
Fundamental structural causal modeling (SCM) questions

For concreteness, consider two models for discussion (but without specifying
their content). The models are nonparametric, structural models with endoge-
nous variables Y,X,Z1, Z2, Z3,W1,W2,W3, mutually independent, unobserved
exogenous variables U,U ′, U1, U ′1, U2, U ′2, U3, U ′3, and arbitrary, unknown func-
tions f, f1, f2, f3, g, g1, g2, g3.
Model 1

Y = f (W3, Z3,W2, U) X = g (W1, Z3, U
′)

W3 = g3 (X,U
′
3) W1 = g1 (Z1, U

′
1)

Z3 = f3 (Z1, Z2, U3) Z1 = f1 (U1)
W2 = g2 (Z2, U

′
2) Z2 = f2 (U2)

The DAG below is equivalent to the algebraic representation.

Model 1b is the same except the direction between X and Z3 is reversed, X →
Z3. In the familiar, special linear model case, we have Model 2

Y = aW2 + bZ3 + cW3 + U X = t1W1 + t2Z3 + U
′

W3 = c3X + U ′3 W1 = a1Z1 + U
′
1

Z3 = a3Z1 + b3Z2 + U3 Z1 = U1
W2 = c2Z2 + U

′
2 Z2 = U2

The orthogonality conditions render these equations regressional. However, if
some of the endogenous variables are not measurable, then we can illustrate
non-regressional models. We explore the following 8 fundamental questions.

1. Testable implication (misspecification tests)
a. What are the testable implications of assumptions embedded in

model 1?

b. Assume only X,Y ,Z3, and W3 are measured, are there any
testable implications?

c. The same as (b), except only X,Y , and Z3 are measured?
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d. The same as (b), except all but Z3 are measured?

e. What statistical tests distinguish between models 1 and 1b?

f. Identify the regression coeffi cient for the test devised in e.

2. Equivalent models

The conditions for edge replacement are (i) Rule 1: An arrow X → Y can
be replaced by a bidirected arrow X ↔ Y only if every neighbor or parent of
X is inseparable from Y . (By neighbor we mean any node connected to X by
a bidirected arrow). (ii) Rule 2: An arrow X → Y can be reversed by X ← Y
only if every neighbor or parent of Y (excluding X) is inseparable from X every
neighbor or parent of X is inseparable from Y . Further, in a Markovian model
(a DAG with jointly independent errors) arrows are reversible if and only if
every parent of X is also a parent of Y .

a. Which arrows in the DAG can be reversed without being de-
tected by any statistical test?

b. Is there an equivalent model (statistically indistinguishable) in
which variable Z3 can be made a mediator between X and Y (arrow Z3 → X
is reversed)?

3. Identification

a. Suppose we wish to identify the average causal effect of X on Y

ACE = Pr [Y | do (X = 1)]− Pr [Y | do (X = 0)]

Which subsets of variables need to be adjusted to obtain an unbiased esti-
mate of ACE?

b. Is there a single variable, if adjusted would allow an unbiased
estimate of ACE?

c. If there is a choice between subsets of variables {Z3, Z1} or
{Z3, Z2}, which would be preferred?

4. Instrumental variables

Definition 1 (Instrument) A variable Z is an instrument for the X → Y re-
lationship if there exists a set of measurement S = s, unaffected by X, such that

the following graphical criteria holds. (i)
(
Z‖Y | S

)
GX

and (ii)
(
Z∦X | S

)
G

where ∦ is read not independent.
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Definition 2 (linear-IV estimand)

b ≡ ∂

∂x
E [Y | x̂] = E [Y | z, s]

E [X | z, s] =
rY Z·S
rXZ·S

where rAB·C is the regression coeffi cient for A regressed on B conditional on C.

Definition 3 (Generalized conditional instrument) Z is an instrument for
the parameter c in the X → Y relationship conditional on variable set W if the
following conditions are satisfied: (1) W contains only non-descendents of Y ;
(2) W d-separates Z from Y in the subgraph Gc, obtained by removing edge
X → Y from G; (3) W does not d-separate Z from X in Gc.

Definition 4 (Generalized conditional IV estimand)

c ≡ Cov [Y,Z | w]
Cov [X,Z | w] =

rY Z·W
rXZ·W

where rAB·C is the regression coeffi cient for A regressed on B conditional on C.

a. Is there an instrumental variable for the Z3 → Y relationship?
If so, what is the (linear) IV estimand for parameter b in model 2?

b. Is there an instrumental variable for the X → Y relationship?
If so, what is the (linear) IV estimand for the product c3c in model 2?

5. Mediation

The total effect of X → Y is Pr (Y | x̂). The average (natural or pure) total
effect can be decomposed into average direct and indirect effects. The direct
effect is the sensitivity of Y to changes in X holding all other factors constant.
For the example, this implies there is no direct effect forX → Y as it is mediated
by W3 and holding W3 constant disconnects X from Y .
Indirect effects are only defined for averages. The average direct effect is

DEx,x′ (Y ) = E [Y (x
′, Z (x))− E [Y (x)]]

where Z represents all parents of Y excluding X and Y (x′, Z (x)) represents
the value Y would take under action X = x′ and simultaneously setting Z to
the value obtained when setting X = x. The average indirect effect is

IEx,x′ (Y ) = E [Y (x, Z (x
′))− E [Y (x)]]

and is interpreted as the value Y would obtain holding X constant at x while
changing the value of Z to whatever it would obtain if X is set to x′. Their sum
is the average total effect

TEx,x′ (Y ) = DEx,x′ (Y ) + IEx,x′ (Y )

= E [Y (x′)− Y (x)]
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In the simple case of unconfounded mediators, the natural direct and indirect
effects are estimable via two regressions called the mediation formula.

DEx,x′ (Y ) =
∑
z

{E [Y | x′, z]− E [Y | x, z]}P (z | x)

IEx,x′ (Y ) =
∑
z

E [Y | x, z] {P (z | x′)− P (z | x)}

a. What variables must be measured if we wish to estimate the
direct effect of Z3 on Y ?

Graphically, the expected natural direct effect is identified if there exists four
set of variables, W0,W1,W2,W3 such that

(i)
(
Y ‖Z |W0

)
GXZ

(ii)
(
Y ‖X |W0,W1

)
GXZ

(iii)
(
Y ‖Z | X,W0,W1,W2

)
GZ

(iv)
(
Z‖X |W0,W3

)
GX

(v)W0,W1,W3 contain no descendant of X and W2 contains no descendant of Z

and its estimand for X → Y in Markovian models is

NDE (x, x∗;Y )

=
∑
s

∑
z

{E [Y | x, z]− E [Y | x∗, z]}Pr (z | x∗, s) Pr (s)

b. What variables must be measured if we wish to estimate the
indirect effect of Z3 on Y , mediated by X?

The expected natural indirect effect is identified analogously to the expected
natural direct effect but with x and x∗ reversed. That is, the average natural
indirect effect is identified if there exists a set W , nondescendants of X or Z,
such that

Yx∗z‖Zx |W for all z, x

and its estimand is

NIE (x, x∗;Y )

=
∑
w

∑
z

E [Yx∗z | w] {Pr (Zx = z | w)− Pr (Zx∗ = z | w)}Pr (w)
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c. What is the estimand for the indirect effect in (b), if all variables
are binary?

6. Sampling selection bias

Suppose we wish to estimate the conditional expectation E [Y | x = x] and
samples are preferentially selected to the data set depending on a set Vs of
variables.1

a. Let Vs = {W1,W2}, what set, T , of variables need be mea-
sured to correct for selection bias? (Assuming we can estimate Pr (T = t) from
external sources e.g., census data.)

Consider the augmented graph GS below where node or variable S = 1 for
inclusion in the sample and 0 for exclusion.

b. In general, for which sets, Vs, would selection bias be correctable.

c. Repeat (a) and (b) assuming that our aim is to estimate the
causal effect of X on Y .

7. Linear digressions (consider the linear model, Model 2)

a. Name three testable implications of this model

b. Suppose X,Y , and W3 are the only variables that can be ob-
served. Which parameters can be identified from the data?

c. If we regress Z1 on all other variables in the model, which re-
gression coeffi cient will be zero?

d. If we regress Z1 on all the other variables in the model and then
remove Z3 from the regressor set, which coeffi cient will not change?

1For a more complete discussion see Pearl, 2012, "A solution to a class of selction-bias
problems."
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e. (“Robustness”—a more general version of d.) Model 2 implies
that certain regression coeffi cients will remain invariant when an additional vari-
able is added as a regressor. Identify five such coeffi cients with their added
regressors.

8. Counterfactual reasoning

The back-door condition leads to conditional independence. For the causal
effect X → Y , the back-door condition involves identifying a conditioning set Z
such that
1. we block all spurious paths from X to Y ,
2. we leave all directed paths unperturbed,
3. we create no new spurious paths.

a. Find a set S of endogenous variables such that X would be
independent of the counterfactual Yx conditioned on S.

b. Determine if X is independent of the counterfactual Yx condi-
tioned on all the other endogenous variables.

c. Determine if X is independent of the counterfactual W3,x con-
ditioned on all the other endogenous variables.

d. Determine if the counterfactual relationship Pr (Yx|X = x′) is
identifiable, assuming that only X,Y , and W3 are observed.
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