
1 Probability assignment and inferring transac-
tions from financial statements

Suppose a financial statement analyst has identified a platform, A, for the double
entry accounting system describing the analyst’s perception of an organization’s
financial reporting such that

Ay = x

where A is an assigned m  n matrix of simple journal entries in the columns,
one 1 (denoting a debit entry) and one 1 (denoting a credit entry) in each
column, with rows identifying the account adjusted, y is an n-element vector
of unknown (to the analyst) transactions amounts to be inferred, and x is an
m-element vector of observed changes in account balances over the reporting
period. Given a platform A and financial statement changes in account balances,
x, the analyst knows considerable about y. However, typically there are many
consistent solutions for y. A general description of these solutions is

y = yp +NT k

where yp is any consistent solution, N is an (nm+ 1)n matrix describing a
basis for the nullspace of A (ANT = 0), and k is an (nm+ 1)-element vector
of arbitrary weights on the rows of N . The abundance of consistent solutions is
reinforced if we return to the original expression and substitute for y

Ay = x

A

yp +NT k


= x

Ayp +ANT k = x

Ayp + 0k = x

Ayp = x

Since the nullspace is orthogonal (unrelated) to the rows of A, the financial
statements convey no information about the null component of y, NT k, and
the weights can take on any value. How does the analyst characterize her state
of knowledge regarding the transactions in which the firm engaged, y, given
platform A and changes in account balance x?
One consistent approach involves assigning prior beliefs regarding y based on

the analyst’s background knowledge and updating via Bayesian revision. This
initial step of assigning prior probability beliefs is critical. Background knowl-
edge can vary from nearly uninformed to highly knowledgeable. For instance,
perhaps the analyst has only a weak sense of the location (mean, µ) and an
upper bound on the variability (variance, 2) for the transactions. Then, the
analyst’s natural (maximum entropy) probability assignment is a multivariate
normal distribution with mean vector µ and variance matrix 2In.1 On the

1Exchangeability or independence is a maximum entropy assignment. Hence, without
background knowledge to the contrary, independence is the natural probability assignment.
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other hand, a knowledgeable analyst incorporates implications into her priors
regarding y. Such knowledge reflects short- or long-run equilibrium strategies
based on in-depth knowledge of the organization and its relationships with cus-
tomers, suppliers, employees, etc. If these implications are summarized by first
and second moments for y, the analyst again assigns a normal distribution al-
though in this case a more informed distribution.
Since the weakly informed case is more geometric and intuitive, we develop

it first and later discuss the general case including strongly informed.

1.1 Special case: weakly background knowledge

Suppose the analyst assigns prior probability beliefs

y  N

µ,2In



Then
x0  N


A0µ,

2A0A
T
0



where A0 is constructed by dropping any redundant row from A (A0 has linearly
independent rows) and x0 drops the corresponding element from x. Further, the
covariance between y and x0 is

E
h
(y  µ) (x0 A0µ)

T
i
= E

h
(y  µ) (A0y A0µ)

T
i

= E
h
(y  µ) (y  µ)T

i
AT0

= 2AT0

and the covariance between x0 and y is

E
h
(x0 A0µ) (y  µ)

T
i
= E

h
(A0y A0µ) (y  µ)

T
i

= A0E
h
(y  µ) (y  µ)T

i

= 2A0

The conditional expectation of transactions given platform A and x = x0 is

E

y | x = x0, A


= µ+ 2AT0


2A0A

T
0

1 
x0 A0µ



= µ+AT0

A0A

T
0

1
(A0y

p A0µ)

= µ+AT0

A0A

T
0

1
A0 (y

p  µ)

= PR(A)y
p +


I  PR(A)


µ

where PR(A) = AT0

A0A

T
0

1
A0, the projection into the rows of A. Iterated
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expectations provides a consistency check.

E [y] = Ex

E

y | x = x0, A



= Ex

PR(A)y

p +

I  PR(A)


µ


= PR(A)E [y
p] +


I  PR(A)


µ

= PR(A)µ+

I  PR(A)


µ

= µ

The conditional variance of transactions given platform A and x doesn’t depend
on the realized value x0.

V ar [y | x,A] = 2I  2AT0

2A0A

T
0

1
2A0

= 2

I  PR(A)



Variance decomposition provides a consistency check.

V ar [y] = V arx [E [y | x,A]] + Ex [V ar [y | x,A]]
= V arx


PR(A)y

p +

I  PR(A)


µ

+ V ar [y | x,A]

= E

 
PR(A)y

p +

I  PR(A)


µ µ



PR(A)y

p +

I  PR(A)


µ µ

T | x,A


+V ar [y | x,A]

= PR(A)E
h
(yp  µ) (yp  µ)T

i
PR(A) + V ar [y | x,A]

= 2PR(A) + 
2

I  PR(A)



= 2

If the analyst wishes to write a proper posterior density function, residual
uncertainty conditional on platform A and financial statement results x resides
with k, the weights on the nullspace of A.

k  N

NNT

1
Nµ,2


NNT

1

and 
y | x = x0, A


= yR(A) +NT k

where yR(A) = PR(A)y
p. Putting this all together leads back to the results

above.

E

y | x = x0, A


= yR(A) +NTE


k | x = x0, A



= PR(A)y
p +NT


NNT

1
Nµ

where
NT


NNT

1
N = I  PR(A)
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and

V ar [y | x,A]

= V ar
h
yR(A) +NT k | x,A

i

= E

2

4


yR(A) +NT k  yR(A) NT


NNT

1
Nµ



yR(A) +NT k  yR(A) NT


NNT

1
Nµ
T | x,A

3

5

= E

2

4


NT k NT


NNT

1
Nµ



NT k NT


NNT

1
Nµ
T | x,A

3

5

= NTE


k 


NNT

1
Nµ

k 


NNT

1
Nµ
T

| x,A

N

= NTV ar [k | x =, A]N

= 2NT

NNT

1
N

= 2

I  PR(A)



1.2 More general case: strong background knowledge

Suppose the analyst assigns prior probability beliefs

y  N (µ,)

where µ is likely di§erent than that above and  is a general variance matrix
accounting for di§erent variability across transactions and correlation between
transactions. Then

x0  N

A0µ,A0A

T
0



Further, the covariance between y and x0 is

E
h
(y  µ) (x0 A0µ)

T
i
= E

h
(y  µ) (A0y A0µ)

T
i

= E
h
(y  µ) (y  µ)T

i
AT0

= AT0

and the covariance between x0 and y is

E
h
(x0 A0µ) (y  µ)

T
i
= E

h
(A0y A0µ) (y  µ)

T
i

= A0E
h
(y  µ) (y  µ)T

i

= A0
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The conditional expectation of transactions given platform A and x = x0 is

E

y | x = x0, A


= µ+ AT0


A0A

T
0

1 
x0 A0µ



= µ+ TAT0

A0

TAT0
1

(A0y
p A0µ)

= 1µ+ 
n
TAT0


A0

TAT0
1

A0
o
1 (yp  µ)

= PR(A)
1yp + 


I  PR(A)


1µ

where PR(A) = TAT0

A0

TAT0
1

A0, the projection into the rows of A
and  = T by Cholesky decomposition. Iterated expectations provides a
consistency check.

E [y] = Ex

E

y | x = x0, A



= Ex

PR(A)

1yp + 

I  PR(A)


1µ



= PR(A)
1E [yp] + 


I  PR(A)


1µ

= PR(A)
1µ+ 


1 PR(A)


1µ

= 1µ = µ

The conditional variance of transactions given platform A and x doesn’t
depend on the realized value x0.

V ar [y | x,A] =  AT0

A0A

T
0

1
A0

= IT  
n
TAT0


A0

TAT0
1

A0
o
T

= 

I  PR(A)


T

Variance decomposition provides a consistency check.

V ar [y] = V arx [E [y | x,A]] + Ex [V ar [y | x,A]]
= V arx


PR(A)

1yp + 

I  PR(A)


1µ


+ V ar [y | x,A]

= E

2

664


PR(A)

1yp

+

I  PR(A)


1µ µ




PR(A)

1yp

+

I  PR(A)


1µ µ

T | x,A

3

775

+V ar [y | x,A]

= PR(A)
1E

h
(yp  µ) (yp  µ)T

i 
PR(A)

1T

+V ar [y | x,A]

= PR(A)
1T


T
1

PR(A)
T + 


I  PR(A)


T

= PR(A)
T + 


I  PR(A)


T

= T = 
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If the analyst wishes to write a proper posterior density function, residual
uncertainty conditional on platform A and financial statement results x resides
with k, the weights on the nullspace of A, N . Notice the nullspace of A can
be expressed N


1

T
so that A1NT = ANT = 0.

(k | x)  N

N

1

T
1NT

1
N

1

T
1µ,


N

1

T
1NT

1

and


1


y | x = x0, A


= 


1yP + 1NT k



where yR(A) = PR(A)1yp. Putting this all together leads back to the results
above.

E

y | x = x0, A



= yR(A) + 

1NTE


k | x = x0, A



= PR(A)
1yp + 


1NT


N

1

T
1NT

1
N

1

T

1µ

= 

PR(A)

1yp +

I  PR(A)


1µ



where

1NT

N

1

T
1NT

1
N

1

T
= I  PR(A)
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and

V ar [y | x,A]

= V ar
h
yR(A) + 


1NT k


| x,A

i

= E

2

6666664

0

@
yR(A) + 


1NT k


 yR(A)



1NT


N

1

T
1NT

1
N

1

T

1µ

1

A

0

@
yR(A) + 


1NT k


 yR(A)



1NT


N

1

T
1NT

1
N

1

T

1µ

1

A
T | x,A

3

7777775

= E

2

6666664

0

@


1NT k





1NT


N

1

T
1NT

1
N

1

T

1µ

1

A

0

@


1NT k





1NT


N

1

T
1NT

1
N

1

T

1µ

1

A
T | x,A

3

7777775

= 

1NT


E

2

664


k 


N

1

T
1NT

1
N

1

T
1µ




k 


N

1

T
1NT

1
N

1

T
1µ

T | x,A

3

775



N

1

T
T

= 
n
1NTV ar [k | x =, A]N


1

To
T

= 


1NT


N

1

T
1NT

1
N

1

T

T

= 

I  PR(A)


T

1.3 Bayesian details

Now, we embellish the above analysis by returning to Bayesian basics to ensure
consistency. As uncertainty is entirely reflected in the distribution for y, y =

yrow + ynull, and A0y = x0, we work with

A0
N


y.


A0
N


y =


A0
N

 
yrow +NT k



=


A0y

row

NNT k



=


x0

NNT k
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The above is without loss of information as a linear transformation recovers the
components of y.
"
AT0

A0A

T
0

1
0

0 NT

NNT

1

# 
A0
N


y =

"
AT0

A0A

T
0

1
A0y

NT

NNT

1
Ny

#

=


yrow

ynull



The joint density is f (A0y,Ny) and f (x0) is written f (A0y) so that the
posterior distribution is

f (Ny | x0) = f (Ny | A0y)

=
f (A0y,Ny)

f (A0y)

The row component of y, yrow, is the projection of any consistent solution, yp,
into the rows of A0, T = V ar [y]  . In the special case where  = 2I,
 = I. Since the scalar can be ignored, yrow is the row component of A0. The
null component of y, ynull, is the orthogonal component to yrow.

1.3.1 Special case,  = 2I

Suppose background knowledge is summarized as y  N

µ,2I


, then


A0
N


y  N


A0
N


µ,2


A0A

T
0 A0N

T

NAT0 NNT


= 2


A0A

T
0 0

0 NNT



A0y = x0  N

A0µ,

2A0A
T
0



and

f (Ny | x0) =
f (A0y,Ny)

f (A0y)

where

f (A0y,Ny) =
1

(2)
n
2

2

A0A

T
0 0

0 NNT



1
2

exp

2

664
 1
22 (y  µ)

T  AT0 NT
  A0AT0 0

0 NNT

1


A0
N


(y  µ)

3

775

=
1

(2)
n
2 
A0AT0

 12  |NNT |
1
2

exp

"

1

22
(y  µ)T

 
AT0

A0A

T
0

1
A0

+NT

NNT

1
N

!
(y  µ)

#
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and

f (A0y) =
1

(2)
m1
2 

A0AT0
 12

exp



1

22
(y  µ)T AT0


A0A

T
0

1
A0 (y  µ)



Hence,

f (Ny | A0y) =
1

(2)
nm+1

2  |NNT |
1
2

exp



1

22
(y  µ)T NT


NNT

1
N (y  µ)



This indicates
V ar [Ny | x0] = 2NNT

Is this consistent with the analysis above? Recall

Ny = NNT k

and from above
V ar [k | x0] = 2


NNT

1

then

V ar

NNT k | x0


= NNTV ar [k | x0]NNT

= NNT2

NNT

1
NNT

= 2NNT

Also, from above
V ar [y | x0] = 2NT


NNT

1
N

which leads to

V ar [Ny | x0] = NV ar [y | x0]NT

= N
h
2NT


NNT

1
N
i
NT

= 2NNT

Therefore, the conditional variance is consistent with the foregoing analysis.
This leaves the conditional mean. The exponential term includes a quadratic

form involving

NT

NNT

1
N (y  µ) = ynull  µnull

= (y  yrow) µnull

= y 

yrow + µnull



= y  E

y | x0 = x00



Hence, the conditional expectation is consistent with the foregoing analysis and
the Bayesian demonstration for the special case is complete.
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1.3.2 general case:  6= 2I

Suppose background knowledge is summarized as y  N

µ, = T


, then

1y  N

1µ,1


T
1

= I


A0
1y = x0

1y = 1yrow + 1NT k

A0
1NT = A0N

T = 0

which implies N

T
1

is a basis for the nullspace of A0. We proceed in
analogous fashion as above by working with


A0

N

T
1


1y

 N


A0

N

T
1


1µ,


A0

TAT0 A0
1NT

N

T
1

TAT0 N

T
1

1NT



= N


A0

N

T
1

1


µ,


A0

TAT0 0

0 N

T
1

1NT



A0
1y = x0  N


A0µ,A0

TAT0


and

f

N

T
1

1y | x0

=
f

A0

1y,N

T
1

1y


f (A01y)

where

f

A0

1y,N

T
1

1y


=
1

(2)
n
2




A0

TAT0 0

0 N

T
1

1NT



1
2

exp

2

666664

 1
2 (y  µ)

T 
T
1 

TAT0 1NT



A0

TAT0 0

0 N

T
1

1NT

1


A0

N

T
1


1 (y  µ)

3

777775

=
1

(2)
n
2
A0TAT0

 12
N (T )1 1NT


1
2

exp

2

66664

 1
2 (y  µ)

T 
T
1

0

@
TAT0


A0

TAT0
1

A0

+1NT

N

T
1

1NT
1

N

T
1

1

A

1 (y  µ)

3

77775
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and

f

A0

1y

=

1

(2)
m1
2
A0TAT0

 12

exp

2

64
 1
2 (y  µ)

T 
T
1

TAT0

A0

TAT0
1

A0
1 (y  µ)

3

75

Hence,

f

N

T
1

1y | A01y


=
1

(2)
nm+1

2

N (T )1 1NT

1
2

exp

2

64
 1
2 (y  µ)

T 
T
1

1NT

N

T
1

1NT
1

N

T
1

1 (y  µ)

3

75

This indicates

V ar
h
N

T
1

1y | x0
i
= N


T
1

1NT

Is this consistent with the analysis above? Recall, for the general case

N

T
1

1y = N

T
1

1NT k

and from above

V ar [k | x0] =

N

T
1

1NT
1

then

V ar
h
N

T
1

1NT k | x0
i

= N

T
1

1NTV ar [k | x0]N

T
1

1NT

= N

T
1

1NT

N

T
1

1NT
1

N

T
1

1NT

= N

T
1

1NT

Also, from the general case above

V ar [y | x0] = 

1NT


N

1

T
1NT

1
N

1

T

T
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which leads to

V ar
h
N

T
1

1y | x0
i
= N


T
1

1V ar [y | x0]

T
1

1NT

= N

T
1

1

1NT


N

1

T
1NT

1
N

1

T


T

T
1

1NT

= N

T
1

1NT

Therefore, the conditional variance is consistent with the foregoing analysis.
This leaves the conditional mean. The exponential term includes a quadratic

form involving

1NT


N

T
1

1NT
1

N

T
1

1 (y  µ)

= 1

ynull  µnull



= 1y 

PR(A)

1y +

I  PR(A)


1µ



= 1y  E

1y | x0 = x00



where ynull, µnull are nullspace (orthogonal) components of A0. Hence, the
conditional expectation is consistent with the foregoing analysis and the Bayesian
demonstration for the general case is complete.
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