Fundamental structural causal modeling (SCM) questions

For concreteness, consider two models for discussion (but without specifying their content). The models are nonparametric, structural models with endogenous variables $Y, X, Z_{1}, Z_{2}, Z_{3}, W_{1}, W_{2}, W_{3}$, mutually independent, unobserved exogenous variables $U, U \prime, U_{1}, U_{1}^{\prime}, U_{2}, U_{2}^{\prime}, U_{3}, U_{3}^{\prime}$, and arbitrary, unknown functions $f, f_{1}, f_{2}, f_{3}, g, g_{1}, g_{2}, g_{3}$.

Model 1

$$
\begin{array}{cc}
Y=f\left(W_{3}, Z_{3}, W_{2}, U\right) & X=g\left(W_{1}, Z_{3}, U^{\prime}\right) \\
W_{3}=g_{3}\left(X, U_{3}^{\prime}\right) & W_{1}=g_{1}\left(Z_{1}, U_{1}^{\prime}\right) \\
Z_{3}=f_{3}\left(Z_{1}, Z_{2}, U_{3}\right) & Z_{1}=f_{1}\left(U_{1}\right) \\
W_{2}=g_{2}\left(Z_{2}, U_{2}^{\prime}\right) & Z_{2}=f_{2}\left(U_{2}\right)
\end{array}
$$

The DAG below is equivalent to the algebraic representation.

Model 1b is the same except the direction between X and Z_{3} is reversed, $X \rightarrow$ Z_{3}. In the familiar, special linear model case, we have Model 2

$$
\begin{array}{cc}
Y=a W_{2}+b Z_{3}+c W_{3}+U & X=t_{1} W_{1}+t_{2} Z_{3}+U^{\prime} \\
W_{3}=c_{3} X+U_{3}^{\prime} & W_{1}=a_{1} Z_{1}+U_{1}^{\prime} \\
Z_{3}=a_{3} Z_{1}+b_{3} Z_{2}+U_{3} & Z_{1}=U_{1} \\
W_{2}=c_{2} Z_{2}+U_{2}^{\prime} & Z_{2}=U_{2}
\end{array}
$$

The orthogonality conditions render these equations regressional. However, if some of the endogenous variables are not measurable, then we can illustrate non-regressional models. We explore the following 8 fundamental questions.

1. Testable implication (misspecification tests)
a. What are the testable implications of assumptions embedded in model 1?
b. Assume only X, Y, Z_{3}, and W_{3} are measured, are there any testable implications?
c. The same as (b), except only X, Y, and Z_{3} are measured?
d. The same as (b), except all but Z_{3} are measured?
e. What statistical tests distinguish between models 1 and 1 b ?
f. Identify the regression coefficient for the test devised in e.

2. Equivalent models

The conditions for edge replacement are (i) Rule 1: An arrow $X \rightarrow Y$ can be replaced by a bidirected arrow $X \leftrightarrow Y$ only if every neighbor or parent of X is inseparable from Y. (By neighbor we mean any node connected to X by a bidirected arrow). (ii) Rule 2: An arrow $X \rightarrow Y$ can be reversed by $X \leftarrow Y$ only if every neighbor or parent of Y (excluding X) is inseparable from X every neighbor or parent of X is inseparable from Y. Further, in a Markovian model (a $D A G$ with jointly independent errors) arrows are reversible if and only if every parent of X is also a parent of Y.
a. Which arrows in the DAG can be reversed without being detected by any statistical test?
b. Is there an equivalent model (statistically indistinguishable) in which variable Z_{3} can be made a mediator between X and Y (arrow $Z_{3} \rightarrow X$ is reversed)?
3. Identification
a. Suppose we wish to identify the average causal effect of X on Y

$$
A C E=\operatorname{Pr}[Y \mid d o(X=1)]-\operatorname{Pr}[Y \mid d o(X=0)]
$$

Which subsets of variables need to be adjusted to obtain an unbiased estimate of $A C E$?
b. Is there a single variable, if adjusted would allow an unbiased estimate of $A C E$?
c. If there is a choice between subsets of variables $\left\{Z_{3}, Z_{1}\right\}$ or $\left\{Z_{3}, Z_{2}\right\}$, which would be preferred?
4. Instrumental variables

Definition 1 (Instrument) A variable Z is an instrument for the $X \rightarrow Y$ relationship if there exists a set of measurement $S=s$, unaffected by X, such that the following graphical criteria holds. (i) $(Z \| Y \mid S)_{G_{\bar{X}}}$ and (ii) $(Z \not 甘 X \mid S)_{G}$ where \nVdash is read not independent.

Definition 2 (linear-IV estimand)

$$
b \equiv \frac{\partial}{\partial x} E[Y \mid \widehat{x}]=\frac{E[Y \mid z, s]}{E[X \mid z, s]}=\frac{r_{Y Z \cdot S}}{r_{X Z \cdot S}}
$$

where $r_{A B \cdot C}$ is the regression coefficient for A regressed on B conditional on C.
Definition 3 (Generalized conditional instrument) Z is an instrument for the parameter c in the $X \rightarrow Y$ relationship conditional on variable set W if the following conditions are satisfied: (1) W contains only non-descendents of Y;
(2) W d-separates Z from Y in the subgraph G_{c}, obtained by removing edge $X \rightarrow Y$ from G; (3) W does not d-separate Z from X in G_{c}.

Definition 4 (Generalized conditional IV estimand)

$$
c \equiv \frac{\operatorname{Cov}[Y, Z \mid w]}{\operatorname{Cov}[X, Z \mid w]}=\frac{r_{Y Z \cdot W}}{r_{X Z \cdot W}}
$$

where $r_{A B \cdot C}$ is the regression coefficient for A regressed on B conditional on C.
a. Is there an instrumental variable for the $Z_{3} \rightarrow Y$ relationship? If so, what is the (linear) IV estimand for parameter b in model 2 ?
b. Is there an instrumental variable for the $X \rightarrow Y$ relationship? If so, what is the (linear) IV estimand for the product $c_{3} c$ in model 2 ?
5. Mediation

The total effect of $X \rightarrow Y$ is $\operatorname{Pr}(Y \mid \widehat{x})$. The average (natural or pure) total effect can be decomposed into average direct and indirect effects. The direct effect is the sensitivity of Y to changes in X holding all other factors constant. For the example, this implies there is no direct effect for $X \rightarrow Y$ as it is mediated by W_{3} and holding W_{3} constant disconnects X from Y.

Indirect effects are only defined for averages. The average direct effect is

$$
D E_{x, x^{\prime}}(Y)=E\left[Y\left(x^{\prime}, Z(x)\right)-E[Y(x)]\right]
$$

where Z represents all parents of Y excluding X and $Y\left(x^{\prime}, Z(x)\right)$ represents the value Y would take under action $X=x \prime$ and simultaneously setting Z to the value obtained when setting $X=x$. The average indirect effect is

$$
I E_{x, x^{\prime}}(Y)=E\left[Y\left(x, Z\left(x^{\prime}\right)\right)-E[Y(x)]\right]
$$

and is interpreted as the value Y would obtain holding X constant at x while changing the value of Z to whatever it would obtain if X is set to $x \prime$. Their sum is the average total effect

$$
\begin{aligned}
T E_{x, x^{\prime}}(Y) & =D E_{x, x^{\prime}}(Y)+I E_{x, x^{\prime}}(Y) \\
& =E\left[Y\left(x^{\prime}\right)-Y(x)\right]
\end{aligned}
$$

In the simple case of unconfounded mediators, the natural direct and indirect effects are estimable via two regressions called the mediation formula.

$$
\begin{aligned}
D E_{x, x^{\prime}}(Y) & =\sum_{z}\left\{E\left[Y \mid x^{\prime}, z\right]-E[Y \mid x, z]\right\} P(z \mid x) \\
I E_{x, x^{\prime}}(Y) & =\sum_{z} E[Y \mid x, z]\left\{P\left(z \mid x^{\prime}\right)-P(z \mid x)\right\}
\end{aligned}
$$

a. What variables must be measured if we wish to estimate the direct effect of Z_{3} on Y ?

Graphically, the expected natural direct effect is identified if there exists four set of variables, $W_{0}, W_{1}, W_{2}, W_{3}$ such that
(i) $\left(Y \underline{\|} Z \mid W_{0}\right)_{G_{\underline{X Z}}}$
(ii) $\left(Y \underline{\underline{1}} X \mid W_{0}, W_{1}\right)_{G_{\underline{X} \bar{Z}}}$
${ }^{(i i i)}\left(Y \| Z \mid X, W_{0}, W_{1}, W_{2}\right)_{G_{\underline{Z}}}$
$(i v)\left(Z \underline{\underline{X}} \mid W_{0}, W_{3}\right)_{G_{\underline{X}}}$
$(v) W_{0}, W_{1}, W_{3}$ contain no descendant of X and W_{2} contains no descendant of Z and its estimand for $X \rightarrow Y$ in Markovian models is

$$
=\sum_{s} \sum_{z}\left\{E\left[Y \mid x, x^{*} ; Y\right)\right.
$$

b. What variables must be measured if we wish to estimate the indirect effect of Z_{3} on Y, mediated by X ?

The expected natural indirect effect is identified analogously to the expected natural direct effect but with x and x^{*} reversed. That is, the average natural indirect effect is identified if there exists a set W, nondescendants of X or Z, such that

$$
Y_{x^{*} z} \| Z_{x} \mid W \quad \text { for all } z, x
$$

and its estimand is

$$
=\begin{aligned}
& \operatorname{NIE}\left(x, x^{*} ; Y\right) \\
& \sum_{w} \sum_{z} E\left[Y_{x^{*} z} \mid w\right]\left\{\operatorname{Pr}\left(Z_{x}=z \mid w\right)-\operatorname{Pr}\left(Z_{x^{*}}=z \mid w\right)\right\} \operatorname{Pr}(w)
\end{aligned}
$$

c. What is the estimand for the indirect effect in (b), if all variables are binary?
6. Sampling selection bias

Suppose we wish to estimate the conditional expectation $E[Y \mid x=x]$ and samples are preferentially selected to the data set depending on a set V_{s} of variables. ${ }^{1}$
a. Let $V_{s}=\left\{W_{1}, W_{2}\right\}$, what set, T, of variables need be measured to correct for selection bias? (Assuming we can estimate $\operatorname{Pr}(T=t)$ from external sources e.g., census data.)

Consider the augmented graph G_{S} below where node or variable $S=1$ for inclusion in the sample and 0 for exclusion.

b. In general, for which sets, V_{s}, would selection bias be correctable.
c. Repeat (a) and (b) assuming that our aim is to estimate the causal effect of X on Y.
7. Linear digressions (consider the linear model, Model 2)
a. Name three testable implications of this model
b. Suppose X, Y, and W_{3} are the only variables that can be observed. Which parameters can be identified from the data?
c. If we regress Z_{1} on all other variables in the model, which regression coefficient will be zero?
d. If we regress Z_{1} on all the other variables in the model and then remove Z_{3} from the regressor set, which coefficient will not change?

[^0]e. ("Robustness" - a more general version of d.) Model 2 implies that certain regression coefficients will remain invariant when an additional variable is added as a regressor. Identify five such coefficients with their added regressors.
8. Counterfactual reasoning

The back-door condition leads to conditional independence. For the causal effect $X \rightarrow Y$, the back-door condition involves identifying a conditioning set Z such that

1. we block all spurious paths from X to Y,
2. we leave all directed paths unperturbed,
3. we create no new spurious paths.
a. Find a set S of endogenous variables such that X would be independent of the counterfactual Y_{x} conditioned on S.
b. Determine if X is independent of the counterfactual Y_{x} conditioned on all the other endogenous variables.
c. Determine if X is independent of the counterfactual $W_{3, x}$ conditioned on all the other endogenous variables.
d. Determine if the counterfactual relationship $\operatorname{Pr}\left(Y_{x} \mid X=x \prime\right)$ is identifiable, assuming that only X, Y, and W_{3} are observed.

[^0]: ${ }^{1}$ For a more complete discussion see Pearl, 2012, "A solution to a class of selction-bias problems."

