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9
Bayesian causal eects strategies

In the chapter we revisit causal and treatment eects but instead of appeal-
ing to classical strategies we explore some Bayesian strategies. For instance,
Bayesian data augmentation might replace the classical control or replace-
ment function.

9.1 Treatment eects and counterfactuals

Suppose we observe treatment or no treatment and the associated outcome,
Y = DY1 + (1D)Y0, where

Y1 = 1 + V1

Y0 = 0 + V0

and a representative sample is

Y D Y1 Y0 V1 V0
15 1 15 9 3 3
14 1 14 10 2 2
13 1 13 11 1 1
13 0 11 13 1 1
14 0 10 14 2 2
15 0 9 15 3 3
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Further, we have the following instruments at our disposal Z =

Z1 Z2 Z3 Z4



where their representative values are

Z1 Z2 Z3 Z4
5 4 3 1
6 5 4 2
0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

and we perceive latent utility, EU , to be related to choice via the instru-
ments.

EU = Z + VD

and observed choice is

D =


1 EU > 0
0 otherwise

This is the exact setup we discussed earlier in the projections analysis.

9.2 Posterior distribution

Define the complete or augmented data as

ri =

D
i DiYi + (1Di)Y missi DiY

miss
i + (1Di)Yi

T

Also, let

Hi =




Zi 0 0
0 Xi 0
0 0 Xi





and

 =





1
0





where X is a matrix of outcome regressors, in the current example it is
simply , a vector of ones, as there are no outcome covariates. Hence, a
compact model is

ri = Hi + i

where i =




VDi
V1i
V0i



 and  = V ar [i] =




1 D1 D0
D1 21 10
D0 10 20



.
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9.2.1 Likelihood function

As usual the posterior distribution is proportional to the likelihood function
times the prior distribution. The likelihood function is

ri  N (Hi,)

Or,

 (, | ri, Di, Xi, Zi)  ||
 1
2 exp



1

2
(ri Hi)

T
1 (ri Hi)



9.2.2 Prior distribution

Frequently, relatively diuse priors are chosen such that the data dom-
inates the posterior distribution. Li, Poirier, and Tobias’ prior distribu-
tion for  is p ()  N (0, V) where 0 = 0, V = 4I and their inde-
pendent prior for 1 is p


1


 Wishart (, R) or for  is p () 

InverseWishart

, (R)

1

where  = 12 and R is a diagonal matrix

with elements

1
12 ,

1
4 ,

1
4


. Hence, the joint conjugate prior is normal-inverse

Wishart.

p (,) = p () p ()

 |V |
 1
2 exp



1

2
(  0)

T
V 1 (  0)



 ||
+4
2 exp



1

2
Tr

R1



where Tr (·) is the trace of the matrix.

9.2.3 Posterior distribution

Now, the posterior distribution (or posterior kernel) is

p

,, Y missi , D

i | Yi, Di, Xi, Zi

 p (,)  (, | ri, Di, Xi, Zi)

9.3 Gibbs sampler for treatment eects

As is frequently the case, it’s much easier to simulate from the recognizable
conditional posterior distributions via a Gibbs sampler than simulate from
the unrecognizable joint posterior distribution. There are three sources of
missing data: latent utility, EU , counterfactuals for individuals who choose
treatment, (Y0i | Di = 1), and counterfactuals for individuals who choose
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no treatment, (Y1i | Di = 0). Bayesian data augmentation eectively mod-
els these missing data processes (as in, for example, Albert and Chib’s
McMC probit) by drawing in sequence from the conditional posterior dis-
tributions – a Gibbs sampler.

9.3.1 Full conditional posterior distributions

First block

Let x denote all parameters other than x. The full conditional posteriors
for the augmented outcome data are

p

Y missi | Ymiss

i
, Yi, Di, Xi, Zi




p

,, Y missi , D

i | Yi, Di, Xi, Zi


p (,) p (Yi, D
i | Di, Xi, Zi)


 (, | ri, Di, Xi, Zi)
p (Yi, D

i | Di, Xi, Zi)

Hence,

Y missi | Ymiss
i

, Yi, Di, Xi, Zi  N

Y missi | Yi, D

i , Di, Xi, Zi;,


In other words, the posterior for the missing data is normal conditional on
observed outcome, Yi, and latent expected utility, D

i . Standard multivari-
ate normal theory (see the appendix) provides the means and variances
conditional on the draw for latent utility and the other outcome.

Y missi | Ymiss
i

, Data  N ((1Di)µ1i +Diµ0i, (1Di)1i +Di0i)

where Data refers to (Yi, Di, Xi, Zi)

µ1i = Xi1 +
20D1  10D0

20  2D0
(D

i  Zi) +
10  D1D0
20  2D0

(Yi Xi0)

µ0i = Xi0 +
21D0  10D1

21  2D1
(D

i  Zi) +
10  D1D0
21  2D1

(Yi Xi1)

1i = 
2
1 

2D1
2
0  210D1D0 + 210

20  2D0

0i = 
2
0 

2D0
2
1  210D1D0 + 210

21  2D1
Similarly, the conditional posterior for latent expected utility is

p

D
i | D

i
, Yi, Di, Xi, Zi




p

,, Y missi , D

i | Yi, Di, Xi, Zi


p (,) p

Yi, Y missi | Di, Xi, Zi




 (, | ri, Di, Xi, Zi)
p

Yi, Y missi | Di, Xi, Zi
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Hence,

D
i | D

i
, Yi, Di, Xi, Zi  N


D
i | Yi, Y

miss
i , Di, Xi, Zi;,



In other words, the posterior for latent expected utility is truncated normal
conditioned on observed and missing outcomes.

D
i | D

i
, Data  TN(0,)


µDi

D


if Di = 1
TN(,0)


µDi

D

if Di = 0

where TN (·) refers to the truncated normal distribution with support in-
dicated via the subscript and the arguments are parameters of the untrun-
cated distribution. Applying multivariate normal theory for (D

i | Yi) we
have

µDi
= Zi +


DiYi + (1Di)Y missi Xi1

 20D1  10D0
21

2
0  210

+

DiY

miss
i + (1Di)Yi Xi0

 21D0  10D1
21

2
0  210

D = 1
2D1

2
0  210D1D0 + 2D0

2
1

21
2
0  210

Second block

With prior distribution p ()  N (0, V), the conditional posterior distri-
bution for the parameters is

p ( |  , Yi, Di, Xi, Zi) 
p

,, Y missi , D

i | Yi, Di, Xi, Zi


p () p

Yi, Y missi , D

i | Di, Xi, Zi



p ()  (, | ri, Di, Xi, Zi)
p

Yi, Y missi , D

i | Di, Xi, Zi


In other words, the posterior for the parameters is normal conditioned on
observed and missing outcomes, latent expected utility, and variance .

 |  , Data  N

µ ,



where by the SUR (seemingly-unrelated regression) generalization of Bayesian
regression (see the appendix)

µ =

HT


1  In


H + V 1

1 
HT


1  In


r + V 1 0



 =

HT


1  In


H + V 1

1
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With prior p () Wishart (, R), the conditional distribution for the
trivariate variance-covariance matrix is

p ( | , Yi, Di, Xi, Zi) 
p

,, Y missi , D

i | Yi, Di, Xi, Zi


p () p

Yi, Y missi , D

i | Di, Xi, Zi



p ()  (, | ri, Di, Xi, Zi)
p

Yi, Y missi , D

i | Di, Xi, Zi


Hence,

 | , Yi, Di, Xi, Zi Wishart

 | Yi, Y missi , D

i , Di, Xi, Zi,;0, V


In other words, the posterior for the parameters is inverse-Wishart con-
ditioned on observed and missing outcomes, latent expected utility, and
parameters .

 | , Data  G1

where
G Wishart (n+ , S + R)

and S =
n

i=1

(ri Hi) (ri Hi)
T .1

As usual, starting values for the Gibbs sampler are varied to test con-
vergence of the posterior distributions (adequate coverage of the sample
space). Stationary convergence plots and quickly dampening autocorrela-
tion plots support the notion of representative posterior draws.

9.3.2 Nobile’s algorithm

Recall 2D is normalized to one. This creates a slight complication as the
conditional posterior is no longer inverse-Wishart. Nobile [2000] provides a
convenient algorithm for random Wishart (multivariate 2) draws with a
restricted element. The algorithm applied to the current setting results in
the following steps:

1. Exchange rows and columns one and three in S+R, call this matrix
V .

2. Find L such that V =

L1

T
L1.

1Technically, 10 is unidentified (i.e., even with unlimited data we cannot "observe"
the parameter). However, we can employ restrictions derived through the positive-
definiteness (see the appendix) of the variance-covariance matrix, , to impose bounds
on the parameter, 10. If treatment eects are overly sensitive this strategy will prove
ineective; otherwise, it allows us to proceed from observables to treatment eects via
augmentation of unobservables (the counterfactuals as well as latent utility).
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3. Construct a lower triangular matrix A with
a. aii equal to the square root of 2 random variates, i = 1, 2.
b. a33 = 1

l33
where l33 is the third row-column element of L.

c. aij equal to N (0, 1) random variates, i > j.

4. Set V

=

L1

T 
A1

T
A1L1.

5. Exchange rows and columns one and three in V

and denote this draw

.

9.4 Marginal and average treatment eects

The marginal treatment eect is the impact of treatment for individuals
who are indierent between treatment and no treatment. We can employ
Bayesian data augmentation-based estimation of marginal treatment eects
(MTE ) as data augmentation generates repeated draws for unobservables,
VDj , (Y1j | Dj = 0), and (Y0j | Dj = 1). Now, exploit these repeated sam-
ples to describe the distribution forMTE (uD) where VD is transformed to
uniform (0, 1), uD = pv. For each draw, VD = v, we determine the cumula-
tive probability, uD =  (v),2 and calculateMTE (uD) = E [Y1  Y0 | uD].
If MTE (uD) is constant for all uD, then all treatment eects are alike.
MTE can be connected to standard population-level treatment eects,

ATE, ATT, and ATUT, via non-negative weights whose sum is one (as-
suming full support)

wATE (uD) =

n
j=1 I (uD)

n

wATT (uD) =

n
j=1 I (uD)Djn

j=1Dj

wATUT (uD) =

n
j=1 I (uD) (1Dj)n

j=1 (1Dj)

where probabilities pk refer to bins from 0 to 1 by increments of 0.01 for
indicator variable

I (uD) = 1 uD = pk
I (uD) = 0 uD = pk

2 (·) is a cumulative probability distribution function.
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Hence, MTE-estimated average treatment eects are

estATE (MTE) =

n

i=1

wATE (uD)MTE (uD)

estATT (MTE) =

n

i=1

wATT (uD)MTE (uD)

estATUT (MTE) =

n

i=1

wATUT (uD)MTE (uD)

Next, we apply these data augmentation ideas to the causal eects ex-
ample and estimate the average treatment eect on the treated (ATT ),
the average treatment eect on the untreated (ATUT ), and the average
treatment eect (ATE ).

9.5 Return to the treatment eect example

Initially, we employ Bayesian data augmentation via a Gibbs sampler on
the treatment eect problem outlined above. Recall this example was em-
ployed in the projections notes to illustrate where the inverse-Mills ratios
control functions strategy based on the full complement of instruments3

was exceptionally eective.
The representative sample is

Y D Y1 Y0 Z1 Z2 Z3 Z4
15 1 15 9 5 4 3 1
14 1 14 10 6 5 4 2
13 1 13 11 0 0 0 1
13 0 11 13 0 0 1 0
14 0 10 14 0 1 0 0
15 0 9 15 1 0 0 0

which is repeated 200 times to create a sample of n = 1, 200 observations.
The Gibbs sampler employs 15, 000 draws from the conditional posteriors.
The first 5, 000 draws are discarded as burn-in, then sample statistics are

3Typically, we’re fortunate to identify any instruments. In the example, the instru-
ments form a basis for the nullspace to the outcomes, Y1 and Y0. In this (linear or
Gaussian) sense, we’ve exhausted the potential set of instruments.
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based on the remaining 10, 000 draws.

statistic 1 0 1 2 3 4
mean 13.76 13.76 0.810 0.391 1.647 1.649
median 13.76 13.76 0.809 0.391 1.645 1.650

standard dev 0.026 0.028 0.051 0.054 0.080 0.080
quantiles:
minimum 13.67 13.64 0.617 0.585 1.943 1.362
0.01 13.70 13.69 0.695 0.521 1.837 1.461
0.025 13.71 13.70 0.713 0.500 1.807 1.493
0.05 13.72 13.71 0.727 0.481 1.781 1.518
0.10 13.73 13.71 0.746 0.461 1.751 1.547
0.25 13.74 13.74 0.776 0.428 1.699 1.595
0.75 13.78 13.78 0.844 0.356 1.593 1.704
0.90 13.79 13.80 0.873 0.325 1.547 1.751
0.95 13.80 13.80 0.893 0.306 1.519 1.778
0.975 13.81 13.81 0.910 0.289 1.497 1.806
0.99 13.82 13.82 0.931 0.269 1.467 1.836

maximum 13.84 13.86 1.006 0.185 1.335 1.971

Sample statistics for the parameters of the data augmented Gibbs
sampler applied to the treatment eect example

The results demonstrate selection bias as the means are biased upward
from 12. This does not bode well for eective estimation of marginal or
average treatment eects. Sample statistics for average treatment eects as
well as correlations, D,1, D,0, and 1,0 are tabulated below.

statistic ATE ATT ATUT D,1 D,0 1,0
mean 0.000 0.481 0.482 0.904 0.904 0.852
median 0.000 0.480 0.481 0.904 0.904 0.852

standard dev 0.017 0.041 0.041 0.009 0.009 0.015
quantiles:
minimum 0.068 0.331 0.649 0.865 0.933 0.899
0.01 0.039 0.388 0.580 0.880 0.923 0.884
0.025 0.033 0.403 0.564 0.884 0.920 0.879
0.05 0.028 0.415 0.549 0.888 0.918 0.875
0.10 0.022 0.428 0.534 0.892 0.915 0.871
0.25 0.012 0.452 0.509 0.898 0.910 0.862
0.75 0.011 0.510 0.453 0.910 0.898 0.842
0.90 0.022 0.535 0.429 0.915 0.892 0.832
0.95 0.028 0.551 0.416 0.917 0.888 0.826
0.975 0.034 0.562 0.405 0.920 0.884 0.821
0.99 0.040 0.576 0.393 0.923 0.880 0.814

maximum 0.068 0.649 0.350 0.932 0.861 0.787

Sample statistics for average treatment eects and error correlations of the
data augmented Gibbs sampler applied to the treatment eect example
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Average treatment eects estimated from weighted averages of MTE are
similar:

estATE (MTE) = 0.000
estATT (MTE) = 0.464

estATUT (MTE) = 0.464

The average treatment eects on the treated and untreated suggest het-
erogeneity but are grossly understated compared to the DGP averages of 4
and 4. Next, we revisit the problem and attempt to consider what is left
out of our model specification.

9.6 Instrumental variable restrictions

Consistency demands that we fully consider what we know. In the foregoing
analysis, we have not eectively employed this principle. Data augmenta-
tion of the counterfactuals involves another condition. That is, outcomes
are independent of the instruments (otherwise, they are not instruments),
DY + (1D)Y draw and DY draw + (1D)Y are independent of Z. We
can impose orthogonality on the draws of the counterfactuals such that the
"sample" satisfies this population condition.4 We’ll refer to this as the IV
data augmented Gibbs sampler treatment eect analysis.
To implement this we add the following steps to the above Gibbs sam-

pler. Minimize the distance of Y draw from Y miss such that Y 1 = DY +
(1D)Y draw and Y 0 = DY draw+(1D)Y are orthogonal to the instru-
ments, Z.

min
Y draw


Y draw  Y miss

T 
Y draw  Y miss



s.t. ZT

DY + (1D)Y draw DY draw + (1D)Y


= 0

where the constraint is p  2 zeroes and p is the number of columns in Z
(the number of instruments). Hence, the IV McMC outcome draws are

Y 1 = DY + (1D)Y
draw

and
Y 0 = DY

draw + (1D)Y

4Whenever observed data fails to provide broad coverage of the sample space in-
strumentation alone is likely to be ineective. In this case, we’re hoping to exploit the
instruments via the algorithm to identify counterfactuals (unobservable data) and model
parameters. With sparse coverage we can assist the algorithm if we have a rich set of
instruments available.
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9.7 Return to the example once more

With the IV data augmented Gibbs sampler in hand we return to the
representative sample

Y D Y1 Y0 Z1 Z2 Z3 Z4
15 1 15 9 5 4 3 1
14 1 14 10 6 5 4 2
13 1 13 11 0 0 0 1
13 0 11 13 0 0 1 0
14 0 10 14 0 1 0 0
15 0 9 15 1 0 0 0

and repeat 20 times to create a sample of n = 120 observations. The IV
Gibbs sampler employs 15, 000 draws from the conditional posteriors. The
first 5, 000 draws are discarded as burn-in, then sample statistics are based
on the remaining 10, 000 draws.

statistic 1 0 1 2 3 4
mean 12.01 11.99 0.413 0.167 0.896 0.878
median 12.01 11.99 0.420 0.148 0.866 0.852

standard dev 0.160 0.160 0.227 0.274 0.370 0.359
quantiles:
minimum 11.35 11.37 0.558 1.325 2.665 0.202
0.01 11.64 11.62 0.149 0.889 1.888 0.170
0.025 11.69 11.68 0.058 0.764 1.696 0.254
0.05 11.74 11.73 0.028 0.648 1.550 0.336
0.10 11.80 11.80 0.117 0.530 1.381 0.435
0.25 11.90 11.89 0.267 0.334 1.124 0.617
0.75 12.11 12.10 0.566 0.023 0.637 1.113
0.90 12.21 12.20 0.695 0.168 0.451 1.367
0.95 12.27 12.25 0.774 0.249 0.348 1.509
0.975 12.32 12.30 0.840 0.312 0.256 1.630
0.99 12.38 12.36 0.923 0.389 0.170 1.771

maximum 12.63 12.64 1.192 0.685 0.257 2.401

Sample statistics for the parameters of the IV data augmented Gibbs
sampler applied to the treatment eect example

Not surprisingly, the results demonstrate no selection bias and eectively
estimate marginal and average treatment eects. Sample statistics for av-
erage treatment eects as well as correlations, D,1, D,0, and 1,0 are
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tabulated below.

statistic ATE ATT ATUT D,1 D,0 1,0
mean 0.000 4.000 4.000 0.813 0.812 0.976
median 0.000 4.000 4.000 0.815 0.815 0.976

standard dev 0.000 0.000 0.000 0.031 0.032 0.004
quantiles:
minimum 0.000 4.000 4.000 0.650 0.910 0.987
0.01 0.000 4.000 4.000 0.728 0.874 0.984
0.025 0.000 4.000 4.000 0.743 0.866 0.983
0.05 0.000 4.000 4.000 0.756 0.859 0.982
0.10 0.000 4.000 4.000 0.772 0.851 0.981
0.25 0.000 4.000 4.000 0.794 0.835 0.979
0.75 0.000 4.000 4.000 0.835 0.794 0.973
0.90 0.000 4.000 4.000 0.850 0.771 0.970
0.95 0.000 4.000 4.000 0.859 0.755 0.968
0.975 0.000 4.000 4.000 0.866 0.742 0.967
0.99 0.000 4.000 4.000 0.874 0.726 0.965

maximum 0.000 4.000 4.000 0.904 0.640 0.952

Sample statistics for average treatment eects and error correlations of the
IV data augmented Gibbs sampler applied to the treatment eect example

Weighted MTE estimates of average treatment eects are similar.

estATE (MTE) estATT (MTE) estATUT (MTE)
0.000 3.792 3.792

Next, we report some more interesting experiments. Instead, of having
the full set of instruments available, suppose we have only three, Z1, Z2,
and Z3 + Z4, or two, Z1 + Z2 and Z3 + Z4, or one, Z1 + Z2 + Z3 + Z4.
We repeat the above for each set of instruments and compare the results
with classical control function analysis based on Heckman’s inverse Mills
strategy introduced in the projections notes.



9.7 Return to the example once more 13

9.7.1 Three instruments

Suppose we have only three instruments, Z1, Z2, and Z3 + Z4. IV data
augmented Gibbs sampler results are tabulated below.5

statistic 1 0 1 2 3
mean 12.00 12.00 0.242 0.358 0.001
median 12.00 12.00 0.243 0.342 0.001

standard dev 0.164 0.165 0.222 0.278 0.132
quantiles:
minimum 11.32 11.36 0.658 1.451 0.495
0.01 11.62 11.61 0.263 1.080 0.306
0.025 11.68 11.68 0.189 0.950 0.258
0.05 11.73 11.73 0.120 0.844 0.216
0.10 11.79 11.79 0.041 0.723 0.170
0.25 11.89 11.89 0.094 0.532 0.091
0.75 12.11 12.11 0.394 0.168 0.090
0.90 12.21 12.21 0.526 0.021 0.171
0.95 12.27 12.27 0.604 0.071 0.217
0.975 12.32 12.32 0.670 0.155 0.254
0.99 12.38 12.39 0.753 0.245 0.302

maximum 12.58 12.57 1.067 0.564 0.568

Sample statistics for the parameters of the IV data
augmented Gibbs sampler with three instruments

applied to the treatment eect example

These results dier very little from those based on the full set of four
instruments. There is no selection bias and marginal and average treatment
eects are eectively estimated. Sample statistics for average treatment

5 Inclusion of an intercept in the selection equation with three, two, and one instru-
ments makes no qualitative dierence in the average treatment eect analysis. These
results are not reported.
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eects as well as correlations, D,1, D,0, and 1,0 are tabulated below.

statistic ATE ATT ATUT D,1 D,0 1,0
mean 0.000 4.000 4.000 0.799 0.800 0.884
median 0.000 4.000 4.000 0.802 0.814 0.888

standard dev 0.000 0.000 0.000 0.036 0.037 0.029
quantiles:
minimum 0.000 4.000 4.000 0.605 0.899 0.956
0.01 0.000 4.000 4.000 0.702 0.870 0.936
0.025 0.000 4.000 4.000 0.719 0.861 0.930
0.05 0.000 4.000 4.000 0.734 0.853 0.924
0.10 0.000 4.000 4.000 0.751 0.844 0.918
0.25 0.000 4.000 4.000 0.777 0.826 0.905
0.75 0.000 4.000 4.000 0.825 0.778 0.867
0.90 0.000 4.000 4.000 0.842 0.751 0.846
0.95 0.000 4.000 4.000 0.852 0.734 0.833
0.975 0.000 4.000 4.000 0.860 0.720 0.821
0.99 0.000 4.000 4.000 0.869 0.699 0.803

maximum 0.000 4.000 4.000 0.894 0.554 0.703

Sample statistics for average treatment eects and error correlations
of the IV data augmented Gibbs sampler with three instruments

applied to the treatment eect example

Weighted MTE estimates of average treatment eects are similar.

estATE (MTE) estATT (MTE) estATUT (MTE)
0.000 3.940 3.940

Classical results based on Heckman’s inverse Mills control function strat-
egy with three instruments are reported below for comparison. The selec-
tion equation estimated via probit is

Pr (D | Z) =  (0.198Z1  0.297Z2 + 0.000 (Z3 + Z4)) PseudoR2 = 0.019

where  (·) denotes the cumulative normal distribution function. The esti-
mated outcome equations are

E [Y | X] = 11.890 (1D) + 11.890D  2.700 (1D)0 + 2.700D1

and estimated average treatment eects are

estATE estATT estATUT
0.000 4.220 4.220

In spite of the weak explanatory of the selection model, control functions
produce reasonable estimates of average treatment eects. Next, we con-
sider two instruments.
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9.7.2 Two instruments

Suppose we have only two instruments, Z1 + Z2, and Z3 + Z4. IV data
augmented Gibbs sampler results are tabulated below.

statistic 1 0 1 2
mean 12.08 13.27 0.034 0.008
median 12.07 13.27 0.034 0.009

standard dev 0.168 0.243 0.065 0.128
quantiles:
minimum 11.47 12.41 0.328 0.579
0.01 11.69 12.70 0.185 0.287
0.025 11.75 12.79 0.162 0.244
0.05 11.80 12.87 0.141 0.207
0.10 11.86 12.96 0.118 0.159
0.25 11.96 13.11 0.077 0.077
0.75 12.18 13.42 0.009 0.095
0.90 12.29 13.58 0.048 0.171
0.95 12.35 13.67 0.073 0.219
0.975 12.41 13.75 0.092 0.260
0.99 12.46 13.84 0.115 0.308

maximum 12.64 14.26 0.260 0.635

Sample statistics for the parameters of the IV data
augmented Gibbs sampler with two instruments

applied to the treatment eect example

Selection bias emerges as 0 diverges from 12. This suggests marginal and
average treatment eects are likely to be confounded. Sample statistics for
average treatment eects as well as correlations, D,1, D,0, and 1,0 are
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tabulated below.

statistic ATE ATT ATUT D,1 D,0 1,0
mean 1.293 1.413 4.000 0.802 0.516 0.634
median 1.297 1.406 4.000 0.806 0.532 0.648

standard dev 0.219 0.438 0.000 0.037 0.136 0.115
quantiles:
minimum 2.105 0.211 4.000 0.601 0.813 0.890
0.01 1.806 0.389 4.000 0.695 0.757 0.834
0.025 1.738 0.525 4.000 0.719 0.732 0.813
0.05 1.665 0.670 4.000 0.735 0.706 0.795
0.10 1.572 0.855 4.000 0.754 0.675 0.768
0.25 1.435 1.130 4.000 0.779 0.613 0.716
0.75 1.147 1.705 4.000 0.828 0.438 0.569
0.90 1.005 1.989 4.000 0.846 0.340 0.479
0.95 0.930 2.141 4.000 0.856 0.262 0.417
0.975 0.861 2.277 4.000 0.864 0.195 0.365
0.99 0.795 2.409 4.000 0.874 0.124 0.301

maximum 0.625 2.750 4.000 0.902 0.150 0.055

Sample statistics for average treatment eects and error correlations
of the IV data augmented Gibbs sampler with two instruments

applied to the treatment eect example

Weighted MTE estimates of average treatment eects are similar.

estATE (MTE) estATT (MTE) estATUT (MTE)
1.293 1.372 3.959

ATUT is eectively estimated but the other average treatment eects are
biased.
Classical results based on Heckman’s inverse Mills control function strat-

egy with two instruments are reported below for comparison. The selection
equation estimated via probit is

Pr (D | Z) =  (0.023 (Z1 + Z2) + 0.004 (Z3 + Z4)) PseudoR2 = 0.010

The estimated outcome equations are

E [Y | X] = 109.38 (1D) + 11.683D + 121.14 (1D)0 + 2.926D1

and estimated average treatment eects are

estATE estATT estATUT
97.69 191.31 4.621

While the Bayesian estimates of ATE and ATT are moderately biased,
classical estimates produce severe bias. Both strategies produce reasonable
ATUT estimates with the Bayesian estimation right on target. Finally, we
consider one instrument.
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9.7.3 One instrument

Suppose we have only one instrument, Z1+Z2+Z3+Z4. IV data augmented
Gibbs sampler results are tabulated below.

statistic 1 0 1
mean 12.08 13.95 0.019
median 12.09 13.95 0.019

standard dev 0.166 0.323 0.013
quantiles:
minimum 11.42 12.95 0.074
0.01 11.69 13.27 0.051
0.025 11.75 13.35 0.046
0.05 11.81 13.43 0.041
0.10 11.87 13.53 0.036
0.25 11.97 13.73 0.027
0.75 12.19 14.18 0.010
0.90 12.29 14.38 0.002
0.95 12.35 14.50 0.003
0.975 12.40 14.59 0.006
0.99 12.47 14.69 0.011

maximum 12.67 15.12 0.033

Sample statistics for the parameters
of the IV data augmented Gibbs

sampler with one instrument applied
to the treatment eect example

Selection bias emerges as 0 again diverges from 12. This suggests mar-
ginal and average treatment eects are likely to be confounded. Sample
statistics for average treatment eects as well as correlations, D,1, D,0,
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and 1,0 are tabulated below.

statistic ATE ATT ATUT D,1 D,0 1,0
mean 1.293 1.413 4.000 0.797 0.039 0.048
median 1.297 1.406 4.000 0.801 0.051 0.061

standard dev 0.219 0.438 0.000 0.039 0.298 0.336
quantiles:
minimum 2.105 0.211 4.000 0.576 0.757 0.817
0.01 1.806 0.389 4.000 0.691 0.615 0.682
0.025 1.738 0.525 4.000 0.710 0.554 0.624
0.05 1.665 0.670 4.000 0.727 0.503 0.571
0.10 1.572 0.855 4.000 0.746 0.429 0.490
0.25 1.435 1.130 4.000 0.774 0.272 0.310
0.75 1.147 1.705 4.000 0.824 0.187 0.213
0.90 1.005 1.989 4.000 0.843 0.370 0.415
0.95 0.930 2.141 4.000 0.853 0.461 0.518
0.975 0.861 2.277 4.000 0.861 0.526 0.581
0.99 0.795 2.409 4.000 0.870 0.591 0.651

maximum 0.625 2.750 4.000 0.894 0.747 0.800

Sample statistics for average treatment eects and error correlations
of the IV data augmented Gibbs sampler with one instrument

applied to the treatment eect example

Weighted MTE estimates of average treatment eects are similar.

estATE (MTE) estATT (MTE) estATUT (MTE)
1.957 0.060 3.975

ATUT is eectively estimated but the other average treatment eects are
biased.
Classical results based on Heckman’s inverse Mills control function strat-

egy with one instrument are reported below for comparison. The selection
equation estimated via probit is

Pr (D | Z) =  (0.017 (Z1 + Z2 + Z3 + Z4)) PseudoR2 = 0.009

The estimated outcome equations are

E [Y | X] = 14.000 (1D) + 11.885D +NA (1D)0 + 2.671D1

and estimated average treatment eects are

estATE estATT estATUT
2.115 NA NA

While the Bayesian estimates of ATE and ATT are biased, the classical
strategy fails to generate estimates for ATT and ATUT – it involves a
singular X matrix as there is no variation in 0.
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9.8 A more standard example

Of course, the above sparse data example is an extreme case. By sparse
we mean that even if there are a large number of draws, the draws cover
a very sparse range of the sample space – in other words, there are a
few draws potentially repeated a large number of times. In a setting where
a large sample covers a broad range of the sample space, satisfaction of
the instrumental variable condition (independence of the outcome errors)
is satisfied via random draws. We next illustrate a protypical case with a
simple example.6

A decision maker faces a binary choice where the latent choice equation
(based on expected utility, EU , maximization) is

EU = 0 + 1x+ 2z + V

= 1 + x+ z + V

x is an observed covariate, z is an observed instrument (both x and z have
mean 0.5), and V is unobservable (to the analyst) contributions to expected
utility. The outcome equations are

Y1 = 10 + 
1
1x+ U1

= 2 + 10x+ U1

Y0 = 00 + 
0
1x+ U0

= 1 + 2x+ U0

Unobservables

V U1 U0

T
are jointly normally distributed with ex-

pected value

0 0 0

T
and variance  =




1 0.7 0.7
0.7 1 0.1
0.7 0.1 1



.

Clearly, the average treatment eect is

ATE = (2 + 10  0.5) (1 + 2  0.5) = 5.

Even though OLS estimates the same quantity as ATE,

OLS = E [Y1 | D = 1] E [Y0 | D = 0] = 7.56 2.56 = 5

selection is inherently endogenous. Further, outcomes are heterogeneous
as7

ATT = E [Y1 | D = 1] E [Y0 | D = 1] = 7.56 1.44 = 6.12

6This example is borrowed from Schroeder [2010], chapter 12.
7We can connect the dots by noting the average of the inverse Mills ratio is approxi-

mately 0.8 and recalling

ATE = Pr (D = 1)ATT + Pr (D = 0)ATUT

= 0.5 (6.12) + 0.5 (3.88) = 5
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and

ATUT = E [Y1 | D = 0] E [Y0 | D = 0] = 6.44 2.56 = 3.88

9.8.1 Simulation

To illustrate we generate 20 samples of 5, 000 observations each. For the
simulation, x and z are independent and uniformly distributed over the
interval (0, 1), and


V U1 U0


are drawn from a joint normal distri-

bution with zero mean and variance . If EUj > 0, then Dj = 1, oth-
erwise Dj = 0. Relatively diuse priors are employed with mean zero
and variance 100I for the parameters


1 0 


and trivariate er-

ror

V U1 U0


distribution degrees of freedom parameter  = 12 and

sums of squares variation I.8 Data augmentation produces missing data
for the latent choice variable EU plus counterfactuals (Y1 | D = 0) and
(Y0 | D = 1).9 Data augmentation permits collection of statistical evidence
directly on the treatment eects. The following treatment eect statistics
are collected:

estATE =
1

n

n

j=1


Y 1j  Y


0j



estATT =

n

j=1

Dj

Y 1j  Y 0j



n

j=1

Dj

estATUT =

n

j=1

(1Dj)

Y 1j  Y 0j



n

j=1

(1Dj)

where Y j is the augmented response. That is,

Y 1j = DjY1 + (1Dj) (Y1 | D = 0)

and
Y 0j = Dj (Y0 | D = 1) + (1Dj)Y0

8 Initialization of the trivariate variance matrix for the Gibbs sampler is set equal to
100I. Burn-in takes care of initialization error.

9 Informativeness of the priors for the trivariate error variance is controlled by . If 
is small compared to the number of observations in the sample, the likelihood dominates
the data augmentation.
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9.8.2 Bayesian data augmentation and MTE

With a strong instrument in hand, this is an attractive setting to discuss a
version of Bayesian data augmentation-based estimation of marginal treat-
ment eects (MTE ). As data augmentation generates repeated draws for
unobservables Vj , (Y1j | Dj = 0), and (Y0j | Dj = 1), we exploit repeated
samples to describe the distribution forMTE (uD) where V is transformed
to uniform (0, 1), uD = pv. For each draw, V = v, we determine uD =  (v)
and calculate MTE (uD) = E [Y1  Y0 | uD].
MTE is connected to standard population-level treatment eects, ATE,

ATT, and ATUT, via non-negative weights whose sum is one

wATE (uD) =

n
j=1 I (uD)

n

wATT (uD) =

n
j=1 I (uD)Djn

j=1Dj

wATUT (uD) =

n
j=1 I (uD) (1Dj)n

j=1 (1Dj)

where probabilities pk refer to bins from 0 to 1 by increments of 0.01 for
indicator variable

I (uD) = 1 uD = pk
I (uD) = 0 uD = pk

Simulation results

Since the Gibbs sampler requires a burn-in period for convergence, for each
sample we take 4, 000 conditional posterior draws, treat the first 3, 000 as
the burn-in period, and retain the final 1, 000 draws for each sample, in
other words, a total of 20, 000 draws are retained. Parameter estimates for
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the simulation are reported in the table below.

statistic 10 11 00 01
mean 2.118 9.915 1.061 2.064
median 2.126 9.908 1.059 2.061
std.dev. 0.100 0.112 0.063 0.102
minimum 1.709 9.577 0.804 1.712
maximum 2.617 10.283 1.257 2.432

statistic 0 
1


2

mean 1.027 1.001 1.061
median 1.025 0.998 1.061
std.dev. 0.066 0.091 0.079
minimum 1.273 0.681 0.729
maximum 0.783 1.364 1.362

statistic cor (V,U1) cor (V,U0) cor (U1, U0)
mean 0.621 0.604 0.479
median 0.626 0.609 0.481
std.dev. 0.056 0.069 0.104
minimum 0.365 0.773 0.747
maximum 0.770 0.319 0.082

Y1 = 
1
0 + 

1
1x+ U1

Y0 = 
0
0 + 

0
1x+ U0

EU = 0 + 1x+ 2z + V

McMC parameter estimates for prototypical example

McMC estimated average treatment eects are reported in the table below

statistic estATE estATT estATUT
mean 4.992 6.335 3.635
median 4.996 6.329 3.635
std.dev. 0.087 0.139 0.117
minimum 4.703 5.891 3.209
maximum 5.255 6.797 4.067

McMC estimates of average treatment eects
for prototypical example

and sample statistics are reported in the table below.

statistic ATE ATT ATUT OLS
mean 5.011 6.527 3.481 5.740
median 5.015 6.517 3.489 5.726
std.dev. 0.032 0.049 0.042 0.066
minimum 4.947 6.462 3.368 5.607
maximum 5.088 6.637 3.546 5.850

McMC average treatment eect sample statistics
for prototypical example
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The treatment eect estimates are consistent with their sample statistics
despite the fact that bounding the unidentified correlation between U1 and
U0 produces a rather poor estimate of this parameter.
In addition, we report results on marginal treatment eects. The table

below reports simulation statistics from weighted averages of MTE em-
ployed to recover standard population-level treatment eects, ATE, ATT,
and ATUT.

statistic estATE estATT estATUT
mean 4.992 5.861 4.114
median 4.980 5.841 4.115
std.dev. 0.063 0.088 0.070
minimum 4.871 5.693 3.974
maximum 5.089 6.003 4.242

McMC MTE-weighted average treatment eects
for prototypical example

Nonconstancy of MTE (uD) along with marked dierences in estATE,
estATT , and estATUT provide support for heterogeneous response. The
MTE -weighted average treatment eect estimates are very comparable
(perhaps slightly dampened) to the previous estimates and average treat-
ment eect sample statistics.


