1 Probability assignment and inferring transac-
tions from financial statements

Suppose a financial statement analyst has identified a platform, A, for the double
entry accounting system describing the analyst’s perception of an organization’s
financial reporting such that

Ay==x

where A is an assigned m X n matrix of simple journal entries in the columns,
one 1 (denoting a debit entry) and one —1 (denoting a credit entry) in each
column, with rows identifying the account adjusted, y is an n-element vector
of unknown (to the analyst) transactions amounts to be inferred, and z is an
m-~element vector of observed changes in account balances over the reporting
period. Given a platform A and financial statement changes in account balances,
x, the analyst knows considerable about y. However, typically there are many
consistent solutions for y. A general description of these solutions is

y:yp—l—NTk

where yP is any consistent solution, N is an (n — m + 1) x n matrix describing a
basis for the nullspace of A (ANT = 0), and k is an (n — m + 1)-element vector
of arbitrary weights on the rows of N. The abundance of consistent solutions is
reinforced if we return to the original expression and substitute for y

Ay
A"+ NTk) =
AyP + ANTE =
Ay? + 0k =
AyP =

Since the nullspace is orthogonal (unrelated) to the rows of A, the financial
statements convey no information about the null component of y, N7k, and
the weights can take on any value. How does the analyst characterize her state
of knowledge regarding the transactions in which the firm engaged, y, given
platform A and changes in account balance =7

One consistent approach involves assigning prior beliefs regarding y based on
the analyst’s background knowledge and updating via Bayesian revision. This
initial step of assigning prior probability beliefs is critical. Background knowl-
edge can vary from nearly uninformed to highly knowledgeable. For instance,
perhaps the analyst has only a weak sense of the location (mean, u) and an
upper bound on the variability (variance, o) for the transactions. Then, the
analyst’s natural (maximum entropy) probability assignment is a multivariate
normal distribution with mean vector p and variance matrix 02I,,.! On the

! Exchangeability or independence is a maximum entropy assignment. Hence, without
background knowledge to the contrary, independence is the natural probability assignment.



other hand, a knowledgeable analyst incorporates implications into her priors
regarding y. Such knowledge reflects short- or long-run equilibrium strategies
based on in-depth knowledge of the organization and its relationships with cus-
tomers, suppliers, employees, etc. If these implications are summarized by first
and second moments for y, the analyst again assigns a normal distribution al-
though in this case a more informed distribution.

Since the weakly informed case is more geometric and intuitive, we develop
it first and later discuss the general case including strongly informed.

1.1 Special case: weakly background knowledge

Suppose the analyst assigns prior probability beliefs
y~N(n,0l,)

Then
Tog ~ N (A(),u,7 O'QA()A(Z;)

where Ay is constructed by dropping any redundant row from A (Ap has linearly
independent rows) and xy drops the corresponding element from z. Further, the
covariance between y and xq is

Ely—m) (wo— A" = B [(y—m (Aoy— Aop)"]
= B [(y—u) (y—u)T] AG
= o?Al

and the covariance between xy and y is

B |(z0 ~ Aop) (= p)"] = B [(Aoy — Aom) (v~ )"
= AE [(y 1)y - M)T}

= 0'2A0

The conditional expectation of transactions given platform A and z = 20 is

Elyle=a%4] = u+0’AL (62 40AT) " (a° — Aop)
= p+ AT (AAD) T (Agy? — Aop)
= p+ AT (AAT) T A (v — )
= Py’ + (I — Preay) 1

where Pray = Af (AOAE)_1 Ap, the projection into the rows of A. Iterated



expectations provides a consistency check.

Ely] = E, [E[y|:c::c0,AH
By [Preayy” + (I = Preay) 1]
= PrayE[y*] + (I — Preay) 1
= Prayp+ (I = Pray)
= pu

The conditional variance of transactions given platform A and x doesn’t depend

on the realized value z°.

Varly|z,A] = oI —oc*AL (0214014(7;)71 o? Ay
= o (I = Pr)

Variance decomposition provides a consistency check.

Varly] = Varg[Ely |z, A]]+ E; [Varly | z, A]
= Vary [Preayy” + (I — Preay) 1] + Varly | z, A]
Proayy” + (I — P -
_ E[ (Preayy” + (I = Preay) =) |$,A}
(Preayy? + (I = Preay) 1= p)
+Varly |z, A
= PreB [ — 1) (6" = )] Pacay + Varly | o, 4]
= 0*Pra +0° (I - Pra))

= 0’2

If the analyst wishes to write a proper posterior density function, residual
uncertainty conditional on platform A and financial statement results x resides
with k, the weights on the nullspace of A.

B~ N((NNT) 7 N o? (NNT) )

and
(y] = o, 4) = 4" 4 NT
where yf(4) = Preayy?. Putting this all together leads back to the results
above.
E [y | :xO,A] = A L NTE [k | z :xO,A]
= Prayy’ + NT(NNT) " N
where

NT(NNT) ' N =T — Ppay



and

Varly | z, Al
= Var [yR(A) + NTE |z, A}

_E | z, A
| (4™ 4 NTh -y - NT (NNT) T V)
(NTk = NT (NNT) ™' Np)
= E 1 T | m7A
(NTk = NT (NNT) ' Np)

T
. NTE[(k—(NNT)lNu> (k= (WNT) 7" V) x,A]N
= N"Varlk|z=,AN
— NT(NNT)T'N
= 0 (I = Pra))

1.2 More general case: strong background knowledge

Suppose the analyst assigns prior probability beliefs

y ~ N (p, %)

where p is likely different than that above and X is a general variance matrix
accounting for different variability across transactions and correlation between

transactions. Then
To ~ N (A0M7 AozAg)

Further, the covariance between y and g is

E\(y—p) (zo — Aou)T} = E [(y — ) (Aoy — Aou)T}
= Bly-my-w'] Al
= SAJ

and the covariance between xy and y is

E |(xo — Aop) (y — u)T} = E [(Aoy — Aop) (y — u)T}
= AB|y-m -]
=AY



The conditional expectation of transactions given platform A and x =z

0 is

Elylz=2"4] = pu+3AY (43AY) " (2° — Agp)

= 4+ TTTAT (ATTTAT) ™ (Agy? — Aop)
= IT 'p+T {FTA%’ (ATT7AD) ™ AoF} It (v —p)
= TPran I 'y +T (I - Prar)) I 'p

where Prar) = r'TAT (AOFFTAg)fl Apl', the projection into the rows of AI'
and ¥ = I'TT by Cholesky decomposition. Iterated expectations provides a
consistency check.

Ely] = E.[Ely|z=2a"A]]

Eq [T PrearyD ™ 'y? + T (I — Preary) T '
T Prany T ' E[y"] + T (I — Prear)) T~ 'a
= TPranl 'u+T (1 - Prun) T~ '
= IT 'u=n

The conditional variance of transactions given platform A and z doesn’t
depend on the realized value z°.

Varly |z, A] = % - SAT (4o2A7) 7" A,

= "~ T {r7 AT (ArTT A7) Ao} T
= T(I = Ppear) T

Variance decomposition provides a consistency check.

Var [y

Var, [Ely |z, Al] + E; [Var [y | z, Al]
Vary [[ProaryD ™ 'y? + T (I = Preary) T '] + Var ly | 2, A
< FPR(AF)Pilypl )

I'(l—-P I —

B + ( R(Ar)_)1 w—p |z, A
( I'Prianyl' ™ y? >
+I (I = Priary)) Il — p
+Varly |z, A]

_ _\T
LPrar)l'E [(yp - ) (y" = M)T] (CPranI ™)
+Varly |z, A

_ —1
T PreanyD'TTT (FT) " PreanyI" + T (I — Prear)) I
I Proany I +T (I = Preary) T
It =%



If the analyst wishes to write a proper posterior density function, residual
uncertainty conditional on platform A and financial statement results = resides
with k, the weights on the nullspace of A, N. Notice the nullspace of AT' can

be expressed N (F_l)T so that ATT-'NT = ANT = 0.
(k| z) ~N ((N " P‘lNT)_l N () T (N () T _1>

and
(' (y|le=2a"A) =TTy +T'N"k)

where yf(AT) = PR(AF)I"lyp. Putting this all together leads back to the results
above.

Ely|z=2°A4]
= Ty 4T (0INTE [k |2 =2, A])

= TProanl 'y +T {F—lNT (N (1" F_lNT)% N (F—l)T} 1y

= T [Praary D™ 'y" + (I — Priar)) T~ ']

~1
PONT (N () TNT) N (0T = T Prary



and

R(AF 4T ( 1NT]€)
T

Varly| z, Al
Var [y®40) 4T (D7'NTk) | 2, 4]
- yRAD L1 (T 1NTk) R(AT)
( 1NT( (r- 1)T 1NT T}I‘ 1M)
E R(AT) )T | z, A

1NT N (@Y 1NT Iy

|z, A

I I (r- 1NTl~c)
( r- 1NT N ()1 1NT N T}r 1u)
T (T 1NTk) g
( 1NT (I‘_) - lNT T}I‘ 1#)
(k—(N(F—l) roiINT) 1N(F H"'r

r(r'N"E .
(k — (N (@) TINT) N (F‘l)TF‘lu)

T | x, A

o

(v (r
r{r'N"Var[k |z = AN (171)" } 17
{F lNT 1>TF—1NT)1N(F—1)T}FT

I'(I - Pg AF))

1.3 Bayesian details

Now, we embellish the above analysis by returning to Bayesian basics to ensure
consistency. As uncertainty is entirely reflected in the distribution for y, y =

YoV 4y and Agy = o, we work with [ Ao ] V.

N

4]y = [%] o

_ § Aoyrow
| NNTk

— 0
=~ | NNTk




The above is without loss of information as a linear transformation recovers the
-1
AT (AgAT) ™ Aoy

components of y.
[ ] Y N= (NN
N T ( T) 1 Ny

yrow
= l: ynull :|

The joint density is f (Aoy, Ny) and f (x¢) is written f (Apy) so that the
posterior distribution is

f(Nylzo) = f(Nyl| Aoy)
f (Aoy, Ny)
f(Aoy)

The row component of y, y™", is the projection of any consistent solution, y?,
into the rows of Agl, I'TT = Var[y] = X. In the special case where ¥ = o1,
I' = ol. Since the scalar can be ignored, y™% is the row component of Ag. The
null component of y, y™**, is the orthogonal component to y™v.

AT (AgAT) ™! 0

row

1.3.1 Special case, ¥ = ¢%]

Suppose background knowledge is summarized as y ~ N (,u, o’l ), then

Ao Ao o[ AoAT AGNT | o[ AAT 0
[N]yNNQN}“’U NAY NNT |77 | 0 NN
Aoy =g ~~ N (A0/,67 OQAoAg>

and

f(AoyaNy)
Ny | x
where
1
5|2 049
(2m) "{ 0 NNT]
T ApAT 0 17!
exp Tmrlma [AT NT T NNT}
20 (- p)
N y—p
1

- 1
2m)2 o |AgAT|? & NNT|?
0

—1
exp [i (y—m" < fJiT(??VAE;)—f; ) (y - u)]



and
1

oA AT|?

f(A()y) = m—1
(2m)

exp [;Z (y— " AT (A0AD) ™ Ag (y — u)]

Hence,

1
f (Ny | Aoy) = n—mt1 T
(2m) F o |NNT|?

exp [—1 (y—p)" NT (NNT)lN(y—u)]

202

This indicates
Var [Ny | zo) = 6> NNT

Is this consistent with the analysis above? Recall
Ny=NNTE
and from above
Var[k | zo] = o (NNT)_1
then
Var [NN"k |zo] = NN'"Varlk|zo) NN"

NNTo? (NNT) "' NNT
= o’NNT

Also, from above
o) = N7 (NNT) 7' N

Varly
which leads to
Var[Ny|xzo] = NVarly|zo N
= N[o*NT (NNT) T N| NT
= o’NNT
Therefore, the conditional variance is consistent with the foregoing analysis.

This leaves the conditional mean. The exponential term includes a quadratic
form involving

-1
NT (NNT) N (y o /U') _ ynull . Mnull
_ (y _ yrow) _ Mnull
= y— (yrow + Mnull)
= y—FE[y|zo=2{)
Hence, the conditional expectation is consistent with the foregoing analysis and
the Bayesian demonstration for the special case is complete.



1.3.2 general case: ¥ # o
Suppose background knowledge is summarized as y ~ N (,u, by FFT) then

Py~ N (0 T (7)< 1)

ATty = z¢
F y_].—‘ 1r0w+I\—1NTk
AT INT = 4NT =0

is a basis for the nullspace of AgI". We proceed in

which implies NV (I‘T)
analogous fashion as above by working with

v [
TR T s
N (I7) | N(OT)T'ITAT N (DT) ' DOINT
N Ao AITT AT 0
([ N (TT) ' }“[ 0 N (IT) ' T-INT D

AoIT ™'y = mg ~ N (Aop, A TTT AJ)

f (AOI‘I‘*ly, N (@)™ rfly)

and
-1
STy m) = J (A,TT=Ty)

where
f (Aorrfly, N (TT)! r*1y>
1

- oyt |[ AT AT 0 :
(2m) 0 N(FT)*l r—NT
)" () [ TTAT TOINT |
AOFFTAT 0 !
{ N (TT)"'T-INT }
Ao »
[w(rT)‘l |7t w-n
B 1
2m)% [A,TTT AT )Nt
~S-w" (@)
T AT (AITT AT) ™" Aol
exp _1 -1 -1
+DOINT (N (PT) T DOINT) N (1)

I (y—p)
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and
1
(27) T |AoITT AT|?
3 (y—w" (T7)
exp | TTAL (ATTTAL) ™" Aol
I (y—p)

f (AT 1y)

-1

Hence,

f (N (7)1l | A()I‘I‘_ly)
1

1
2

n—m-+1

2m) ‘N(FT)*lr—lNT

This indicates
Var [N (1) Ty [ @] = N (17) ' T7INT
Is this consistent with the analysis above? Recall, for the general case

NET) Ty =N (@7) T TNk

and from above
Var [k | zo] = (N ) F*NT)_1

then

Var [N (1) TNk | 2o

T

1

— N TINTVar [k | wo) N (0T) T TINT
= N(@T) TN (v () r—lNT)_1
N (@) TINT

— N(@T)T'TNT
Also, from the general case above

Varly | zo] =T {F—lNT (v F_lNT)% N (F—l)T} I

11



which leads to
Var [N (I7) Ty [w] = N (I7) 7 T Warly | 2] (1) T7INT
= N@O) '
{r—lNT (v (F_l)TF‘lNT>71 N (r—l)T}
7 (r7) TN
= N(@T)T'TINT

Therefore, the conditional variance is consistent with the foregoing analysis.
This leaves the conditional mean. The exponential term includes a quadratic
form involving

{F‘lNT (v F—lNT)71 N (FT)‘l} I (y — p)
_ 1—\—1 (ynull o Mnull)

I 'y — [Prearyl 'y + (I — Priar)) T ']
= Ty E [y | 2o = ag)

where y"!, " are nullspace (orthogonal) components of Agl'. Hence, the
conditional expectation is consistent with the foregoing analysis and the Bayesian
demonstration for the general case is complete.
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