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2
Classical linear models

Linear models are ubiquitous due to their utility (even for addressing ele-
ments of nonlinear processes). This chapter briefly addresses foundational
ideas including projections, conditional expectation functions, analysis of
variance (ANOVA), analysis of covariance (ANCOVA), linear regression,
and omitted correlated variables.

2.1 A basic example

Consider a simple example. Suppose we’re looking for a solution to

Y = !

where ! is a constant, Y takes the values {Y1 = 4, Y2 = 6, Y3 = 5}, and
order is exchangeable. Clearly, there is no exact solution for !. How do we
proceed? One approach is to consider what is unobserved or unknown in
the response or outcome variable Y to be error {"1, "2, "3} and to guess the
parameters of interest (in this case, !) in a manner that extracts all that we
know (say, summarized by X)1 and leaves nothing known in the error. In
other words, we’re looking for the conditional expectation function (CEF )

1
X represents what we know. In the above equation X is implicitly a vector of ones.
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E [Y | X]. Extraction of all information in X, implies error cancellation or
E [" | X] = 0.2

2.1.1 Data generating process (DGP)

If we believe the errors have common variability, say V ar ["i] = #2,3 we
envision the data generating process (DGP) is

Y1 = X1!+ "1 = 1!+ "1

Y2 = X2!+ "2 = 1!+ "2

Y3 = X3!+ "3 = 1!+ "3

or in compact matrix form

Y = X!+ "

where

Y =

!

"
Y1
Y2
Y3

#

$ , X =

!

"
X1
X2
X3

#

$ =

!

"
1
1
1

#

$ ,

" =

!

"
"1
"2
"3

#

$ ! N
%
0,#2I

&
, and E [" | X] = 0

I is an n"n identity matrix, n is the sample size or number of observations,
and N (·) refers to the normal distribution with first term equal to the mean
vector and the second term is the variance-covariance matrix.4 Notice,

V ar ["] = #2I

is a very compact form and implies

V ar ["] = E
'
("# E ["]) ("# E ["])

T
(

=

!

"
V ar ["1] Cov ["1, "2] Cov ["1, "3]
Cov ["1, "2] V ar ["2] Cov ["2, "2]
Cov ["1, "3] Cov ["2, "3] V ar ["3]

#

$

=

!

"
#2 0 0
0 #2 0
0 0 #2

#

$

2A complete statement of the result, the CEF decomposition theorem, and its proof
can be found in the appendix to chapter 3 of Accounting and Causal E!ects: Econometric

Challenges.
3Knowledge of the variance leads to Gaussian or normal probability assignment by

the maximum entropy principle (MEP ). For details, see the discussion in chapter 13 of

Accounting and Causal E!ects: Econometric Challenges, or Jaynes [2003].
4 See the appendix for a discussion of linear algebra basics.
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where V ar [·] is variance and Cov [·] is covariance.

2.2 Estimation

We estimate

Y = Xa+ e

where a is an estimate of the unknown ! and e =

!

"
e1
e2
e3

#

$ estimates the

unknowns ". Since we’re searching for a good approximation to the CEF,
e is constructed to be unrelated to X, or as we say, orthogonal, XT e = 0.
That is, every column ofX is constructed to be orthogonal or perpendicular
to the residuals e. Since e = Y #Xa, we have

XT e = XT (Y #Xa) = 0

this orthogonality condition leads naturally to the normal equations

XTXa = XTY

and multiplication of both sides by the inverse gives the estimator for !

%
XTX

&!1
XTXa =

%
XTX

&!1
XTY

a =
%
XTX

&!1
XTY

For our example above, we have a sample size n = 3,
%
XTX

&!1
= 1

n
= 1

3
,

and XTY =
)n

i=1 Yi. Hence, a =
1

n

)n

i=1 Yi = Y , the sample average as

intuition suggests. For the present example, then a = 5 and V ar [a] = !
2

3
.5

Further, (i) E [a | X] = E [a] = ! (estimation is unbiased) and (ii)
variation in the estimator is smallest amongst unbiased estimators with

V ar [a | X] = #2
%
XTX

&!1
. To see this, (i)

E [a | X] = E
'%
XTX

&!1
XTY | X

(

= E
'%
XTX

&!1
XT (X!+ ") | X

(

= E
'%
XTX

&!1
XTX!+

%
XTX

&!1
XT " | X

(

= !+
%
XTX

&!1
XTE [" | X]

= !+ 0 = !

5Variance of the estimator is discussed below.
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By iterated expectations,6 the unconditional expectation of the estimator,
a, also equals the unknown parameter of interest, !

EX [E [a | X]] = E [a]

EX [E [a | X]] = EX [!] = !

E [a] = !

(ii)

V ar [a | X] = E
'
(a# E [a | X]) (a# E [a | X])

T
| X
(

= E
'
(a# !) (a# !)

T
| X
(

= E

*+%
XTX

&!1
XTY # !

,+%
XTX

&!1
XTY # !

,T
| X

-

= E

*+
!+

%
XTX

&!1
XT "# !

,+
!+

%
XTX

&!1
XT "# !

,T
| X

-

= E

*+%
XTX

&!1
XT "

,+%
XTX

&!1
XT "

,T
| X

-

= E
'%
XTX

&!1
XT ""TX

%
XTX

&!1
| X
(

=
%
XTX

&!1
XTE

.
""T | X

/
X
%
XTX

&!1

Since E
.
""T | X

/
= #2I, the above simplifies to yield the result as claimed

above.7

V ar [a | X] = #2
%
XTX

&!1
XTX

%
XTX

&!1

= #2
%
XTX

&!1

2.3 Projection matrix

The conditional expectation function is estimated as

0Y = Xa

= X
%
XTX

&!1
XTY

The leading matrix, X
%
XTX

&!1
XT , is so important it warrants special

designation. It is the projection matrix, PX = X
%
XTX

&!1
XT . Notice,

6A proof of the law of iterated expectations is presented in the appendix.
7A complete demonstration of the minimum variance property can be found in the

discussion of the Gauss-Markov theorem in chapter 3 of Accounting and Causal E!ects:

Econometric Challenges.
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the matrix is symmetric, PX = (PX)
T
and it is idempotent. That is, mul-

tiplication by itself leaves it unchanged.

PXPX = PX

X
%
XTX

&!1
XTX

%
XTX

&!1
XT = X

%
XTX

&!1
XT

This property says if a vector resides in the columnspace of X, it is a lin-
ear combination of the columns of X, then projecting the vector onto the
columns of X leaves it unchanged – which matches our intuition. Fur-
ther, the residuals are orthogonal to the columns of X, e = Y # PXY =
(I # PX)Y = MXY , and MXPX = (I # PX)PX = PX # PX = 0. There-
fore, the residuals reside in the orthogonal subspace to the columnspace;
this subspace is called the left nullspace.8

2.4 Di!erent means (ANOVA)

We’ve explored estimation of an unknown mean in the example above and
discovered that the best guess, in a minimum mean squared error or least
squares sense, for the conditional expectation function is the sample aver-
age. Now, suppose we have a bit more information. We know that outcome
is treated or not treated. Denote this by D = 1 for treatment and D = 0
for not treated. This suggests we’re interested in !1 = E [Y | D = 1] and
!0 = E [Y | D = 0] or we’re interested in $ = E [Y | D = 1]#E [Y | D = 0].
In other words, we’re interested in two means and, intuitively, we estimate
these via two sample averages or their di!erence. This setting is often re-
ferred to as analysis of variance or ANOVA, for short; this is the simplest
case – a single factor, two factor-level ANOVA.
In the former (two mean) case, it’s simplest and most direct to envision

the following DGP

Y = D0!0 +D!1 + "

= X1!+ "

where X1 =
.
D0 D

/
(an n " 2 matrix), ! =

*
!0
!1

-
(a two element

parameter vector), and D0 = 1#D. While in the latter (mean di!erence)

8The fundamental theorem of linear algebra has two parts. The first part says that
every m!n (rows by columns) matrix has the same number of linearly independent rows

and columns, call this number r. The second part says the dimension (number of linearly

independent vectors) of the rowspace, r, plus the dimension of its orthogonal subspace,
the nullspace, n " r, spans all n length vectors. Analogously for the columnspace, the

dimension of the columnspace, r, plus the dimension of the left nullspace, m" r, spans

all m element vectors. See the appendix for more extensive discussion.
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case, it’s simplest and most direct to envision the DGP as

Y = !0 +D$ + "

= X2% + "

where X2 =
.
& D

/
(an n " 2 matrix), % =

*
!0
$

-
(a two element

parameter vector), and & is a vector of n ones.
Of course, we can work with either one and derive all results. For exam-

ple, $ =
.
#1 1

/
! = !1 # !0. Therefore, $ is estimated via

b =
.
#1 1

/
a = a1 # a0

and

V ar [b | X1] =
.
#1 1

/
V ar [a | X1]

*
#1
1

-

= V ar [a0 | X1] + V ar [a1 | X1]# 2Cov [a0, a1 | X1]

where a =

*
a0
a1

-
, a0 is the estimator for !0, and a1 is the estimator for

!1. Also, !1 =
.
1 1

/
% = !0+$ = !0+!1#!0. Hence, !1 is estimated

via

a1 =
.
1 1

/
g

=
.
1 1

/ * a0
b

-

= a0 + b

and

V ar [a1 | X2] =
.
1 1

/
V ar [g | X2]

*
1
1

-

= V ar [a0 | X2] + V ar [b | X2] + 2Cov [a0, b | X2]

The bigger point here is that estimation of the parameters to "best"
approximate the conditional expectation function is achieved in the same
manner as above (via orthogonalization of the residuals and what is known,
X).

a =

*
a0
a1

-

=
%
XT
1
X1
&!1

XT
1
Y

and

V ar [a | X1] =

*
V ar [a0 | X1] Cov [a0, a1 | X1]
Cov [a0, a1 | X1] V ar [a1 | X1]

-

= #2
%
XT
1
X1
&!1
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Also,

g =

*
a0
b

-

=
%
XT
2
X2
&!1

XT
2
Y

and

V ar [g | X2] =

*
V ar [a0 | X2] Cov [a0, b | Xb]
Cov [a0, b | X2] V ar [b | X2]

-

= #2
%
XT
2
X2
&!1

2.4.1 ANOVA example 1

Suppose (Y | D = 0) is the same as Y in the previous example, that is,

{Y1 = 4, Y2 = 6, Y3 = 5 | D = 0}

and (Y | D = 1) is

{Y4 = 11, Y5 = 9, Y6 = 10 | D = 1}

with order exchangeable conditional on D. The estimated regression func-
tion is

E [Y | X1] = 5D0 + 10D

with

V ar [a | X1] = #
2

*
3 0
0 3

-!1
=
#2

3
I

or
E [Y | X2] = 5 + 5D

with

V ar [g | X2] = #2
*
6 3
3 3

-!1

=
#2

9

*
3 #3
#3 6

-

=
#2

3

*
1 #1
#1 2

-

From the first regression, the estimate of $ is

b =
.
#1 1

/
a = #5 + 10 = 5

with

V ar [b | X1] =
.
#1 1

/
V ar [a]

*
#1
1

-
=
2

3
#2
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which, of course, corresponds with the results from the second regression
(the second element of g is b = 5, the coe"cient on D, and V ar [b | X2] =
2

3
#2, the second row and second column element of V ar [g | X2]). Similarly,
the estimate of !1, from the first regression is a1 = 10 with V ar [a1 | X1] =
!
2

3
, and, from the second regression

a1 =
.
1 1

/
g = 5 + 5 = 10

with

V ar [a1 | X2] =
.
1 1

/
V ar [g | X2]

*
1
1

-

=
#2

3
(1 + 2# 1# 1) =

#2

3

Of course, the estimate of !0 is directly available from either regression,

a0 = 5, with V ar [a0 | X1] = V ar [a0 | X2] =
!
2

3
.

2.4.2 Multi-factor ANOVA and interactions

What if we know of other factors that may, in some way, be related to
outcome? Then, the consistent approach is to include them in the analysis
(to guard against omitted, correlated variables or Simpson’s paradox). For
simplicity, suppose we have another binary factor denoted W = {0, 1}. A
saturated model includesW along with D and their product or interaction,
(D "W ). We envision the following DGP.

Y = !0 + $D + 'W + ( (D "W ) + "

= X% + "

where the regression or conditional expectation is

E [Y | X] = !0 + $D + 'W + ( (D "W )

= X%

" ! N
%
0,#2I

&
, E [" | X] = 0, X =

.
& D W (D "W )

/
is an n " 4

design matrix, and % =

!

11"

!0
$

'

(

#

22$.

Even though this is a richer DGP, estimation proceeds as before. That
is, the minimum mean square error or least squares estimator for % is g =%
XTX

&!1
XTY , a four element vector, and its variability is summarized

as V ar [g | X] = #2
%
XTX

&!1
, a 4" 4 matrix, using the (n" 4) X matrix

identified above.
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ANOVA example 2

Suppose we continue the previous example by appending W .

Y D W

4 0 0
6 0 1
5 0 0
11 1 1
9 1 0
10 1 0

The estimated regression is

E [Y | X] = 4.5 + 5D + 1.5W + 0 (D "W )

An intuitive interpretation is D partitions Y into {4, 6, 5} and {11, 9, 10},
as before, but W partitions {6, 11} and {4, 5, 9, 10}, and D"W partitions
{11} and {4, 6, 5, 9, 10}. Hence, the coe"cient on D is the mean di!erence
between {9, 10} and {4, 5}, that is, after conditioning on W ,9 leaving 9.5#
4.5 = 5. The coe"cient on W , conditional on D, is the mean di!erence
between {4, 5} and {6} , or 6#4.5 = 1.5, and {9, 10} and {11}, or 11#9.5 =
1.5. Since (D "W ) separates Y = 11 from the rest but that di!erence is
already explained by (W | D), the coe"cient on (D "W ) is zero.
Perhaps, some elaboration is instructive.

E [Y | D = 0,W = 1] = 4.5 + 0 + 1.5 = 6

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 6, in the sample). Similarly,

E [Y | D = 1,W = 1] = 4.5 + 5 + 1.5 = 11

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 11, in the sample). On the other hand,

E [Y | D = 0,W = 0] = 4.5 + 0 + 0 = 4.5

there is some residual associated with these conditions (this combination
of D and W occurs when Y = 4 or 5, and they occur with equal frequency
in the sample). To complete the picture, we have

E [Y | D = 1,W = 0] = 4.5 + 5 + 0 = 9.5

there is some residual associated with these conditions (this combination
of D andW occurs when Y = 9 or 10, and they occur with equal frequency
in the sample).

9This is a key to understanding regression, each explanatory (RHS) variable con-

tributes toward explaining response conditional on the other variables on the RHS.
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ANOVA example 3

Now, suppose we perturb the above example slightly by altering W .

Y D W

4 0 0
6 0 0
5 0 1
11 1 1
9 1 0
10 1 0

The estimated regression is

E [Y | X] = 5 + 4.5D + 0W + 1.5 (D "W )

Similar arguments to those above provide some intuition.

E [Y | D = 0,W = 1] = 5 + 0 + 0 = 5

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 5, in the sample). Similarly,

E [Y | D = 1,W = 1] = 5 + 4.5 + 1.5 = 11

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 11, in the sample). On the other hand,

E [Y | D = 0,W = 0] = 5 + 0 + 0 = 5

there is some residual associated with these conditions (this combination
of D and W occurs when Y = 4 or 6, and they occur with equal frequency
in the sample). Finally, we have

E [Y | D = 1,W = 0] = 5 + 4.5 + 0 = 9.5

there is some residual associated with these conditions (this combination
of D andW occurs when Y = 9 or 10, and they occur with equal frequency
in the sample).
Notice, unlike the first two-factor example, if we don’t include the inter-

action term we estimate

E [Y | X] = 4.75 + 5D + 0.75W

The estimated mean e!ects are di!erent since the data is partitioned in-
completely via the design matrix, X =

.
D W

/
, given what we know,

.
D W (D "W )

/
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That is, this design matrix imposes a pooling restriction.10 Consistency
requires such pooling restrictions satisfy the equality of

E [Y | D = 1,W = 0]# E [Y | D = 0,W = 0]

and
E [Y | D = 1,W = 1]# E [Y | D = 0,W = 1]

as well as
E [Y |W = 1, D = 0]# E [Y |W = 0, D = 0]

and
E [Y |W = 1, D = 1]# E [Y |W = 0, D = 1]

Therefore, even though E [Y | D = 0,W = 1] is uniquely associated with
Y = 5, the pooling restriction produces a residual

(e | D = 0,W = 1) = 5# 5.50 = #0.50

Likewise, while E [Y | D = 1,W = 1] is uniquely associated with Y = 11,
the pooling restriction improperly produces a residual

(e | D = 1,W = 1) = 11# 10.50 = 0.50

Also, E [Y | D = 0,W = 0] is associated with Y = {4, 6}, the pooling re-
striction produces residuals

(e | D = 0,W = 0) = 4# 4.75 = #0.75

and
6# 4.75 = 1.25

Finally, E [Y | D = 1,W = 0] is associated with Y = {9, 10}, the pooling
restriction produces residuals

(e | D = 1,W = 0) = 9# 9.75 = #0.75

and
10# 9.75 = 0.25

In other words, ine"cient error cancellation. Of course, by construction
(orthogonality between the vector of ones for the intercept, the first col-
umn of X, and the residuals), the residuals sum to zero. Keeping in mind
that ANOVA is a partitioning exercise crystallizes the implications of in-
appropriate pooling restrictions on the design matrix, X. Or equivalently,
the implications of failing to fully utilize what we know,

.
D W (D "W )

/

when estimating conditional expectations.

10Pooling restrictions are attractive as they allow, when appropriate, the data to be

summarized with fewer parameters.
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2.5 Omitted, correlated variables

The above example illustrates our greatest concern with conditional ex-
pectations or regression models. If we leave out a regressor (explanatory
variable) it’s e!ectively absorbed into the error term. While this increases
residual uncertainty, which is unappealing, this is not the greatest concern.
Recall the key condition for regression is E [" | X] = 0. If this is violated,
all inferences are at risk.
To illustrate the implications, return to the ANOVA examples. Let

X =
.
& D W (D "X)

/

=
.
X2 x3

/

where X2 =
.
& D W

/
and x3 = (D "X). Suppose the DGP is

Y = X$ + " " ! N
%
0,#2I

&
E [" | X] = 0

or

Y = X2$2 + x3$3 + "

When we estimate

Y = X2b2 + residuals

by orthogonal construction,

b2 =
%
XT
2
X2
&!1

XT
2
Y

=
%
XT
2
X2
&!1

XT
2
(X$ + ")

=
%
XT
2
X2
&!1

XT
2
(X2$2 + x3$3 + ")

= $
2
+
%
XT
2
X2
&!1

XT
2
x3$3 +

%
XT
2
X2
&!1

XT
2
"

The last term is no problem as in large samples it tends to zero by E [" | X] =

0. Our concern lies with the second term,
%
XT
2
X2
&!1

XT
2
x3$3. This term is

innocuous if either XT
2
x3 tends to zero in large samples (in other words, x3

is uncorrelated with the other regressors), or $
3
= 0 (in other words, the

third term was not a part of the DGP). Notice, this is extremely important,
any correlation between the omitted regressor and the other regressors (for
$
3
$= 0) biases all of the estimates included in the model. The extent of the

bias in b2 is

bias (b2) =
%
XT
2
X2
&!1

XT
2
x3$3

In ANOVA example 3, without x3 we estimate

E [Y | X2] = 4.75 + 5D + 0.75W
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The bias in the parameter estimates is

bias (b2) =
%
XT
2
X2
&!1

XT
2
x3$3

=
1

12

!

"
5 #4 #3
#4 8 0
#3 0 9

#

$

!

"
1
1
1

#

$ 1.5

=

!

"
#0.25
0.5
0.75

#

$

Hence, to recover the parameters of interest (assuming our estimates are
based on a representative sample of the population) subtract the bias from
the above estimates and concatenate the missing parameter, $

3
,

$
2
= b2 # bias (b2)

=

!

"
4.75
5
0.75

#

$#

!

"
#0.25
0.5
0.75

#

$ =

!

"
5
4.5
0

#

$

And, with concatenation of $
3
we have

$ =

*
$
2

$
3

-
=

!

11"

5
4.5
0
1.5

#

22$

Why doesn’t this problem plague ANOVA example 2? Is it becauseXT
2
x3

tends to zero? No, this is the same as ANOVA example 3. The reason is
that the DGP is an unusual special case that excludes x3 = (D "W ) as
$
3
= 0.

ANOVA example 4

Once more, suppose we perturb the above example by altering W .

Y D W

4 0 0
6 0 1
5 0 1
11 1 0
9 1 0
10 1 1

The estimated regression is

E [Y | X] = 4 + 6D + 1.5W # 1.5 (D "W )
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Again, intuition follows from conditional expectations.

E [Y | D = 0,W = 1] = 4 + 0 + 1.5 = 5.5

this combination of D and W pools Y = {5, 6}, in the sample. While for

E [Y | D = 1,W = 1] = 4 + 6 + 1.5# 1.5 = 10

there is no residual (this combination ofD andW only occurs when Y = 10,
in the sample). Also, for

E [Y | D = 0,W = 0] = 4 + 0 + 0 + 0 = 4

there is no residual (this combination of D andW occurs only when Y = 4,
in the sample). Finally, we have

E [Y | D = 1,W = 0] = 4 + 6 + 0 + 0 = 10

there is some residual associated with these conditions as this combination
of D and W pools Y = 9 or 11, and they occur with equal frequency in the
sample.
Notice, if we don’t include the interaction term we estimate

E [Y | X] = 4.5 + 5.25D + 0.75W

Again, the estimated mean e!ects are di!erent since the design matrix,
X =

.
D W

/
, incompletely partitions what we know,

.
D W (D "W )

/

and pooling restrictions require

E [Y | D = 1,W = 0]# E [Y | D = 0,W = 0]

and
E [Y | D = 1,W = 1]# E [Y | D = 0,W = 1]

to be equal as well as

E [Y |W = 1, D = 0]# E [Y |W = 0, D = 0]

and
E [Y |W = 1, D = 1]# E [Y |W = 0, D = 1]

to be equal.
Therefore, even though E [Y | D = 1,W = 1] is uniquely associated with

Y = 10, the pooling restriction inappropriately produces a residual

(e | D = 1,W = 1) = 10# 10.50 = #0.50
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Also, while E [Y | D = 0,W = 1] is associated with Y = {5, 6}, the pooling
restriction produces residuals

(e | D = 0,W = 1) = 5# 5.25 = #0.25

and
6# 5.25 = 0.75

Further, E [Y | D = 0,W = 0] is uniquely associated with Y = 4, and the
pooling restriction produces a residual

(e | D = 0,W = 0) = 4# 4.5 = #0.5

Finally, E [Y | D = 1,W = 0] is associated with Y = {9, 11}, and the pool-
ing restriction produces residuals

(e | D = 1,W = 0) = 9# 9.75 = #0.75

and
11# 9.75 = 1.25

Again, by construction, the residuals sum to zero.
The DGP for ANOVA example 4 involves a di!erent design matrix, X,

than examples 2 and 3. Nonetheless the omitted, correlated variable bias
stems from the analogous source. For ANOVA example 4 the bias is

bias (b2) =
%
XT
2
X2
&!1

XT
2
x3$3

=
1

12

!

"
8 #6 #6
#6 9 3
#6 3 9

#

$

!

"
1
1
1

#

$ (#1.5)

=

!

"
0.5
#0.75
#0.75

#

$

2.6 Linear regression

How do we proceed if we perceive outcome is related to explanatory vari-
ables and these variables are not binary but rather have continuous sup-
port? LetX denote an n"pmatrix of explanatory variables, sayX1, . . . , Xp!1,
plus a vector of ones in the first column for the intercept. Now, we envi-
sion a DGP like E [Y | X] = m (X) + ", where m (X) is some function of
X, " ! N

%
0,#2I

&
, and E [" | X] = 0. If the functional form of m (X) is

unknown (as is frequently the case), we often approximate m (X) with a
linear function, X$, where $ is a p-elemen parameter vector. Further, the
minimum mean squared error or least squares solution among linear func-
tions (i.e., linear in the parameters) is the same as that above. That is, $
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is estimated via b =
%
XTX

&!1
XTY with V ar [b | X] = #2

%
XTX

&!1
, and

the estimated regression or estimated conditional expectation function is
0Y = Xb = PXY .11

2.6.1 Example

It’s time for an example. Continue with the running example except treat-
ment, D, is initially unobserved.12 Rather, we observe X along with out-
come, Y . Suppose we have the following data.

Y X

4 #1
6 1
5 0
11 1
9 #1
10 0

We envision the DGP

Y = $
0
+ $

1
X + "

where " ! N
%
0,#2I

&
and E [" | X] = 0. The estimated regression is

E [Y | X] = 7.5 + 1.0X

where predicted and residual values are as follows.

predicted
+
0Y
,

residuals (e)

6.5 #2.5
8.5 #2.5
7.5 #2.5
8.5 2.5
6.5 2.5
7.5 2.5

Again, by construction, the sum of the residuals is zero and the average
predicted value equals the sample average, Y . Within each cluster (the first
three and the last three observations), X perfectly explains the response,
however there is no basis for the regression to distinguish the clusters. If
treatment, D, is observed, then in combination with X we can perfectly
explain observed outcome. Such a model is sometimes labelled analysis of
covariance, or ANCOVA, for short.

11 See the appendix to explore a more general case – generalized least squares (GLS ).
12 In this example, factor W is out of the picture.
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2.6.2 Analysis of covariance

The ANCOVA label stems from combining the mean e!ects associated with
ANOVA and covariates, X, which explain outcome. For the setting above,
we envision the DGP

Y = (0 + (1D + (2X + "

or, in saturated form,

Y = (0 + (1D + (2X + (3 (D "X) + "

where " ! N
%
0,#2I

&
and E [" | X] = 0. Suppose the data above is aug-

mented by D, we have
Y D X

4 0 #1
6 0 1
5 0 0
11 1 1
9 1 #1
10 1 0

The estimated ANCOVA regression is

E [Y | D,X] = 5.0 + 5.0D + 1.0X + 0.0 (D "X)

As observed outcome is perfectly predicted by D and X in the sample, the
predicted values are equal to observed outcomes and the residuals are all
zero. Further, as suggested above, the relation between outcome, Y , and
the regressor, X, does not di!er in the two treatment clusters; hence, the
coe"cient on the interaction term is zero. An interpretation of the regres-
sion is, on average, outcome di!ers between the two treatment clusters by
5 (the coe"cient on D) with a baseline when D = 0 of 5 (the intercept),
and within a cluster, outcome responds one-to-one (the coe"cient on X is
1) with X. For instance, when D = 0 and the covariate is low, X = #1,

E [Y | D = 0, X = #1] = 5.0 + 5.0 (0) + 1.0 (#1) = 4

On the other hand, when D = 1 and the covariate is high, X = 1,

E [Y | D = 1, X = 1] = 5.0 + 5.0 (1) + 1.0 (1) = 11

and so on.
The omitted, correlated variable bias in the simple regression compared

to ANCOVA is

bias (d1) =
%
XT
1
X1
&!1

XT
1
x2(2

=
1

12

*
2 0
0 3

- *
3
0

-
5

=

*
2.5
0

-
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where X1 =
.
& X

/
and x2 = D. Omission of D causes no bias in the

coe"cient on X as D and X are uncorrelated; nonetheless, the intercept is
biased.
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Classical causal e!ects strategies

3.1 Causal e!ects and treatment e!ects

When evaluating accounting choices, we’re deeply interested in their welfare

e!ects. Does choice A make everyone better o! or worse o! compared with

choice B? Or, does one choice make some better o! and the other choice

make others better o! such that self-selection is a Pareto improvement?

These are di"cult questions and their resolution is invariably controver-

sial. The root of the inference or modeling problem can be traced back to

omitted, correlated regressor variables, as discussed in the above simpler

settings.

Causal e!ects may involve choices with which we have experience in fa-

miliar environments or in new environments. Or, we may be interested in

welfare e!ects associated with choices with which we have no experience in

familiar or new environments. In the former case, where we have history on

our side, we might pose treatment e!ect questions and employ historical

data to help make an assessment. Treatment e!ects ask whether an indi-

vidual’s welfare is greater with treatment than without treatment. That

is, other things are held constant and we attempt to explore the impact of

treatment on welfare.

Treatment e!ects are less demanding than causal e!ects of unexplored

choices in new environments. Nonetheless, treatment e!ect analysis poses

serious challenges. The endogenous nature of choice often makes it dif-

ficult to hold other things constant. Observable outcome typically is an

incomplete and ill-timed measure of welfare. While we’re interested in the
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individual’s expected utility, we usually observe ex post outcomes. Ex post
versus ex ante considerations may or may not be easily surmounted. Out-
comes may represent gross gains rather than ex ante di!erences in utility.
Gross gains may be related to net benefits if costs are well understood but
individual specific features (for example, nonpecuniary considerations) may
be particularly elusive. One of the most severe challenges is we typically
observe data for an individual only with treatment or without treatment
but not for both. This implies that we cannot directly assess an individ-
ual’s treatment e!ect. However, homogeneity conditions may allow infer-
ence based on population-level treatment e!ect parameters (for example,
mean or average treatment e!ects).

3.2 A simple treatment e!ect example

The above ANCOVA example illustrates a simple treatment e!ect analysis
if, for instance, counterfactuals have the same probability distribution as
those observed. Counterfactuals are conditions not observed. To fix ideas,
let Y1 denote outcome with treatment and Y0 outcome without treatment.
Then the treatment e!ect is Y1 ! Y0. However, we observe (Y1 | D = 1)
and (Y0 | D = 0) but don’t observe the counterfactuals, (Y1 | D = 0) and
(Y0 | D = 1). We would like to compare outcome with treatment to outcome
without treatment for individuals who chose treatment (treatment e!ect on
the treated – TT ) and for individuals who chose no treatment (treatment
e!ect on the untreated – TUT ). Both treatment e!ects compare factual
with counterfactual outcomes

TT = (Y1 | D = 1)! (Y0 | D = 1)

= (Y1 ! Y0 | D = 1)

and

TUT = (Y1 | D = 0)! (Y0 | D = 0)

= (Y1 ! Y0 | D = 0)

Suppose we have the following DGP (factual and counterfactual)

E [Y1 | D = 1, X = !1] = E [Y1 | D = 0, X = !1]

= E [Y1 | X = !1] = 9

E [Y1 | D = 1, X = 0] = E [Y1 | D = 0, X = 0]

= E [Y1 | X = 0] = 10

E [Y1 | D = 1, X = 1] = E [Y1 | D = 0, X = 1]

= E [Y1 | X = 1] = 11
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E [Y0 | D = 1, X = !1] = E [Y0 | D = 0, X = !1]

= E [Y0 | X = !1] = 4

E [Y0 | D = 1, X = 0] = E [Y0 | D = 0, X = 0]

= E [Y0 | X = 0] = 5

E [Y0 | D = 1, X = 1] = E [Y0 | D = 0, X = 1]

= E [Y0 | X = 1] = 6

Treatment is said to be ignorable or selection is on observables as the re-
gressors are su"ciently informative to make treatment, D, conditionally
uninformative of outcome with treatment, Y1, and outcome without treat-
ment, Y0. Then, the conditional average treatment e!ects on the treated
(ATT (X)) and on the untreated (ATUT (X)) are

ATT (X = !1) = E [Y1 ! Y0 | D = 1, X = !1]

= 9! 4 = 5

ATT (X = 0) = E [Y1 ! Y0 | D = 1, X = 0]

= 10! 5 = 5

ATT (X = 1) = E [Y1 ! Y0 | D = 1, X = 1]

= 11! 6 = 5

ATUT (X = !1) = E [Y1 ! Y0 | D = 0, X = !1]

= 9! 4 = 5

ATUT (X = 0) = E [Y1 ! Y0 | D = 0, X = 0]

= 10! 5 = 5

ATUT (X = 1) = E [Y1 ! Y0 | D = 0, X = 1]

= 11! 6 = 5

If outcome represents net benefit, then, conditional on X, everyone is bet-
ter o! with treatment than without treatment. Since this is true for all
levels of X, it is not surprising that, on applying iterated expectations, the
unconditional average treatment e!ects on the treated (ATT ) and on the
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untreated (ATUT ) indicate an average (over all common X) net benefit as
well.1

ATT = EX [E [Y1 ! Y0 | D = 1, X]]

= E [Y1 ! Y0 | D = 1] = 5

and

ATUT = EX [E [Y1 ! Y0 | D = 0, X]]

= E [Y1 ! Y0 | D = 0] = 5

Of course, this degree of homogeneity implies the average treatment e!ect
is

ATE = Pr (D = 1)ATT + (1! Pr (D = 1))ATUT

= Pr (D = 1)E [Y1 ! Y0 | D = 1] + Pr (D = 0)E [Y1 ! Y0 | D = 0]

= E [Y1 ! Y0] = 5

3.3 Treatment e!ects with limited common
support

Unfortunately, the above DGP, where outcome reflects welfare, outcome is
homogeneous, and common X support, is rarely encountered. Rather, it’s
typical to encounter some heterogeneity in outcome and limited common
support.2 To illustrate the implications of limited common support, sup-
pose we have the following data (where relative population frequencies are
reflected by their sample frequencies).

Y Y1 Y0 D X X1 X0
4 13 4 0 0 !2 0
6 11 6 0 !1 !1 !1
5 11 5 0 !1 0 !1
4 12 4 0 0 !1 0
11 11 2 1 0 0 2
11 11 4 1 0 0 1
9 9 3 1 1 1 1
10 10 4 1 1 1 0

1Common support for X is important as our inferences stem from evidence we have

rather than evidence we don’t have in hand.
2Further, often outcome measures gross benefits (and perhaps incompletely) rather

than net benefits so that welfare implications require knowledge of costs with and without

treatment.



3.3 Treatment e!ects with limited common support 5

We don’t observe the counterfactuals: (Y1, X1 | D = 0) or (Y0, X0 | D = 1),
but the key to identifying any average treatment e!ect is

E [Y1 | X1 = x,D = 1] = E [Y1 | X1 = x,D = 0]

and
E [Y0 | X0 = x,D = 1] = E [Y0 | X0 = x,D = 0]

Therefore, the pivotal condition is outcome mean conditional independence
of treatment, D. For the only commonly observed value, x = 0

E [Y1 | X1 = 0, D = 1] = E [Y1 | X1 = 0, D = 0] = 11

and
E [Y0 | X0 = 0, D = 1] = E [Y0 | X0 = 0, D = 0] = 4

conditional mean independence is satisfied. Hence, the only evidence-based
assessment of the treatment e!ect is for X1 = X0 = X = 0, and

ATE (X = 0) = E [Y1 ! Y0 | X = 0] = 11! 4 = 7

Further, this conditional average treatment e!ect is homogeneous.

ATT (X = 0) = ATUT (X = 0) = ATE (X = 0) = 7

where

ATT (X = 0) = E [Y1 ! Y0 | X = 0, D = 1] = 11! 4 = 7

and

ATUT (X = 0) = E [Y1 ! Y0 | X = 0, D = 0] = 11! 4 = 7

While this conditional average treatment e!ect is, in principle, only non-
parametrically identified, by good fortune, ANCOVA e!ectively estimates
both the conditional (onX = 0) and unconditional average treatment e!ect
via the coe"cient on D.3

E [Y | D,X] = 4 + 7D ! 1.5X

where the observables are

Y = DY1 + (1!D)Y0

and
X = DX1 + (1!D)X0

3More generally, we include an interaction term,
!
D !

!
X "X

""
, but it’s coe"cient

is zero for this DGP.
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Further, the conditional average treatment e!ect also equals the uncondi-
tional average. Since the unconditional average treatment e!ect is uniden-
tified by observable data, both of these results are merely fortuitous. That
is, the only conclusion we can draw based on the evidence is for the average
treatment e!ect conditional on X = 0. If there is a local interval of common
X support, this is sometimes called a local average treatment e!ect.
To clarify this common support issue, suppose we perturb only the coun-

terfactual outcomes with treatment as follows.

Y Y1 Y0 D X X1 X0

4 3 4 0 0 !2 0
6 2 6 0 !1 !1 !1
5 11 5 0 !1 0 !1
4 1 4 0 0 !1 0
11 11 2 1 0 0 2
11 11 4 1 0 0 1
9 9 3 1 1 1 1
10 10 4 1 1 1 0

Now, the unconditional average treatment e!ect is 7.25 ! 4 = 3.25, the
unconditional average treatment e!ect on the treated is unperturbed from
above, 10.25 ! 3.25 = 7, and the unconditional average treatment e!ect
on the untreated is 4.25 ! 4.75 = !0.5. Hence, outcome is heterogeneous,
outcome supports self-selection,4 and none of these unconditional average
treatment e!ects are identified by the data. As above, the only treatment
e!ect identifiable from the data is the conditional average treatment e!ect
for X = 0, which continues to be ATE (X = 0) = 11! 4 = 7. Attempting
to extrapolate from the evidence to unconditional average treatment e!ects
is not only a stab in the dark, it is misleading.

3.4 Local average treatment e!ects

The above example suggests the conditions for ignorable treatment may
severely limit identification and estimation of treatment e!ects. A com-
mon complementary approach to expanding the set of regressors (ignorable
treatment) is to employ instrumental variables. Instrumental variables, Z,
are variables that are associated with treatment choice, D, but unrelated
to the outcomes with and without treatment, Y1 and Y0. The idea is we

4There is evidence that an individual self-selects when their choice produces a better

outcome than do the alternative choices. That is, those individuals choosing treatment

are better o! with treatment than without but those choosing no treatment are better o!
without treatment than with. As outcome may be an incomplete indicator of expected

utility, expected utility maximizing behavior does not always produce evidence of self-

selection.
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can manipulate treatment choice with the instrument but leave outcomes
una!ected. This permits extrapolation from observables to counterfactuals,
E [Y1 | D = 0] and E [Y0 | D = 1].
If outcomes with treatment, Y1, and outcomes without treatment, Y0, are

independent of a binary instrument, Z, then the discrete marginal treat-
ment e!ect or local average treatment e!ect,

LATE = E [Y1 ! Y0 | D1 !D0 = 1]

where D1 = (D | Z = 1) and D0 = (D | Z = 0) equals

E [Y | Z = 1]! E [Y | Z = 0]

E [D | Z = 1]! E [D | Z = 0]

This quantity (ratio) can be estimated from observables, therefore LATE
is identified. In fact, this quantity (estimand) is estimated by standard
two-stage instrumental variable estimation (2SLS-IV ).

3.4.1 2SLS-IV estimation

Suppose we envision the regression in error form

Y = !+ "D + #

but E [# | D] "= 0, then OLS provides inconsistent parameter estimates
but instrumental variable estimation can rectify the problem. As the name
suggests, 2SLS-IV estimation involves two stages of projections. The first
stage puts the explanatory variables of interest (here, treatment, D) in the
columns of the instruments, Z. In other words, we construct5

!D = Z
"
Z
T
Z
#!1

Z
T $D

= PZ
$D

where $D = D !D is the estimated mean deviation. Then, we estimate

E [Y | D] = a+ b !D

where the estimate of " is

b =
"
X
T
X
#!1

X
T $Y

5To simplify matters, we work with a single variable by utilizing mean deviations

of all variables. We discuss 2SLS-IV estimation more generally in the appendix to this

chapter.
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and X = !D and "Y = Y ! Y . Since
#
X
T
X
$!1

X
T "Y =

%
"DT
PZPZ

"D
&!1 "DT

PZPZ
"Y

=
%
PZ
"D
&!1 % "DT

PZ

&!1 "DT
PZPZ

"Y

=
%
PZ
"D
&!1

PZ
"Y

=
1
n
Z
T "Y

1
n
ZT "D

1

n
Z
T !Y

1

n
ZT !D

estimates
E[!Y |Z=1]!E[!Y |Z=0]
E[ !D|Z=1]!E[ !D|Z=0]

= E[Y |Z=1]!E[Y |Z=0]
E[D|Z=1]!E[D|Z=0] = LATE. It’s

time for an example.

3.4.2 IV example 1

Suppose the DGP is

Y D Y1 Y0 Z

15 1 15 10 1
15 1 15 10 0
10 1 10 10 1
10 0 10 10 0
10 0 5 10 1
10 0 5 10 0

IV example 1: LATE = 0

If we estimate by OLS we find

E [Y | D] = 10 + 3
1

3
D

suggesting the average treatment e!ect is 3 13 . As treatment is not ignorable,
this is a false conclusion,

ATE = E [Y1 ! Y0] = 10! 10 = 0

Now, if we think of the first two rows as state 1 and successive pairs of
rows similarly where treatment, D, is potentially manipulated via the in-
strument, Z, then we can estimate LATE via 2SLS-IV. With this DGP,
LATE is identified for only state 2 (rows 3 and 4) since D1 ! D0 = 1
(the compliers – individuals induced to select treatment when Z = 1
but not when Z = 0). State 1 represents individuals who always select
treatment and state 3 represents individuals who never select treatment.

Clearly, LATE = E[Y |Z=1]!E[Y |Z=0]
E[D|Z=1]!E[D|Z=0] =

10!10
1!0 = 0 and 2SLS-IV esti-

mates
1

n
Z
T !Y

1

n
ZT !D

= 0, in large samples. Hence, for this DGP and instrument,
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LATE = ATE. but we should not expect this, in general, as the next

examples illustrate.

3.4.3 IV example 2

Suppose the DGP is

Y D Y1 Y0 Z

15 1 15 10 1
10 0 15 10 0
10 1 10 10 1
10 1 10 10 0
10 0 5 10 1
10 0 5 10 0

IV example 2: LATE = 5

OLS estimates

E [Y | D] = 10 + 1
2

3
D

which again fails to identify the average treatment e!ect, ATE = 0. Now,
the compliers are reflected by state 1 alone, and LATE = 5 while ATE

continues to be zero. Also, 2SLS-IV estimates
1

n
Z
T !Y

1

n
ZT !D

= 5 in large samples.

3.4.4 IV example 3

The DGP along with the instrument identifies the particular marginal

treatment e!ect. Consider another variation

Y D Y1 Y0 Z

15 1 15 10 1
15 1 15 10 0
10 0 10 10 1
10 0 10 10 0
5 1 5 10 1
10 0 5 10 0

IV example 3: LATE = !5

OLS again supplies an inconsistent estimate of ATE.

E [Y | D] = 10 + 1
2

3
D

As the compliers are individuals in state 3, LATE = !5 and 2SLS-IV

estimates
1

n
Z
T !Y

1

n
ZT !D

= !5 in large samples.
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3.4.5 IV example 4

Sometimes LATE equals the average treatment e!ect on the treated. If no
one adopts treatment when the instrument value equals zero, then LATE =
ATT . Consider the DGP

Y D Y1 Y0 Z

15 1 15 10 1
10 0 15 10 0
20 0 20 20 1
20 0 20 20 0
10 1 10 10 1
10 0 10 10 0

IV example 4: LATE = ATT

OLS estimates

E [Y | D] = 15! 2.5D

but ATE = 1 2
3
(opposite directions, or a Simpson’s paradox result) and

ATUT = 1.25. LATE = 2.5 is defined by states 1 and 3 and since
Pr (D = 1 | Z = 0) = 0, LATE = ATT = E [Y1 ! Y0 | D = 1] = 2.5. And,

2SLS-IV estimates
1

n
Z
T !Y

1

n
ZT !D

= 2.5 in large samples.

3.4.6 IV example 5

LATE equals the average treatment e!ect on the untreated if everyone
adopts treatment when the instrument equals unity. Consider the DGP

Y D Y1 Y0 Z

15 1 15 10 1
10 0 15 10 0
20 1 20 10 1
20 1 20 10 0
10 1 10 10 1
10 0 10 10 0

IV example 5: LATE = ATUT

OLS estimates

E [Y | D] = 10 + 6.25D

but ATE = 5 and ATT = 6.25. LATE = 2.5 is defined by states 1 and 3
and since Pr (D = 1 | Z = 1) = 1, LATE = ATUT = E [Y1 ! Y0 | D = 1] =

2.5. And, 2SLS-IV estimates
1

n
Z
T !Y

1

n
ZT !D

= 2.5 in large samples.
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3.4.7 IV example 6

Unfortunately, if some individuals are induced to accept treatment when
the instrument changes to one but others are induced to move away from
treatment with the same instrumental variable manipulation, then extant
instrumental variable strategies break down. Uniformity is a condition for
IV identification of LATE, any defiers result in treatment e!ect identifi-
cation failure. We illustrate the problem once again with a simple binary
instrument. Consider the DGP

Y D Y1 Y0 Z

15 1 15 10 1
10 0 15 10 0
20 1 20 15 1
20 1 20 15 0
20 1 20 15 1
15 0 20 15 0
15 0 10 15 1
10 1 10 15 0

IV example 6: defiers

OLS estimates

E [Y | D] = 13
1

3
+ 3

2

3
D

but ATE = 2.5, ATT = 3, and ATUT = 1 2
3
. LATE = 5 is defined by

states 1 and 3 but state 4 violates uniformity. 2SLS-IV estimates
1

n
ZT !Y

1

n
ZT !D

=

15 in large samples, a gross overstatement of the treatment e!ect.
This illustrates the trouble two-way flows cause in the identification of

treatment e!ects. Extant IV strategies rely on uniformity either toward
treatment or away from treatment by all individuals, not some individu-
als toward and others away from treatment in response to changes in the
instrument. Further, this simple binary instrumental variable strategy iden-
tifies the local average treatment e!ect for an unidentified subpopulation
of compliers. Nonetheless, binary IV identifies marginal treatment e!ects
for this subpopulation, a parameter surely of some interest.

3.5 Treatment e!ects and control functions

Another approach that may be e!ective for identifying treatment e!ects uti-
lizes control functions. That is, functions which directly control the source
of selection bias. Consider a simple data generating process (to keep the
discussion compact, there are no regressors).

Yj = µj + Vj , j = 0, 1
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where µj is the mean of outcome and Vj is the unobserved (not residual)
portion of outcome for treatment j.

Y D Y1 Y0 V1 V0
15 1 15 9 3 !1
14 1 14 10 2 !2
13 1 13 11 1 !3
13 0 11 13 !1 3
14 0 10 14 !2 2
15 0 9 15 !3 1

If we attempt to estimate average treatment e!ects via an exogenous
dummy variable regression6

E [Y | D] = µ
0
+ (µ

1
! µ

0
)D

we find that OLS estimates

E [Y | D] = 14 + 0D

Suggesting all average treatment e!ects are zero. While it is the case, the
unconditional average treatment e!ect is zero

E [Y1 ! Y0] = 12! 12 = 0

the means for outcome with treatment and with no treatment are not
identified as OLS suggests the mean of each is 14 while the DGP clearly
indicates the mean of each is 12. Further, we may have more interest in
the average treatment e!ect on the treated and untreated but OLS does
not identify either of these quantities. The fundamental problem is that the
basic condition for a well-posed regression, E [Vj | X] = 0, is not satisfied.
Rather,

E [V1 | D = 1] =
1

3
(3 + 2 + 1) = 2

E [V1 | D = 0] =
1

3
(!3! 2! 1) = !2

E [V0 | D = 1] =
1

3
(!3! 2! 1) = !2

and

E [V0 | D = 0] =
1

3
(3 + 2 + 1) = 2

Nonetheless, the average treatment e!ects on the treated (ATT ) and
untreated (ATUT ) are well-defined.

ATT = E [Y1 | D = 1]! E [Y0 | D = 1]

= 12 + 2! (12! 2)

= 4

6This is in the same spirit as a single factor ANOVA with binary factor levels.
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and

ATUT = E [Y1 | D = 0]! E [Y0 | D = 0]

= (12! 2)! (12 + 2)

= !4

Also, these quantities readily connect to the average treatment e!ect.

ATE = Pr (D = 1)ATT + (1! Pr (D = 1))ATUT

=
1

2
(4) +

1

2
(!4) = 0

The key is to determine a path from observable data to these quantities. The
control function approach attempts to include functions in the regression
that control for the source of selection bias, E [Vj | D]. Then, the means
can be properly identified and estimation from observable data is feasible.
The most popular control function approach was developed by Nobel

laureate, James Heckman. Briefly, the idea is treatment selection by an
individual reflects expected utility maximizing behavior. The data analyst
(manager, social scientist, etc.) observes some factors influencing this choice
but other factors are unobserved (by the analyst). These unobserved com-
ponents lead to a stochastic process description of individual choice behav-
ior. The key to this stochastic description is the probability assignment to
the unobservable component. Heckman argues when the probability assign-
ment is Gaussian or normal, then we can treat the problem as a truncated
regression exercise. And, when common support conditions for the regres-
sors are satisfied, in principle, average treatment e!ects on the treated,
untreated, and the unconditional average are identified. Otherwise, when
common support conditions are limited, local average treatment e!ects
only are identified. We sketch the ideas below and relate them to the above
example.7

3.5.1 Inverse Mills control function strategy

Consider the DGP where choice is represented by a latent variable char-
acterizing the di!erence in expected utility associated with treatment or
no treatment, observed choice, and outcome equations with treatment and
without treatment.
latent choice equation:

EU =W! + VD

observed choice:

D =
1 if EU > 0 VD > !W!

0 otherwise

7This subsection is heavily laden with notation – bear with us.
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outcome equations:

Y1 = µ
1
+X!

1
+ V1

Y0 = µ
0
+X!

0
+ V0

Heckman’s two-stage estimation procedure is as follows. First, estimate
" via a probit regression of D on W = {#, X, Z} and identify observations
with common support (that is, observations for which the regressors, X,
for the treated overlap with regressors for the untreated). Second, regress
Y onto !

#, D,X,D (X ! E [X]) , D

"
$

!

#
, (1!D)

!$

1! !

$

for the overlapping subsample. With full support, the coe"cient on D is a
consistent estimator of ATE ; with less than full common support, we have
a local average treatment e!ect.8

Wooldridge suggests identification of

ATE = µ
1
! µ

0
+ E [X] (!

1
! !

0
)

via % in the regression

E [Y | X,Z] = µ
0
+ %D +X!

0
+D (X ! E [X]) (!

1
! !

0
)

+D&
1VD

'1
$ (W")

! (W")
! (1!D) &

0VD
'0

$ (W")

1! ! (W")

This follows from the observable response

Y = D (Y1 | D = 1) + (1!D) (Y0 | D = 0)

= (Y0 | D = 0) +D [(Y1 | D = 1)! (Y0 | D = 0)]

and applying conditional expectations

E [Y1 | X,D = 1] = µ
1
+X!

1
+ &

1VD
'1
$ (W")

! (W")

E [Y0 | X,D = 0] = µ
0
+X!

0
! &

0VD
'0

$ (W")

1! ! (W")

8We should point out here that second stage OLS does not provide valid estimates

of standard errors. As Heckman points out there are two additional concerns: the errors
are heteroskedastic (so an adjustment such as White suggested is needed) and ! has to

be estimated (so we must account for this added variation). Heckman identifies a valid

variance estimator for this two-stage procedure.
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Simplification produces Wooldridge’s result.

E [Y | X,Z] = E [(Y0 | D = 0) +D {(Y1 | D = 1)! (Y0 | D = 0)} | X,Z]

= µ
0
+X!

0
! "

0VD
#0

$ (W%)

1! ! (W%)

+D

!
µ
1
+X!

1
+ "

1VD
#1
$ (W%)

! (W%)

"

!D

!
µ
0
+X!

0
! "

0VD
#0

$ (W%)

1! ! (W%)

"

now rearrange terms

µ
0
+D {µ

1
! µ

0
+ E [X] (!

1
! !

0
)}+X!

0
+D (X ! E [X]) (!

1
! !

0
)

+D"
1VD

#1
$ (W%)

! (W%)
! (1!D) "

0VD
#0

$ (W%)

1! ! (W%)

The coe"cient on D, {µ
1
! µ

0
+ E [X] (!

1
! !

0
)}, is ATE.

The key ideas behind treatment e!ect identification via control functions

can be illustrated by reference to this case.

E [Yj | X,D = j] = µj +X!j + E [Vj | D = j]

Given the conditions, E [Vj | D = j] "= 0 unless Corr (Vj , VD) = "jVD = 0.
For "jVD "= 0,

E [V1 | D = 1] = "
1VD

#1E [VD | VD > !W%]

E [V0 | D = 1] = "
0VD

#0E [VD | VD > !W%]

E [V1 | D = 0] = "
1VD

#1E [VD | VD # !W%]

and

E [V0 | D = 0] = "
0VD

#0E [VD | VD # !W%]

The final term in each expression is the expected value of a truncated

standard normal random variate where

h1 $ E [VD | VD > !W%] =
$ (!W%)

1! ! (!W%)
=
$ (W%)

! (W%)

and

h0 $ E [VD | VD # !Z%] = !
$ (!W%)

! (!W%)
= !

$ (W%)

1! ! (W%)

Putting this together, we have

E [Y1 | X,D = 1] = µ
1
+X!

1
+ "

1VD
#1
$ (W%)

! (W%)
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E [Y0 | X,D = 0] = µ
0
+X!

0
! "

0VD
#0

$ (W%)

1! ! (W%)

and counterfactuals

E [Y0 | X,D = 1] = µ
0
+X!

0
+ "

0VD
#0
$ (W%)

! (W%)

and

E [Y1 | X,D = 0] = µ
1
+X!

1
! "

1VD
#1

$ (W%)

1! ! (W%)

The appeal of Heckman’s inverse Mills ratio strategy can be seen in its
estimation simplicity and the ease with which treatment e!ects are then
identified. Of course, this doesn’t justify the identification conditions –
only our understanding of the data can do that. The conditional average
treatment e!ect on the treated is

ATT (X,Z) = µ
1
! µ

0
+X (!

1
! !

0
) +

!
"
1VD

#1 ! "0VD#0
" $ (W%)
! (W%)

and by iterated expectations (with full support), we have the unconditional
average treatment e!ect on the treated

ATT = µ
1
! µ

0
+ E [X] (!

1
! !

0
) +

!
"
1VD

#1 ! "0VD#0
"
E

#
$ (W%)

! (W%)

$

Also, the conditional average treatment e!ect on the untreated is

ATUT (X,Z) = µ
1
! µ

0
+X (!

1
! !

0
)!

!
"
1VD

#1 ! "0VD#0
" $ (W%)

1! ! (W%)

and by iterated expectations, we have the unconditional average treatment
e!ect on the untreated

ATUT = µ
1
! µ

0
+E [X] (!

1
! !

0
)!

!
"
1VD

#1 ! "0VD#0
"
E

#
$ (W%)

1! ! (W%)

$

Since

ATE (X,Z) = Pr (D = 1 | X,Z)ATT (X,Z)

+Pr (D = 0 | X,Z)ATUT (X,Z)

= ! (W%)ATT (X,Z) + (1! ! (W%))ATUT (X,Z)

we have the conditional average treatment e!ect is

ATE (X,Z) = µ
1
! µ

0
+X (!

1
! !

0
)

+
!
"
1V #1 ! "0VD#0

"
$ (W%)!

!
"
1V #1 ! "0VD#0

"
$ (W%)

= µ
1
! µ

0
+X (!

1
! !

0
)

and by iterated expectations, we have the unconditional average treatment
e!ect is

ATE = µ
1
! µ

0
+ E [X] (!

1
! !

0
)
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3.5.2 Back to the example

Now, we return to the example and illustrate this control function strategy.
Suppose the first stage probit regression produces the following hazard rates

(inverse Mills ratios) where h = D!h1+(1"D)h0, h1 = !D,1"1
!(W")
!(W") h0 =

"!D,0"0
!(W")

1!!(W") , and the standard deviations are "1 = "0 = 2.16.
9 ,10

Y D Y1 Y0 V1 V0 h

15 1 15 9 3 "3 3
14 1 14 10 2 "2 2
13 1 13 11 1 "1 1
13 0 11 13 "1 1 1
14 0 10 14 "2 2 2
15 0 9 15 "3 3 3

The large sample second stage regression is

E [Y | D,h] = 12 + 0D + 1.0 (D # h1)" 1.0 ((1"D)# h0)

Estimated average treatment e!ects consistently identify (again, a large
sample result) the average treatment e!ects as follows. The average treat-
ment e!ect is estimated via the coe"cient on D

estATE = 0

9 In other words, the sample is representative of the population. Hence,

!i =

!
1

6

"
32 + 22 + 12 + (!3)2 + (!2)2 + (!1)2

#

=

!
28

6
" 2.16

10Clearly, we’ve omitted details associated with the first stage. Su"ce to say we have
regressors (instruments) related to selection, D, but that are uninformative about out-

comes, Y1 and Y0 (otherwise we would include them in the output regressions). The

instruments, Z =
$
Z1 Z2 Z3 Z4

%
(no intercept; tabulated below) employed are

orthogonal to Y1 and Y0.

Z1 Z2 Z3 Z4

5 4 3 1

!6 !5 !4 !2

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

In fact, they form a basis for the nullspace to
$
Y1 Y0

%
. When we return to this setting

to explore Bayesian analysis, we’ll be more explicit about this first stage estimation but
we bypass this stage for now.
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Other estimated averages of interest are

estE [Y1 | D = 1] = 12 + 0 + 1.0

!
3 + 2 + 1

3

"

= 14

estE [Y1 | D = 0] = 12 + 1.0

!
!3! 2! 1

3

"

= 10

estE [Y0 | D = 1] = 12 + 0! 1.0

!
3 + 2 + 1

3

"

= 10

estE [Y0 | D = 0] = 12! 1.0

!
!3! 2! 1

3

"

= 14

Hence, the estimated average treatment e!ect on the treated is

estATT = estE [Y1 | D = 1]! estE [Y0 | D = 1]

= 14! 10 = 4

and the estimated average treatment e!ect on the untreated is

estATUT = estE [Y1 | D = 0]! estE [Y0 | D = 0]

= 10! 14 = !4

We see the control function strategy has e!ectively addressed selection bias

and allowed us to identify some average treatment e!ects of interest even

though the DGP poses serious challenges.

3.6 Pursuit of higher explanatory power

A word of caution. Frequently, we utilize explanatory power to help gauge

model adequacy. This is a poor strategy in the analysis of treatment e!ects.

Higher explanatory power in either the selection equation or the outcome

equations does not ensure identification of average treatment e!ects. We

present two examples below in which higher explanatory power models

completely undermine identification of treatment e!ects.

3.6.1 Outcomes model example

It might be tempting to employ the instrument Z5 =
#
1 0 !1 !1 0 1

$T

as a regressor as it perfectly explains observed outcome Y . Estimates are

E [Y | Z1, D, h] = 14 + 1.0Z5 + 0D + 0 (D " h1) + 0 ((1!D)" h0)
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However, recall our objective is to estimate treatment e!ects and they

draw from outcomes, Y1 and Y0, which are only partially observed and

Z5 is independent of these outcomes.
11 This regression produces severe

selection bias, disguises endogeneity, suggests homogeneous outcome when

it is heterogeneous, and masks self-selection. In other words, it could hardly

be more misleading even though it has higher explanatory power.

3.6.2 Selection model example

Suppose we add the regressor,

X1 =
!
1 0 1 !1 0 !1

"T

to the instruments in the selection equation so that the regressors in the

probit model are12

W =
!
X1 Z1 Z2 Z3 Z4

"

=

#

$$$$$$%

1 5 4 3 1
0 !6 !5 !4 !2
1 0 0 0 1
!1 0 0 1 0
0 0 1 0 0
!1 1 0 0 0

&

''''''(

Again, we suppress probit estimation details. The estimated outcomes model

conditional on the "control functions" is

E [Y | Z1, D, h] = 14 + 0D + 0 (D " h1) + 0 ((1!D)" h0)

As in the higher explanatory power outcomes model, this treatment e!ect

identification strategy is a complete bust. Here, it is because the regres-

sor, X1, dominates the instruments in explaining treatment choice and

it’s the instruments that allow manipulation of choice without a!ecting

outcome – the key to identifying properties of the counterfactuals. Hence,

the regression is plagued by severe selection bias, disguises endogeneity and

heterogeneity of outcomes, and hides self-selection inherent to the setting.

11 Identification of instruments is extremely delicate because we don’t observe a portion

of the outcome distributions.
12Employment of a perfect predictor, say

X2 =
!
1 1 1 !1 !1 !1

"T

is well known to create estimation problems. In this case any positive weight on X2 sup-

plies an equally good fit and makes any other regressors superfluous in the selection equa-

tion. Results for the perfect regressor case parallel that presented, except with the perfect

predictor, x2, the coe"cients on the control functions, (D " h1) and ((1!D)" h0), are

actually indeterminant since they are a linear combination of the intercept and D.
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To summarize, high explanatory power of either the selection equation or
outcome equations does not indicate a well-specified model. As the above
examples suggest, higher explanatory power can undermine our treatment
eect identification strategy. When addressing counterfactuals and treat-
ment eects, we have no choice but to rely on what we know prior to
examining the evidence (namely, theory) in specifying the model.13

3.7 Bayesian analysis with control function
principles

In spite of the apparent success of the classical strategy above, experience
suggests Bayesian analysis employing control function principles is more
robust than is the classical strategy. Perhaps, this reflects hazard rate (or
inverse Mills ratio) sensitivity to estimation error. On the other hand, a
Bayesian approach employs least squares estimation on augmented, "com-
plete" data (pseudo-random draws from a truncated normal distribution).
That is, instead of extrapolating into the tails via the hazard rate "cor-
rection," the Bayesian strategy utilizes data augmentation to "recover"
missing counterfactual data.14

However, we suspect that it is at least as important that Bayesian analy-
sis helps us or even forces to pay attention to what we know about the set-
ting.15 Also, Bayesian data augmentation allows the distribution of treat-
ment eects as well as marginal treatment eects to be explored (our dis-
cussion above, limits inferences to treatment eect means).16

We next turn our attention to Bayesian analysis and consistent reason-
ing. First, we explore the importance of loss functions, maximum entropy
probability assignment, conjugate families, and Bayesian analysis of some
primitive data analytic problems. Then, we revisit treatment eects and
discuss Bayesian analysis.

13We don’t mean to imply that diagnostic checking based on the evidence is to be
shunned. To the contrary, but we must exercise caution and bear in mind how we’re
exploiting observables to infer unobservables (e.g., counterfactuals).
14Bayesian analysis is data intensive. Its application to treatment eects is discussed

in some detail in Accounting and Causal Eects: Econometric Challenges, ch. 12.
15 Jaynes, 2003, Probability Theory: The Logic of Science gives a riveting account of

these ideas.
16Heckman and others propose classical, factor analytic strategies to explore treatment

eect distributions and marginal treatment eects.


