
Notes on Bayesian updating from financial state-
ments
If we have more parameters to be estimated than data, we often say the

problem is under-identified. However, this is a common problem in accounting.
To wit, we often ask what activities did the organization engage in based on our
reading of their financial statements. We know there is a simple linear relation
between the recognized accounts and transactions

Ay = x

where A is an m × n matrix of ±1 and 0 representing simple journal entries
in its columns and adjustments to individual accounts via the journal entries
in its rows, y is the transaction amount vector, and x is the change in the
account balance vector over the period of interest (Arya, et al [2000]). Since
there are only m− 1 linearly independent rows (due to the balancing property
of accounting) and m (the number of accounts) is almost surely less than n
(the number of transactions we seek to estimate) we’re unable to invert from x
to recover y. Do we give up? If so, we might be forced to conclude financial
statements fail even this simplest of tests.
Rather, we might take a page from physicists (Jaynes [2003]) and allow

our prior knowledge to assist estimation of y. Of course, this is what deci-
sion theory also recommends. If our prior or background knowledge provides a
sense of the first two moments for y, then the Gaussian or normal distribution
is our maximum entropy prior. Maximum entropy implies that we fully uti-
lize our background knowledge but don’t use background knowledge we don’t
have (Jaynes [2003], ch. 11). That is, maximum entropy priors combined with
Bayesian revision make effi cient usage of both background knowledge and infor-
mation from the data (in this case, the financial statements). As in previously
discussed accounting examples, background knowledge reflects potential equi-
libria based on strategic interaction of various, relevant economic agents and
accounting recognition choices for summarizing these interactions.
Suppose our background knowledge = is completely summarized by

E [y | =] = µ

and
V ar [y | =] = Σ

then our maximum entropy prior distribution is

p (y | =) ∼ N (µ,Σ)

and the posterior distribution for transactions, y, conditional on the financial
statements, x, is

p (y | x,=)

∼ N
(
µ+ ΣAT0

(
A0ΣA

T
0

)−1
A0 (yp − µ) ,Σ− ΣAT0

(
A0ΣA

T
0

)−1
A0Σ

)
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where N (·) refers to the Gaussian or normal distribution with mean vector
denoted by the first term, and variance-covariance matrix denoted by the second
term, A0 is A after dropping one row and yp is any consistent solution to Ay = x
(for example, form any spanning tree from a directed graph of Ay = x and solve
for yp). For the special case where Σ = σ2I (perhaps unlikely but nonetheless
illuminating), this simplifies to

p (y | x,=) ∼ N
(
PR(A)y

p +
(
I − PR(A)

)
µ, σ2

(
I − PR(A)

))
where PR(A) = AT0

(
A0A

T
0

)−1
A0 (projection into the rowspace of A), and then

I − PR(A) is the projection into the nullspace of A.1
The logic behind the belief updating above is as follows:

• The relation between transactions y and changes in account balances x is

Ay = x

or for the reduced form (to eliminate redundancy in the accounts) where
A0 drops a row from A and x0 drops the corresponding element from x

A0y = x0

• Since changes in account balances x0 are a linear combination of y, if the
vector of transactions y is normally distributed then the vector x0 is also
normally distributed.

y ∼ N (µ,Σ)

implies2

x0 ∼ N (E [x0] , V ar [x0])

or
x0 ∼ N

(
A0µ,A0ΣA

T
0

)
The latter is derived as follows. Since x0 = A0y

E [x0] = E [A0y]

= A0E [y] = A0µ

1 In the general case, we could work with the subspaces (and projections) of A0Γ where Σ =
ΓΓT (the Cholesky decomposition of Σ) and the transformed data z ≡ Γ−1y ∼ N

(
Γ−1µ, I

)
(Arya, Fellingham, and Schroeder [2000]). Then, the posterior distribution of z conditional
on the financial statements x is

p (z | x,=) ∼ N
(
PR(A0Γ)z

p +
(
I − PR(A0Γ)

)
µz , I − PR(A0Γ)

)
where zp = Γ−1yp and µz = Γ−1µ. From this we can recover the above posterior distribution
of y conditional on x via the inverse transformation y = Γz.

2Dropping a row from A ensures the existence of
(
A0ΣAT0

)−1 when we update beliefs.
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and

V ar [x0] = V ar [A0y]

= E
[
(A0y −A0µ) (A0y −A0µ)

T
]

= E
[
A0 (y − µ) (y − µ)

T
AT0

]
= A0E

[
(y − µ) (y − µ)

T
]
AT0

= A0V ar [y]AT0

= A0ΣA
T
0

Cov [y, x0] = Cov [y,A0y]

= E
[
(y − µ) (A0y −A0µ)

T
]

= E
[
(y − µ) (y − µ)

T
AT0

]
= E

[
(y − µ) (y − µ)

T
]
AT0

= V ar [y]AT0

= ΣAT0

Cov [x0, y] = Cov [A0y, y]

= E
[
(A0y −A0µ) (y − µ)

T
]

= E
[
A0 (y − µ) (y − µ)

T
]

= A0E
[
(y − µ) (y − µ)

T
]

= A0V ar [y]

= A0Σ

Hence, the joint distribution for y and x0 is[
y
x0

]
∼ N

([
E [y]
E [x0]

]
,

[
V ar [y] Cov [y, x0]

Cov [x0, y] V ar [x]

])
or [

y
x0

]
∼ N

([
µ
A0µ

]
,

[
Σ ΣAT0
A0Σ A0ΣA

T
0

])
• Bayesian updating of the normal distribution yields

(y | x0 = xp) ∼ N (E [y | x0 = xp] , V ar [y | x0])

where
E [y | x0 = xp] = µ+ ΣAT0

(
A0ΣA

T
0

)−1
(xp −A0µ)
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or since a set of transactions, yp, consistent with the financial statements,
xp, can be found such that A0yp = xp, we can replace xp with A0yp

E [y | x0 = xp] = µ+ ΣAT0
(
A0ΣA

T
0

)−1
(A0y

p −A0µ)

= µ+ ΣAT0
(
A0ΣA

T
0

)−1
A0 (yp − µ)

and
V ar [y | x0] = Σ− ΣAT0

(
A0ΣA

T
0

)−1
A0Σ

This is the result claimed above.

• In the special case Σ = σ2I, we have

E [y | x0 = xp] = µ+ σ2IAT0
(
A0σ

2IAT0
)−1

(A0y
p −A0µ)

= µ+AT0
(
A0A

T
0

)−1
A0 (yp − µ)

= PR(A)y
p +

(
I − PR(A)

)
µ

and

V ar [y | x0] = σ2I − σ2IAT0
(
A0σ

2IAT0
)−1

A0σ
2I

= σ2
(
I −AT0

(
A0A

T
0

)−1
A0

)
= σ2

(
I − PR(A)

)
where PR(A) = AT0

(
A0A

T
0

)−1
A0. Again, this is the result claimed above.

It’s time for an example.

Numerical example
Suppose we observe the following financial statements.

Balance sheets Ending balance Beginning balance
Cash 110 80
Receivables 80 70
Inventory 30 40
Property & equipment 110 100

Total assets 330 290
Payables 100 70
Owner’s equity 230 220

Total equities 330 290

Income statement for period
Sales 70
Cost of sales 30
SG&A 30
Net income 10
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Let x be the change in account balance vector where credit changes are
negative. The sum of x is zero; a basis for the left nullspace of A is a vector of
ones.

change in account amount
∆ cash 30

∆ receivables 10
∆ inventory (10)

∆ property & equipment 10
∆ payables (30)
sales (70)

cost of sales 30
sg&a expenses 30

We envision the following transactions associated with the financial state-
ments and are interested in recovering their magnitudes y.

transaction amount
collection of receivables y1

investment in property & equipment y2
payment of payables y3
bad debts expense y4

sales y5
depreciation - period expense y6

cost of sales y7
accrued expenses y8
inventory purchases y9

depreciation - product cost y10
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A crisp summary of these details is provided by a directed graph.

Directed graph of financial statements

The A matrix associated with the financial statements and directed graph
where credits are denoted by −1 is

A =



1 −1 −1 0 0 0 0 0 0 0
−1 0 0 −1 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 1 1
0 1 0 0 0 −1 0 0 0 −1
0 0 1 0 0 0 0 −1 −1 0
0 0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0


and a basis for the nullspace is immediately identified by any set of linearly
independent loops in the graph, for example,

N =

 1 0 1 −1 0 0 0 1 0 0
0 1 −1 0 0 0 0 0 −1 1
0 0 0 0 0 1 0 −1 1 −1


A consistent solution yp is readily identified by forming a spanning tree and
solving the remaining transactions. For instance, let y3 = y6 = y9 = 0, the
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spanning tree is depicted below

.
Spanning tree

Then, (yp)
T

=
[

60 30 0 0 70 0 30 30 0 20
]
.

Now, suppose background knowledge = regarding transactions is described
by the first two moments

E
[
yT | =

]
= µT =

[
60 20 25 2 80 5 40 10 20 15

]
and

V ar [y | =] = Σ =



10 0 0 0 5 0 0 0 0 0
0 1 0 0 0 0.2 0 0 0 0.2
0 0 1 0 0 0 0 0.2 0 0
0 0 0 0.5 0.1 0 0 0 0 0
5 0 0 0.1 10 0 3.5 0 0 0
0 0.2 0 0 0 1 0 0 0 0
0 0 0 0 3.5 0 5 0 0.2 0
0 0 0.2 0 0 0 0 1 0 0
0 0 0 0 0 0 0.2 0 1 0
0 0.2 0 0 0 0 0 0 0 1


maximum entropy priors for transactions are normally distributed with para-
meters described by the above moments.
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Given financial statements x and background knowledge =, posterior beliefs
regarding transactions are normally distributed with E

[
yT | x,=

]
=

[ 58.183 15.985 12.198 1.817 70 5.748 30 22.435 19.764 0.236 ]

and V ar [y | x,=] =

0.338 0.172 0.167 −0.338 0 0.164 0 0.174 −0.007 0.007
0.172 0.482 −0.310 −0.172 0 0.300 0 −0.128 −0.182 0.182
0.167 −0.310 0.477 −0.167 0 −0.135 0 0.302 0.175 −0.175
−0.338 −0.172 −0.167 0.338 0 −0.164 0 −0.174 0.007 −0.007

0 0 0 0 0 0 0 0 0 0
0.164 0.300 −0.135 −0.164 0 0.445 0 −0.281 0.145 −0.145

0 0 0 0 0 0 0 0 0 0
0.174 −0.128 0.302 −0.174 0 −0.281 0 0.455 −0.153 0.153
−0.007 −0.182 0.175 0.007 0 0.145 0 −0.153 0.328 −0.328
0.007 0.182 −0.175 −0.007 0 −0.145 0 0.153 −0.328 0.328


As our intuition suggests, the posterior mean of transactions is consistent with
the financial statements, A (E [y | x,=]) = x, and there is no residual uncer-
tainty regarding transactions that are not in loops, sales and cost of sales are
y5 = 70 and y7 = 30, respectively.
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