operator	$\|00\rangle$	$\|01\rangle$	$\|10\rangle$	$\|11\rangle$
I_{1} or I_{2}	$\|00\rangle$	$\|01\rangle$	$\|10\rangle$	$\|11\rangle$
X_{1}	$\|10\rangle$	$\|11\rangle$	$\|00\rangle$	$\|01\rangle$
X_{2}	$\|01\rangle$	$\|00\rangle$	$\|11\rangle$	$\|10\rangle$
Z_{1}	$\|00\rangle$	$\|01\rangle$	$-\|10\rangle$	$-\|11\rangle$
Z_{2}	$\|00\rangle$	$-\|01\rangle$	$\|10\rangle$	$-\|11\rangle$
Y_{1}	$i\|10\rangle$	$i\|11\rangle$	$-i\|00\rangle$	$-i\|01\rangle$
Y_{2}	$i\|01\rangle$	$-i\|00\rangle$	$i\|11\rangle$	$-i\|10\rangle$
H_{1}	$\frac{\|00\rangle+\|10\rangle}{\sqrt{2}}$	$\frac{\|01\rangle+\|11\rangle}{\sqrt{2}}$	$\frac{\|00\rangle-\|10\rangle}{\sqrt{2}}$	$\frac{\|01\rangle-\|11\rangle}{\sqrt{2}}$
H_{2}	$\frac{\|00\rangle+\|01\rangle}{\sqrt{2}}$	$\frac{\|00\rangle-\|01\rangle}{\sqrt{2}}$	$\frac{\|10\rangle+\|11\rangle}{\sqrt{2}}$	$\frac{\|10\rangle-\|11\rangle}{\sqrt{2}}$
Θ_{1}	$e^{i \theta}\|00\rangle$	$e^{i \theta}\|01\rangle$	$\|10\rangle$	$\|11\rangle$
Θ_{2}	$e^{i \theta}\|00\rangle$	$\|01\rangle$	$e^{i \theta}\|10\rangle$	$\|11\rangle$
$C n o t$	$\|00\rangle$	$\|01\rangle$	$\|11\rangle$	$\|10\rangle$
common quantum operator rules				

