
is important to eliminate one of the columns before running the regression: Excel
complains when the independent variables are not independent of each other. It
doesn’t matter which column is eliminated; yrow is the same, and that should be
checked.
Here is (part of) a sample regression output when the last column is eliminated.

coefficients on independent variables predicted variable residuals
-5 120 0
-60 55 -55
110 35 -55
30 60 55
-180 -30 -55
170 80 0

60 0

The predicted variable is seen to be yrow. The coefficients are the weights on the
rows of A used to generate yrow. The first element of yrow, for example, is the
coefficient vector times the first row of AT (first column of A omitting the last
element).

'
0 1 0 0 −1 0

(

2

6666664

−5
−60
110
30
−180
170

3

7777775
= −60− (−180) = 120

The other elements of yrow are generated in a similar fashion. As yrow is con-
structed as a weighted combination of the rows of A, it is said that yrow resides in
the rows of A, hence the name yrow.
Before leaving the regression output notice the residual vector - this is the dif-

ference between the predicted variable, yrow, and the dependent variable, yp. The
residual vector actually looks pretty simple, and, indeed, a direct calculation of
the residuals is the basis of the next method. But before proceeding to the next
method, there is more to say about regressions.
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yp

AT

ATβ

Figure 3.3

Choose β yp – ATβ is minimized

3.4.2 some more about regressions
Geometrically, the regression is finding the closest point in the rows of A (in this
case, the columns of AT ) to yp. Roughly speaking, the way to do that is construct
a line from yp to AT that is perpendicular (orthogonal) to AT . Geometrically,
perpendicular and orthogonal have the same meaning; two lines are perpendicular
if they form a right angle. The geometric idea is in figure 3.3.
It’s the same idea as the shortest way to get from the interior of a room to a wall

is to walk perpendicular to the wall. That simple idea is enough to allow us to
write down the basic equation of regression, called the orthogonality conditions.
All the regression calculations follow from these conditions.
In Figure 3.3 β is the vector of coefficients on the columns of AT (rows of A).

The regression routine chooses the coefficients so as to make the difference vector,
yp − ATβ orthogonal to all the columns of AT . This requires an algebraic inter-
pretation of orthogonality in terms of vectors: we already know that two vectors
are orthogonal if their vector product is zero.
For the regression problem, the vectors we are interested in setting orthogonal

to each other are the difference vector yp−ATβ and any vector inAT , itself. The
orthogonality condition is so important, we write it as a theorem.

Theorem 3.1 The coefficient vector β which minimizes the squared distance from
vector yp to the rows of matrix A solves the orthogonality condition: A(yp −
ATβ) = 0.

Once the orthogonality conditions are written down, we can do the regression
calculations just like the computer routine does. To solve for β rearrange the
orthogonality condition.
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AATβ = Ayp

This is a parsimonious representation of seven (six independent) equations with
seven unknowns.

Ayp = x =

2

666666664

20
5
20
−15
−120
60
30

3

777777775

(As Ayp is equal to x for any yp, we can see the orthogonality condition is the
same for any choice of yp. In other words, it doesn’t matter which particular
solution we choose.)
Since

AT =

2

666666664

0 1 0 0 −1 0 0
1 −1 0 0 0 0 0
−1 0 0 1 0 0 0
0 −1 0 0 0 0 1
0 0 0 −1 0 0 1
0 0 1 −1 0 0 0
0 0 −1 0 0 1 0

3

777777775

AAT =

2

666666664

2 −1 0 −1 0 0 0
−1 3 0 0 −1 0 −1
0 0 2 −1 0 −1 0
−1 0 −1 3 0 0 −1
0 −1 0 0 1 0 0
0 0 −1 0 0 1 0
0 −1 0 −1 0 0 2

3

777777775

The matrix equation, AATβ = Ayp = x, can be written as 7 linear equations.

2β1 − β2 − β4 = 20

−β1 + 3β2 − β5 − β7 = 5

2β3 − β4 − β6 = 20

−β1 − β3 + 3β4 − β7 = −15
−β2 + β5 = −120
−β3 + β6 = 60

−β2 − β4 + 2β7 = 30

It is not beyond our wit to solve the system, but it is tedious enough so we are
grateful for computer aid. But we can verify the regression output solves the
system. That is, the row coefficients are

β =
'
−5 −60 110 30 −180 170

(T
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with β7 = 0 for the omitted row. Our next task is to put the problem in a form
that is paper and pencil doable. Before doing so, however, let’s do the projection
exercise on the simpler problem from example 3.1

Example 3.4 As there are only two independent rows in A, we can use the first
two, and redefine A accordingly.

A =

)
−1 −1 0
1 0 1

*

And we can use

yp =

2

4
4
8
5

3

5

So

Ayp =

)
−1 −1 0
1 0 1

*2

4
4
8
5

3

5 =
)
−12
9

*

(Any yp satisfying Ay = x will yield the elements of x.)

AAT =

)
−1 −1 0
1 0 1

*2

4
−1 1
−1 0
0 1

3

5 =
)
2 −1
−1 2

*

The orthogonality conditions can be written:

AATβ = Ayp)
2 −1
−1 2

*
β =

)
−12
9

*

The two orthogonality equations written separately:

2β1 − β2 = −12
−β1 + 2β2 = 9

Solving two linear equations in two unknowns is not difficult. Here the solution is

β1 = −5
β2 = 2

So

yrow = −5

2

4
−1
−1
0

3

5+ 2

2

4
1
0
1

3

5 =

2

4
7
5
2

3

5

And, we knew that.
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3.5 projection into the nullspace

The method of this section can often be accomplished with a paper and pencil.
The idea is to project a particular solution to Ay = x into what is called the
nullspace, effectively calculating the residual vector yp − yrow from the previ-
ous regression. Notice from the regression output the residual vector looks a bit
simpler than yrow. What we will be doing is to divide any yp solution into two
orthogonal parts, yrow and the null component, denoted yN .

yp = yrow + yN

where (yrow)T yN = 0

Recall the nullspace of a matrix A consists of all the vectors that are orthogonal
to the rows of A.
Typically, calculating the nullspace of a matrix is a little bit complicated, but for

an incidence matrix, there is really nothing to it: simply read off the loops from
the associated directed graph. Recall from figure 3.1, the loop consists of y2, y3,
−y5, and y4, so the null vector is

N =
'
0 1 1 −1 1 0 0

(T

, simply place a one in the position of the arrow in the loop, zero for arrows not in
the loop. The direction around the loop is important, so if the arrow is traversed
from head to tail, as y4 is in the example, the sign is negative.
It is a remarkable property of incidence matrices that the nullspace consists

of vectors with all positive and negative ones and zeros. Also, it doesn’t matter
which way the loop is traversed, a counter-clockwise null vector of

'
0 −1 −1 1 −1 0 0

(T

would work just as well, as can be verified as the procedure unfolds.
It is easy to verify that the loop supplies the null vector, since AN = 0.

2

666666664

0 1 −1 0 0 0 0
1 −1 0 −1 0 0 0
0 0 0 0 0 1 −1
0 0 1 0 −1 −1 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 1 0 0

3

777777775

2

666666664

0
1
1
−1
1
0
0

3

777777775

=

2

666666664

0
0
0
0
0
0
0

3

777777775

When projecting yp into N , the result is yN which we shall calculate as N times
a regression coefficient.

yN = Nβ

The geometric picture is depicted in figure 3.4. The difference vector yp − yN is
orthogonal to the nullspace, hence it is in the row space, so yrow = yp − yN .
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yp

N

Nβ

Figure 3.4

Projecting yp into the nullspace

To calculate the regression coefficient β, use the same yp as before (any solution
to Ay = x will do).

y1 y2 y3 y4 y5 y6 y7
yp 120 0 −20 115 −85 80 60
NT 0 1 1 −1 1 0 0

The orthogonality condition requires the difference vector, yp − yN to be orthog-
onal to the N vector, so the orthogonality condition is the same as before with A
replaced by N as in figure 3.4.

NT (yp − yN )
= NT (yp −Nβ) = 0

NTNβ = NT yp

NTN and NT yp are computed as vector products.

NTN = 4

NT yp = −20− 115− 85 = −220

Hence,

4β = −220
β = −55
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Completing the table.

y1 y2 y3 y4 y5 y6 y7
yp 120 0 −20 115 −85 80 60
N 0 1 1 −1 1 0 0
Nβ 0 −55 −55 55 −55 0 0

yrow = yp −Nβ 120 55 35 60 −30 80 60

yrow from this paper and pencil calculation is the same as from the previous meth-
ods.

Example 3.5 For a simpler example reconsider once again the set-up in example
3.1 We have

N =

2

4
1
−1
−1

3

5

which we can derive by following around the loop in the directed graph represen-
tation in figure 3.5. We can use

yp =

2

4
4
8
5

3

5

So we have

NTN =

2

4
1
−1
−1

3

5
T 2

4
1
−1
−1

3

5 = 3

NT yp =

2

4
1
−1
−1

3

5
T 2

4
4
8
5

3

5 = 4− 8− 5 = −9

So the orthogonality conditions are

NTNβ = NT yp

3β = −9
β = −3

And

yN = Nβ = −3

2

4
1
−1
−1

3

5

yrow = yp − yN =T

2

4
4
8
5

3

5−

2

4
−3
3
3

3

5 =

2

4
7
5
2

3

5
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Cash -12

Expense    +9

Y1

Asset    +3y2

Y3

Figure 3.5

Directed graph for example 3.4

3.6 average spanning tree

Calculating the average spanning tree is another method, one which offers a paper
and pencil solution for relatively small problems. That is, derive a yp for every
possible spanning tree, add up, and divide by the number of spanning trees. For
the ongoing example there are four spanning trees. The spanning tree with y2 = 0,
call it spanning tree 1, was presented in Figure 3.2. The other three spanning trees,
omitting y3, y4, and y5 in turn, are formed in similar fashion, and the resulting
solutions are presented in the following table.

y1 y2 y3 y4 y5 y6 y7
spanning tree 1 120 0 −20 115 −85 80 60
spanning tree 2 120 20 0 95 −65 80 60
spanning tree 3 120 115 95 0 30 80 60
spanning tree 4 120 85 65 30 0 80 60

sum 480 220 140 240 −120 320 240
yrow = sum/4 120 55 35 60 −30 80 60

And it is seen that the average spanning tree equals yrow from the earlier methods.
For even slightly larger problems, it is not always easy to confidently list all the

spanning trees. There is a quite remarkable theorem, called the matrix tree theo-
rem, which provides a simple and useful expression for the number of spanning
trees.
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Theorem 3.2 For any directed graph the number of spanning trees is given by
the determinant of NTN , where N is the matrix with the nullspace vectors in the
columns.1

For the example the single nullspace vector is
'
0 1 1 −1 1 0 0

(T

soNTN is 4, which is also the determinant. The determinant of a two by two ma-

trix
)
a b
c d

*
is ad− bc. The formula for the determinant of larger matrices gets

a little bit complicated; in any event, spreadsheets can calculate them numerically.

Example 3.6 Referring to figure 3.5, the three spanning trees for the simpler ex-
ample are

y =

2

4
0
12
9

3

5 ,

2

4
12
0
−3

3

5 , and

2

4
9
3
0

3

5 .

The average spanning tree amounts are

1

3

0 + 12 + 9
12 + 0 + 3
9− 3 + 0

=

2

4
7
5
3

3

5

3.7 augmented A matrix

Finally, another method is to add enough equations to Ay = x so the system has
a solution, and, further, the solution is yrow. Here we can use the extra equa-
tion(s) implied by the nullspace relationships. We have seen that yrow is orthog-
onal to the nullspace. In the example the nullspace consisted of only one vector'
0 1 1 −1 1 0 0

(T The extra equation is the vector product of the
nullspace vector with y is equal to zero which is the last row of augmented A and
the last element of augmented x.

2

66666666664

0 1 −1 0 0 0 0
1 −1 0 −1 0 0 0
0 0 0 0 0 1 −1
0 0 1 0 −1 −1 0
−1 0 0 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 1 0 0
0 1 1 −1 1 0 0

3

77777777775

2

666666664

y1
y2
y3
y4
y5
y6
y7

3

777777775

=

2

66666666664

20
5
20
−15
−120
30
60
0

3

77777777775

1The matrix tree theorem is typically stated and proved in terms of the incidence matrix which
eliminates confusion when there are no loops. See, for example, Harris, Hirst, and Mossinghoff, page
29.
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There are now seven independent linear equations which can be used to solve
for the seven elements of yrow, as the null row adds another independent equa-
tion. (Although there are 8 equations, only 7 are independent, as any particular
T-account can be constructed from the others.) Solving seven linear equations is
a little bit tedious, but it is easy to verify (or use a spreadsheet to find) that the
system is solved by

yrow =
'
120 55 35 60 −30 80 60

(T

And we have five different methods to find yrow, but there are still some things
to learn and connections to make, one of which is the fundamental theorem of
linear algebra.

Example 3.7 For the simpler example the augmented equations are
2

664

−1 −1 0
1 0 1
0 1 −1
−1 1 1

3

775

2

4
y1
y2
y3

3

5 =

2

664

−12
9
3
0

3

775

The unique solution to all 4 equations is

yrow =

2

4
7
5
2

3

5

3.8 the fundamental theorem of linear algebra

As far as the ongoing numerical example is concerned, all the foregoing methods
for finding yrow arrive at the same answer. It is, indeed, true for all examples.
However, the example approach does not demonstrate the equivalence of all the
methods for all possible problems. In this section we show the equivalence for
two of the methods: quadratic programming and regression. The demonstration
uses the fundamental theorem of linear algebra.
For the example we have been doing, the row space of A (where A has m

rows and n columns) is not "complete" in the sense that not all vectors with n
elements (where n is the number of journal entries) can be formed using weighted
combinations of the rows. For example, the chosen yp’s could not be so formed,
because a regression had a residual vector yp − ATβ. So, in cases like this, it is
said the row space does not span the set, or space, of n element vectors.
According to the fundamental theorem of linear algebra the nullspace completes

the row space, and they are said to be complements. That is, the combination of the
two spaces spans the space of n element vectors. Furthermore, as all the vectors
in the nullspace are orthogonal to all the vectors in the row space, they are said to
be orthogonal complements. All matrices have the same property as stated in the
theorem.
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Theorem 3.3 The row space and nullspace of any matrix are orthogonal comple-
ments.2

The theorem allows any vector composed of n elements to be decomposed into
orthogonal components, and that’s often an instructive thing to do. Any solution
to Ay = x can be written as y = yrow + Nk, where k is a vector of weights on
the nullvector(s) N . The decomposition is always possible by the fundamental
theorem. Now we can revisit the first method to see that yrow is always a solution
to the quadratic program.

min yT y

s.t. Ay = x

Substitute in the objective function.

yT y = (yrow +Nk)
T
(yrow +Nk)

= yTrowyrow + 2 (Nk)
T
yrow + (Nk)

T
(Nk)

The crossproduct term (Nk)T yrow is zero by orthogonality. Hence, finding the
minimum yT y is equivalent to finding the k vector that minimizes

yTrowyrow + (Nk)
T
(Nk)

Choosing k equal to zero obviously does the trick. Hence, we have shown yrow,
derived as the solution to the projection problem, is also the solution to the original
(method 1) quadratic programming problem.
A relative of the fundamental theorem, called Euler’s theorem, is useful when

looking for the loops in a directed graph. The number of loops is equivalent to
the number of independent vectors in the null space. When the graph is extensive
it is not always easy to find the independent loops; Euler’s theorem tells us how
many loops we are looking for.

Theorem 3.4 Euler’s theorem says the number of independent loops in a directed
graph is equal to the number of arcs (journal entries) minus the number of nodes
(accounts) plus one.

From the fundamental theorem the total number of independent vectors in the
row space of A plus the nullspace is n, where n is the number of columns (and
journal entries).3 The number of independent vectors in the row space is one

2See Strang, page 138. The theorem is also true for the transpose of a matrix; the orthogonal
complements are called the column space and the left nullspace.

3The number of independent vectors in the row space is called the "rank" of the matrix. It is kind
of remarkable that the rank is the same whether looking at the matrix or its transpose. That is, the
number of independent vectors in the row space is equal to the number of independent vectors in the
column space.
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less than the number of rows, m, as double entry implies one T-account must be
determinable from all the others. Since the sum of the loops plus the sum of
independent row vectors is n, we have

# of loops + (m− 1) = n

# of loops = n−m+ 1
= # of journal entries - # of accounts +1

3.9 multiple loops

When there is more than one loop, calculation of yrow proceeds in the same way.
To project into the nullspace, the orthogonality conditions are used. However,
instead of just one equation, when there are two loops, there are two equations to
solve for two regression coefficients.
Here is an example, the form of which will reappear in later sections. The

(partial) financial statements have three assets and two expense accounts. The
assets could be various prepayments or equipment, and the two expenses could be
general expenses and cost of goods sold. Cash is another asset, so the example
has 6 total accounts.

Example 3.8 Here are partial financial statements.

partial balance sheet
ending balance beginning balance

asset 1 10 10
asset 2 15 15
asset 3 8 5

partial income statement
expense 1 6
expense 2 3

Here are the only journal entries affecting the above accounts.

asset 1 y1
cash y1

asset 2 y2
cash y2

asset 3 y3
cash y3

expense 1 y4
asset 1 y4
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Cash -12

Asset 1     0

Asset 2     0

Asset 3     3

Expense 1     6

Expense 2     3

Figure 3.6

Example 3.8 in directed graph format

y1

y2

y3

y4

y5

y6

y7

expense 1 y5
asset 2 y5

expense 2 y6
asset 2 y6

expense 2 y7
asset 3 y7

Compute yrow.

To identify the loops (the nullspace vectors) construct the graph in figure 3.6.
It is clear from inspection (and can also be verified by Euler’s theorem) that

there are two independent loops.4 An algebraic characterization of the two loops,

4The number of loops is the number of journal entries (7) minus the number of accounts (6) plus
one.
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along with a sample yp solution, is presented in the table.

y1 y2 y3 y4 y5 y6 y7
yp 0 9 3 0 6 3 0
NT 1 −1 0 1 −1 0 0

0 1 −1 0 0 1 −1

The orthogonality condition requires the difference vector yp−Nβ be orthogonal
to both columns of N .

NT (yp −Nβ) =
)
0
0

*

The two zeros on the right are for the two vector products. Restating

NTNβ = NT yp

represents two linear equations with two unknowns, the regression coefficients
β =

'
β1 β2

(T . Computing the vector products

NTN =

)
1 −1 0 1 −1 0 0
0 1 −1 0 0 1 −1

*

2

666666664

1 0
−1 1
0 −1
1 0
−1 0
0 1
0 −1

3

777777775

=

)
4 −1
−1 4

*

NT yp =

)
1 −1 0 1 −1 0 0
0 1 −1 0 0 1 −1

*

2

666666664

0
9
3
0
6
3
0

3

777777775

=

)
−9− 6
9− 3 + 3

*
=

)
−15
9

*

Substituting into the orthogonality conditions

NTNβ = NT yp)
4 −1
−1 4

* )
β1
β2

*
=

)
−15
9

*

The two linear equations written separately are

4β1 − β2 = −15
−β1 + 4β2 = 9
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There are many ways to solve two linear equations in two unknowns. One way
that does the trick is to multiply the first equation times 4, and then add the two
equations together, thereby eliminating β2. The solution

β1 = −3.4
β2 = 1.4

The nullspace vector yN is computed as Nβ..

yN = Nβ2

666666664

1 0
−1 1
0 −1
1 0
−1 0
0 1
0 −1

3

777777775

)
−3.4
1.4

*
=

2

666666664

−3.4
3.4 + 1.4
−1.4
−3.4
3.4
1.4
−1.4

3

777777775

=

2

666666664

−3.4
4.8
−1.4
−3.4
3.4
1.4
−1.4

3

777777775

And yrow is computed from

yp = y row+yN

yrow = yp − yN

=

2

666666664

0
9
3
0
6
3
0

3

777777775

−

2

666666664

−3.4
4.8
−1.4
−3.4
3.4
1.4
−1.4

3

777777775

=

2

666666664

3.4
4.2
4.4
3.4
2.6
1.6
1.4

3

777777775

The calculations are summarized in the table.
y1 y2 y3 y4 y5 y6 y7

yp 0 9 3 0 6 3 0
N 1 −1 0 1 −1 0 0

0 1 −1 0 0 1 −1
Nβ −3.4 4.8 −1.4 −3.4 3.4 1.4 −1.4

yrow = yp −Nβ 3.4 4.2 4.4 3.4 2.6 1.6 1.4

yrow could, and should, be checked by verifying

Ayrow = x

NT yrow = 0

One way to verify both conditions is to check the directed graph in figure 3.7.
The orthogonality condition can be verified by computing the sum of the directed
amounts around each of the loops. The first loop, for example, is

3.4 + 3.4− 2.6− 4.2 = 0
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Cash -12

Asset 1     0

Asset 2     0

Asset 3     3

Expense 1     6

Expense 2     3

Figure 3.7

yrow for example 3.6

3.4

4.2

4.4

3.4

2.6

1.6

1.4

3.10 summary

The basic process in the chapter was to start with a journal entry vector, y, oper-
ate with a double entry accounting matrix, A, and generate a financial statement
vector, x. The question is how much of the information in y reaches the vector
x. And the answer is simple to state: the information in the row component in y,
called yrow, gets through the channel to x, and it is all that gets to x.
The central part of the problem is the computation of yrow. We studied five

solution techniques; it is a little bit remarkable that all five techniques yield the
same solution. The fundamental theorem of linear algebra is instructive on this
point. Each solution technique, in turn, adds more interpretation to the solution.
As accounting is an information science, an information interpretation is useful:
the unique solution, yrow, is all the information available in the financial state-
ment vector, x, about the underlying journal entry amounts. Along the way the
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five solution techniques illustrate and invoke some theorems, notably fundamen-
tal theorems about the two basic activities of applied mathematics: optimization,
estimation, and their interrelationships.
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-(x1 + x2)

x1

Y1

x2
y2

Y3

Figure 3.8

Exercise 3.1 directed graph

3.11 reference

Strang, Gilbert, Linear Algebra and Its Applications. Harcourt Brace Jovanovich,
1986.

3.12 exercises

Exercise 3.1 Figure 3.8 presents a double entry example in directed graph form.
It is equivalent to a cash payment, some of which goes to an asset, some to expense,
and some of the asset is amortized over time.

a. Suppose x1 = x2 = 5, and y =
'
2 8 3

(T . Compute yrow. What
fraction of y gets through to x?
b. Suppose x1 = 4 and x2 = 6, and y =

'
2 8 2

(T . Compute yrow. What
fraction of y gets through to x?
c. Use general x1 and x2. Compute yrow in terms of x.

Exercise 3.2 Figure 3.9 presents a double entry example in directed graph form.
It is generally equivalent to cash outlays to three cost pools which are then con-
verted into two output products.

a. Let x = 5 and y =
'
2 5 3 2 3 2 3

(T . Compute yrow and the
fraction of y reaching x (R2).
b. Use general x. Compute yrow in terms of x.
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-2 x

0

0

3

x

x

Figure 3.9

Exeercise 3.2 in directed graph format

y1

y2

y3

y4

y5

y6

y7
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Exercise 3.3 Here are partial financial statements.

partial balance sheet
ending balance beginning balance

asset 1 100 100
asset 2 150 150
asset 3 115 70

partial income statement
expense 1 75
expense 2 105

Here are the only journal entries affecting the above accounts.

asset 1 y1
cash y1

asset 2 y2
cash y2

asset 3 y3
cash y3

expense 1 y4
asset 1 y4

expense 1 y5
asset 2 y5

expense 2 y6
asset 2 y6

expense 2 y7
asset 3 y7

Compute yrow.

Exercise 3.4 Here are financial statements.

balance sheet
ending beginning ending beginning

cash 4 2 payables 11 8
receivables 8 4 capital stock 10 10
inventory 8 9 retained earnings 9 4
equipment 10 7
total assets 30 22 total equities 30 22

income statement
sales 10
cost of goods sold 2
gen’l & admin. expenses 3
income 5
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Here are the only journal entries affecting the above accounts.

receivables y1
sales y1

cash y2
receivables y2

payables y3
cash y3

equipment y4
cash y4

g&a expense y5
payables y5

CGS y6
inventory y6

inventory y7
equipment y7

inventory y8
payables y8

Compute yrow.

Exercise 3.5 Here are partial financial statements.

partial balance sheet
ending balance beginning balance

asset 1 90 100
asset 2 180 150

partial income statement
expense 80

Here are the only journal entries affecting the above accounts.

asset 1 y1
cash y1

asset 2 y2
cash y2

expense y3
cash y3
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expense y4
asset 1 y4

expense y5
asset 2 y5

Compute yrow.
The following three exercises are about pension accounting. The idea is that

directed graphs are a useful tool for unraveling pension accounting, in particu-
lar, computing numbers like the pension investment made during the period, and
pension payments made to pensioners.

Exercise 3.6 Revisit exercise 2.1, particularly the directed graph depicting pen-
sion activity. Here is an example of the supplementary disclosure accompanying
financial statements.

2007 2006
projected obligation $289.500 $265.000
plan assets 190.600 159.600
prepaid/(accrued) pension cost $(98.900) $(105.400)

comprehensive income adjustments:
unrecognized (gain)/loss 23.728 29.940
unrecognized prior service cost 14.400 32.000

Notice the supplementary disclosure allows computing the x vector. For ex-
ample, the PBO node is -24.5 (increase in a credit balance). Also available is the
pension cost: 44.312.
Construct a directed graph with all the accounts affected by the pension journal

entries. Attach the change in the account balances (x) wherever possible.

Exercise 3.7 This is a continuation of the previous problem. Additional supple-
mentary disclosure includes the components of pension cost. This allows specify-
ing some of the elements of the y vector.

components of pension cost: 2007
service cost $16.000
interest 26.500
(return) (22.000)
unexpected gain/loss 6.040
amort. of prior service cost 17.600
amort. of unrecog. (gain)/loss 0.172
net pension cost $44.312

Which y vector generates the pension disclosure amounts? Is there more than
one solution to Ay = x?
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Exercise 3.8 Here is another example of supplementary financial disclosure for
pensions.

2007 2006
projected obligation $60 $50
plan assets 38 30
prepaid/(accrued) pension cost $(22) $(20)

comprehensive income adjustments:
unrecognized (gain)/loss 10 6
unrecognized prior service cost 8 12

components of pension cost: 2007
service cost 20
interest 10
(return) (15)
unexpected gain/loss 3
amort. of prior service cost 4
amort. of unrecog. (gain)/loss 2
net pension cost $24

Compute a solution to Ay = x. Is there more than one solution?

Exercise 3.9 Reconsider example 3.3. The quadratic program is (after eliminat-
ing a redundant constraint)

Min y21 + y
2
2 + y

2
3

s.t.y1 + y2 = 12

y1 + y3 = 9

The method of Lagrange combines the objective with the left-hand side of the
constraints into one expression.

L = y21 + y
2
2 + y

2
3 + λ1 (y1 + y2) + λ2 (y1 + y3)

The λ’s are Lagrange multipliers (shadow prices on the constraints). The first
order conditions for a local optimum are the partial derivatives of L are equal to
zero.

@L
@y1

= 2y1 + λ1 + λ2 = 0

@L
@y2

= 2y2 + λ1 = 0

@L
@y1

= 2y3 + λ2 = 0
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With the two original constraints we have five linear equations in five unknowns.
In this problem the multipliers are easily substituted out.

λ1 = −2y2
λ2 = −2y3

And we are left with three relatively simple linear equations in three unknowns to
get yrow.

2y1 − 2y2 − 2y3 = 0

y1 + y2 = 12

y1 + y3 = 9

Exercise 3.10 Decompose the vector yT =
'
1 2 3

(
into 2 orthogonal com-

ponents, one of which is a scalar multiple of
'
1 1 1

(T . What is the R2?

Exercise 3.11 Decompose the vector yT =
'
0 5 10

(
into 2 orthogonal

components, one of which is in the row space of

A =

)
1 1 1
1 2 3

*

Exercise 3.12 Redo the previous exercise with yT =
'
5 0 10

(
.


