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6
Conjugate families

Conjugate families arise when the likelihood times the prior produces a
recognizable posterior kernel

p ( | y)   ( | y) p ()

where the kernel is the characteristic part of the distribution function that
depends on the random variable(s) (the part excluding any normalizing
constants). For example, the density function for a univariate Gaussian or
normal is

1

2

exp



1

22
(x µ)2



and its kernel (for  known) is

exp



1

22
(x µ)2



as 1
2

is a normalizing constant. Now, we discuss a few common conjugate

family results1 and uninformative prior results to connect with classical
results.

1A more complete set of conjugate families are summarized in chapter 7 of Accounting
and Causal Eects: Econometric Challenges as well as tabulated in an appendix at the
end of the chapter.
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6.1 Binomial - beta prior

A binomial likelihood with unknown success probability, ,

 ( | s;n) =

n
s


s (1 )ns

s =
n

i=1 yi, yi = {0, 1}

combines with a beta(; a, b) prior (i.e., with parameters a and b)

p () =
 (a+ b)

 (a) (b)
a1 (1 )b1

to yield

p ( | y)  s (1 )ns a1 (1 )b1

 s+a1 (1 )ns+b1

which is the kernel of a beta distribution with parameters (a+ s) and
(b+ n s), beta( | y; a+ s, b+ n s).

6.1.1 Uninformative priors

Suppose priors for  are uniform over the interval zero to one or, equiva-
lently, beta(1, 1).2 Then, the likelihood determines the posterior distribu-
tion for .

p ( | y)  s (1 )ns

which is beta( | y; 1 + s, 1 + n s).

6.2 Gaussian (unknown mean, known variance)

A single draw from a Gaussian likelihood with unknown mean, , known
standard deviation, ,

 ( | y,)  exp



1

2

(y  )2

2



combines with a Gaussian or normal prior for  given 2 with prior mean
0 and prior variance 20

p

 | 2; 0, 20


 exp



1

2

(  0)
2

20



2 Some would utilize Jereys’ prior, p () beta

; 1

2
, 1
2


, which is invariant to trans-

formation, as the uninformative prior.
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or writing 20  2/0, we have

p

 | 2; 0,2/0


 exp



1

2

0 (  0)
2

2



to yield

p

 | y,, 0,2/0


 exp



1

2


(y  )2

2
+
0 (  0)

2

2



Expansion and rearrangement gives

p

 | y,, 0,2/0


 exp



1

22

y2 + 0

2
0  2y + 

2 + 0

2  20



Any terms not involving  are constants and can be discarded as they are
absorbed on normalization of the posterior

p

 | y,, 0,2/0


 exp



1

22

2 (0 + 1) 2 (00 + y)



Completing the square (add and subtract (00+y)
2

0+1
), dropping the term

subtracted (as it’s all constants), and factoring out (0 + 1) gives

p

 | y,, 0,2/0


 exp



0 + 1

22


 

00 + y

0 + 1

2

Finally, we have

p

 | y,, 0,2/0


 exp



1

2

(  1)
2

21



where 1 =
00+y
0+1

=
1
0
0+

1
2
y

1
0
+ 1
2

and 21 =
2

0+1
= 1

1
0
+ 1
2
, or the posterior

distribution of the mean given the data and priors is Gaussian or normal.
Notice, the posterior mean, 1, weights the data and prior beliefs by their
relative precisions.
For a sample of n exchangeable draws, the likelihood is

 ( | y,) 
n

i=1

exp



1

2

(yi  )
2

2



combined with the above prior yields

p

 | y,, 0,2/0


 exp



1

2

(  n)
2

2n
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where n =
00+ny
0+n

=
1
0
0+

n
2
y

1
0
+ n
2

, y is the sample mean, and 2n =
2

0+n
=

1
1
0
+ n
2
, or the posterior distribution of the mean, , given the data and

priors is again Gaussian or normal and the posterior mean, n, weights the
data and priors by their relative precisions.

6.2.1 Uninformative prior

An uninformative prior for the mean, , is the (improper) uniform, p

 | 2


=

1. Hence, the likelihood

 ( | y,) 
n

i=1

exp



1

2

(yi  )
2

2



 exp



1

22


n

i=1

y2i  2ny + n
2



 exp



1

22


n

i=1

y2i  ny
2 + n (  y)2



 exp



1

22
n (  y)2



determines the posterior

p

 | 2, y


 exp



n

2

(  y)2

2



which is the kernel for a Gaussian or N

 | 2, y; y, 

2

n


, the classical result.

6.3 Gaussian (known mean, unknown variance)

For a sample of n exchangeable draws with known mean, µ, and unknown
variance, , a Gaussian or normal likelihood is

 ( | y, µ) 
n

i=1


1
2 exp



1

2

(yi  µ)
2





combines with an inverted-gamma(a, b)

p (; a, b)  (a+1) exp


b





to yield an inverted-gamma

n+2a
2 , b+ 1

2 t

posterior distribution where

t =

n

i=1

(yi  µ)
2
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Alternatively and conveniently (but equivalently), we could parameterize
the prior as an inverted-chi square


0,

2
0


3

p

; 0,

2
0


 ()(

0
2 +1) exp



0

2
0

2



and combine with the above likelihood to yield

p ( | y)  (
n+0
2 +1) exp



1

2


0

2
0 + t



an inverted chi-square

0 + n,

0
2
0+t

0+n


.

6.3.1 Uninformative prior

An uninformative prior for scale is

p ()  1

Hence, the posterior distribution for scale is

p ( | y)  (
n
2+1) exp



t

2



which is the kernel of an inverted-chi square

;n, tn


.

6.4 Gaussian (unknown mean, unknown variance)

For a sample of n exchangeable draws, a normal likelihood with unknown
mean, , and unknown (but constant) variance, 2, is



,2 | y




n

i=1

1 exp



1

2

(yi  )
2

2



Expanding and rewriting the likelihood gives



,2 | y


 n exp


n

i=1


1

2

y2i  2yi + 
2

2



Adding and subtracting
n

i=1 2yiy = 2ny
2, we write



,2 | y




2
n

2 exp



1

22

n

i=1


y2i  2yiy + y

2

+

y2  2y + 2




3 
2
00
X

is a scaled, inverted-chi square

0,20


with scale 20 where X is a chi

square(0) random variable.
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or



,2 | y




2
n

2 exp



1

22

n

i=1


(yi  y)

2
+ (y  )2



which can be rewritten as



,2 | y




2
n

2 exp



1

22


(n 1) s2 + n (y  )2



where s2 = 1
n1

n
i=1 (yi  y)

2. The above likelihood combines with a
Gaussian or normal


 | 2; 0,2/0


 inverted-chi square


2; 0,

2
0


prior4

p

 | 2; 0,2/0


 p


2; 0,

2
0




1


exp



0 (  0)

2

22





2
(0/2+1)

exp



0

2
0

22





2
( 0+32 )

 exp



0

2
0 + 0 (  0)

2

22



to yield a normal

 | 2; n,2n/n


*inverted-chi square


2; n,

2
n


joint

posterior distribution5 where

n = 0 + n

n = 0 + n

n
2
n = 0

2
0 + (n 1) s

2 +
0n

0 + n
(0  y)

2

That is, the joint posterior is

p

,2 | y; 0,2/0, 0,20





2
n+0+3

2

 exp



 1

22






0
2
0 + (n 1) s2

+0 (  0)
2

+n (  y)2










6.4.1 Completing the square

The expression for the joint posterior is written by completing the square.
Completing the weighted square for  centered around

n =
1

0 + n
(00 + ny)

4The prior for the mean, , is conditional on the scale of the data, 2.
5The product of normal or Gaussian kernels produces a Gaussian kernel.
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where y = 1
n

n
i=1 yi gives

(0 + n) (  n)
2
= (0 + n) 

2  2 (0 + n) n + (0 + n) 2n
= (0 + n) 

2  2 (00 + ny) + (0 + n) 2n

While expanding the exponent includes the square plus additional terms
as follows

0 (  0)
2
+ n (  y)2 = 0


2  20 + 20


+ n


2  2y + y2



= (0 + n) 
2  2 (00 + ny) + 020 + ny

2

Add and subtract (0 + n) 
2
n and simplify.

0 (  0)
2
+ n (  y)2 = (0 + n) 

2  2 (0 + n) n + (0 + n) 2n
 (0 + n) 2n + 0

2
0 + ny

2

= (0 + n) (  n)
2

1

(0 + n)


(0 + n)


0

2
0 + ny

2


 (00 + ny)
2



Expand and simplify the last term.

0 (  0)
2
+ n (  y)2 = (0 + n) (  n)

2
+

0n

0 + n
(0  y)

2

Now, the joint posterior can be rewritten as

p

,2 | y; 0,2/0, 0,20





2
n+0+3

2

 exp



 1

22






0
2
0 + (n 1) s2

+ 0n
0+n

(0  y)
2

+(0 + n) (  n)
2










or

p

,2 | y; 0,2/0, 0,20





2
n+0

2 1
exp



1

22
n

2
n



1 exp


1

22
(0 + n) (  n)

2



Hence, the conditional posterior distribution for the mean, , given 2 is

Gaussian or normal

 | 2; n, 2

0+n


.

6.4.2 Marginal posterior distributions

We’re often interested in the marginal posterior distributions which are
derived by integrating out the other parameter from the joint posterior. The
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marginal posterior for the mean, , on integrating out 2 is a noncentral,

scaled-Student t

; n,

2n
n
, n


6 for the mean

p

; n,

2
n,n, n






 n

n +
n(n)2

2n





n+1
2

or

p


; n,

n
2
n

n
, n





1 +

n (  n)
2

n2n

 n+1
2

and the marginal posterior for the variance, 2, is an inverted-chi square

2; n,

2
n



on integrating out .

p

2; n,

2
n




2
(n/2+1)

exp



n

2
n

22



Derivation of the marginal posterior for the mean, , is as follows. Let
z = A

22 where

A = 0
2
0 + (n 1) s

2 +
0n

0 + n
(0  y)

2
+ (0 + n) (  n)

2

= n
2
n + (0 + n) (  n)

2

The marginal posterior for the mean, , integrates out 2 from the joint
posterior

p ( | y) =

 

0

p

,2 | y


d2

=

 

0


2
n+0+3

2 exp



A

22


d2

Utilizing 2 = A
2z and dz = 

2z2

A d
2 or d2 =  A

2z2 dz,

p ( | y) 
 

0


A

2z

n+0+3
2 A

2z2
exp [z] dz


 

0


A

2z

n+0+1
2

z1 exp [z] dz

 A
n+0+1

2

 

0

z
n+0+1

2 1 exp [z] dz

6The noncentral, scaled-Student t

; n,2n/n, n


implies n

n/

n

has a standard

Student-t(n) distribution p ( | y) 


1 +


n

n/

n

2

n

 n+1
2

.
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The integral

0
z
n+0+1

2 1 exp [z] dz is a constant since it is the kernel of
a gamma density and therefore can be ignored when deriving the kernel of
the marginal posterior for the mean

p ( | y)  A
n+0+1

2



n

2
n + (0 + n) (  n)

2
n+0+1

2




1 +

(0 + n) (  n)
2

n2n

n+0+1
2

which is the kernel for a noncentral, scaled Student t

; n,

2n
0+n

, n+ 0


.

Derivation of the marginal posterior for 2 is somewhat simpler. Write
the joint posterior in terms of the conditional posterior for the mean mul-
tiplied by the marginal posterior for 2.

p

,2 | y


= p


 | 2, y


p

2 | y



Marginalization of 2 is achieved by integrating out .

p

2 | y


=

 


p

2 | y


p

 | 2, y


d

Since only the conditional posterior involves  the marginal posterior for
2 is immediate.

p

,2 | y





2
n+0+3

2 exp



A

22





2
n+0+2

2 exp



n

2
n

22


1 exp



(0 + n) (  n)

2

22



Integrating out  yields

p

2 | y





2
n+0+2

2 exp



n

2
n

22




 


1 exp



(0 + n) (  n)

2

22


d



2
( n2 +1) exp



n

2
n

22



which we recognize as the kernel of an inverted-chi square

2; n,

2
n


.

6.4.3 Uninformative priors

The case of uninformative priors is relatively straightforward. Since priors
convey no information, the prior for the mean is uniform (proportional to
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a constant, 0  0) and an uninformative prior for 2 has 0  0 degrees
of freedom so that the joint prior is

p

,2




2
1

The joint posterior is

p

,2 | y





2
(n/2+1)

exp



1

22


(n 1) s2 + n (  y)2





2
[(n1)/2+1]

exp



2n
22



1 exp


n

22
(  y)2



where
2n = (n 1) s

2

The conditional posterior for  given 2 is Gaussian

y, 

2

n


. And, the mar-

ginal posterior for  is noncentral, scaled Student t

y, s

2

n , n 1

, the clas-

sical estimator.
Derivation of the marginal posterior proceeds as above. The joint poste-

rior is

p

,2 | y




2
(n/2+1)

exp



1

22


(n 1) s2 + n (  y)2



Let z = A
22 where A = (n 1) s

2+n (  y)2. Now integrate 2 out of the
joint posterior following the transformation of variables.

p ( | y) 
 

0


2
(n/2+1)

exp



A

22


d2

 An/2
 

0

zn/21ezdz

As before, the integral involves the kernel of a gamma density and therefore
is a constant which can be ignored. Hence,

p ( | y)  An/2



(n 1) s2 + n (  y)2

n
2




1 +

n (  y)2

(n 1) s2

n1+1
2

which we recognize as the kernel of a noncentral, scaled Student t

; y, s

2

n , n 1

.



6.5 Multivariate Gaussian (unknown mean, known variance) 11

6.5 Multivariate Gaussian (unknown mean, known
variance)

More than one random variable (the multivariate case) with joint Gaussian
or normal likelihood is analogous to the univariate case with Gaussian
conjugate prior. Consider a vector of k random variables (the sample is
comprised of n draws for each random variable) with unknown mean, ,
and known variance, . For n exchangeable draws of the random vector
(containing each of the m random variable), the multivariate Gaussian
likelihood is

 ( | y,) 
n

i=1

exp



1

2
(yi  )

T
1 (yi  )



where superscript T refers to transpose, yi and  are k length vectors and
 is a k  k variance-covariance matrix. A Gaussian prior for the mean
vector, , with prior mean, 0, and prior variance, 0,is

p ( | ; 0,0)  exp


1

2
(  0)

T
10 (  0)



The product of the likelihood and prior yields the kernel of a multivariate
posterior Gaussian distribution for the mean

p ( | , y; 0,0)  exp



1

2
(  0)

T
10 (  0)



 exp


n

i=1


1

2
(yi  )

T
1 (yi  )



6.5.1 Completing the square

Expanding terms in the exponent leads to

(  0)
T
10 (  0) +

n

i=1

(yi  )
T
1 (yi  )

= T

10 + n1


  2T


10 0 + n

1y


+T0
1
0 0 +

n

i=1

yTi 
1yi

where y is the sample average. While completing the (weighted) square
centered around

 =

10 + n1

1 
10 0 + n

1y
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leads to


  

T 
10 + n1

 
  


= T


10 + n1




2T

10 + n1




+
T 
10 + n1




Thus, adding and subtracting 
T 
10 + n1


 in the exponent com-

pletes the square (with three extra terms).

(  0)
T
10 (  0) +

n

i=1

(yi  )
T
1 (yi  )

= T

10 + n1


  2T


10 + n1


 + 

T 
10 + n1





T 
10 + n1


 + T0

1
0 0 +

n

i=1

yTi 
1yi

=

  

T 
10 + n1

 
  




T 
10 + n1


 + T0

1
0 0 +

n

i=1

yTi 
1yi

Dropping constants (the last three extra terms unrelated to ) gives

p ( | , y; 0,0)  exp


1

2


  

T 
10 + n1

 
  



Hence, the posterior for the mean  has expected value  and variance

V ar [ | y,, 0,0] =

10 + n1

1

As in the univariate case, the data and prior beliefs are weighted by their
relative precisions.

6.5.2 Uninformative priors

Uninformative priors for  are proportional to a constant. Hence, the like-
lihood determines the posterior

 ( | , y)  exp



1

2

n

i=1

(yi  )
T
1 (yi  )
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Expanding the exponent and adding and subtracting nyT1y (to com-
plete the square) gives

n

i=1

(yi  )
T
1 (yi  ) =

n

i=1

yTi 
1yi  2nT1y + nT1

+nyT1y  nyT1y
= n (y  )T 1 (y  )

+

n

i=1

yTi 
1yi  nyT1y

The latter two terms are constants, hence, the posterior kernel is

p ( | , y)  exp


n

2
(y  )T 1 (y  )



which is Gaussian or N

; y, 1n


, the classical result.

6.6 Multivariate Gaussian (unknown mean,
unknown variance)

When both the mean, , and variance, , are unknown, the multivariate
Gaussian cases remains analogous to the univariate case. Specifically, a
Gaussian likelihood

 (, | y) 
n

i=1

||
1
2 exp



1

2
(yi  )

T
1 (yi  )



 ||
n
2 exp



1

2

 n
i=1 (yi  y)

T
1 (yi  y)

+n (y  )T 1 (y  )



 ||
n
2 exp



1

2


(n 1) s2 + n (y  )T 1 (y  )



where s2 = 1
n1

n
i=1 (yi  y)

T
1 (yi  y) combines with a Gaussian-

inverted Wishart prior

p


 | ; 0,



0


 p


1; ,


 ||

1
2 exp



1

2
(  0)

T
0

1 (  0)


 ||

2 ||

+k+1
2 exp



tr

1



2
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where tr (·) is the trace of the matrix and  is degrees of freedom, to produce

p (, | y)  ||

2 ||

+n+k+1
2 exp



tr

1



2



 ||
1
2 exp



1

2


(n 1) s2 + n (y  )T 1 (y  )

+0 (  0)
T
1 (  0)



6.6.1 Completing the square

Completing the square involves the matrix analog to the univariate un-
known mean and variance case. Consider the exponent (in braces)

(n 1) s2 + n (y  )T 1 (y  ) + 0 (  0)
T
1 (  0)

= (n 1) s2 + nyT1y  2nT1y + nT1
+0

T1  20T10 + 0T0 
10

= (n 1) s2 + (0 + n) T1  2T1 (00 + ny) + (0 + n) Tn
1n

 (0 + n) Tn
1n + 0

T
0 

10 + ny
T1y

= (n 1) s2 + (0 + n) (  n)
T
1 (  n)

+
0n

0 + n
(0  y)

T
1 (0  y)

Hence, the joint posterior can be rewritten as

p (, | y)  ||

2 ||

+n+k+1
2 exp



tr

1



2



 ||
1
2 exp



1
2






(0 + n) (  n)
T
1 (  n)

+ (n 1) s2

+ 0n
0+n

(0  y)
T
1 (0  y)










 ||

2 ||

+n+k+1
2 exp



1

2


tr

1


+ (n 1) s2

+ 0n
0+n

(0  y)
T
1 (0  y)



 ||
1
2 exp



1

2


(0 + n) (  n)

T
1 (  n)



6.6.2 Inverted-Wishart kernel

We wish to identify the exponent with Gaussian by inverted-Wishart ker-
nels where the inverted-Wishart involves the trace of a square, symmetric
matrix, call it n, multiplied by 1.
To make this connection we utilize the following general results. Since a

quadratic form, say xT1x, is a scalar, it’s equal to its trace,

xT1x = tr

xT1x
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Further, for conformable matrices A,B and C,D,

tr (A) + tr (B) = tr (A+B)

and
tr (CD) = tr (DC)

We immediately have the results

tr

xTx


= tr


xxT



and
tr

xT1x


= tr


1xxT


= tr


xxT1



Therefore, the above joint posterior can be rewritten as a N

; n, (0 + n)

1




inverted-Wishart

1;  + n,n



p (, | y)  |n|
+n
2 ||

+n+k+1
2 exp



1

2
tr

n

1


 ||
1
2 exp



0 + n

2
(  n)

T
1 (  n)



where
n =

1

0 + n
(00 + ny)

and

n = +

n

i=1

(yi  y) (yi  y)
T
+

0n

0 + n
(y  0) (y  0)

T

Now, it’s apparent the conditional posterior for  given  is N

n, (0 + n)

1



p ( | , y)  exp


0 + n

2
(  n)

T
1 (  n)



6.6.3 Marginal posterior distributions

Integrating out the other parameter gives the marginal posteriors, a mul-
tivariate Student t for the mean,

Student tk (; n,,  + n k + 1)

and an inverted-Wishart for the variance,

I-W

1;  + n,n



where
 = (0 + n)

1
( + n k + 1)1n
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Marginalization of the mean derives from the following identities (see Box
and Tiao [1973], p. 427, 441). Let Z be a mm positive definite symmetric
matrix consisting of 12m (m+ 1) distinct random variables zij (i, j = 1, . . . ,m; i  j).
And let q > 0 and B be anmm positive definite symmetric matrix. Then,
the distribution of zij ,

p (Z)  |Z|
1
2 q1 exp


 1
2 tr (ZB)


, Z > 0

is a multivariate generalization of the 2 distribution obtained by Wishart
[1928]. Integrating out the distinct zij produces the first identity.



Z>0

|Z|
1
2 q1 exp



1

2
tr (ZB)


dZ = |B|

1
2 (q+m1) (I.1)

2
1
2 (q+m1)m


q +m 1

2



where p (b) is the generalized gamma function (Siegel [1935])

p (b) =



1
2

 1
2p(p1)

p
=1



b+ p

2


, b > p1

2

and

 (z) =

 

0

tz1etdt

or for integer n,
 (n) = (n 1)!

The second identity involves the relationship between determinants that
allows us to express the above as a quadratic form. The identity is

|Ik  PQ| = |Il QP | (I.2)

for P a k  l matrix and Q a l  k matrix.
If we transform the joint posterior to p


,1 | y


, the above identities

can be applied to marginalize the joint posterior. The key to transformation
is

p

,1 | y


= p (, | y)




1



where
 
1

is the (absolute value of the) determinant of the Jacobian or



1

 =


 (11,12, . . . ,kk)

 (11,12, . . . ,kk)



= ||k+1
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with ij the elements of  and ij the elements of 1. Hence,

p (, | y)  ||
+n+k+1

2 exp



1

2
tr

n

1


 ||
1
2 exp



0 + n

2
(  n)

T
1 (  n)



 ||
+n+k

2 1
exp



1

2
tr

S ()1



where S () = n + (0 + n) (  n) (  n)
T , can be rewritten

p

,1 | y


 ||

+n+k+2
2 exp



1

2
tr

S ()1


||

2k+2
2


1

 +nk2 exp



1

2
tr

S ()1



Now, applying the first identity yields


1>0

p

,1 | y


d1  |S ()|

1
2 (+n+1)


n + (0 + n) (  n) (  n)T


 1
2 (+n+1)


I + (0 + n)1n (  n) (  n)

T

 1
2 (+n+1)

And the second identity gives

p ( | y) 

1 + (0 + n) (  n)

T
1n (  n)

 1
2 (+n+1)

We recognize this is the kernel of a multivariate Student tk (; n,,  + n k + 1)
distribution.

6.6.4 Uninformative priors

The joint uninformative prior (with a locally uniform prior for ) is

p (,)  ||
k+1
2

and the joint posterior is

p (, | y)  ||
k+1
2 ||

n
2 exp



1

2


(n 1) s2 + n (y  )T 1 (y  )



 ||
n+k+1

2 exp



1

2


(n 1) s2 + n (y  )T 1 (y  )



 ||
n+k+1

2 exp



1

2
tr

S ()1
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where now S () =
n

i=1 (y  yi) (y  yi)
T
+ n (y  ) (y  )T . Then, the

conditional posterior for  given  is N

y, n1



p ( | , y)  exp


n

2
(  y)T 1 (  y)



The marginal posterior for  is derived analogous to the above informed
conjugate prior case. Rewriting the posterior in terms of 1 yields

p

,1 | y


 ||

n+k+1
2 exp



1

2
tr

S ()1


||

2k+2
2


1

nk12 exp



1

2
tr

S ()1



p ( | y) 


1>0

p

,1 | y


d1




1>0

1
nk12 exp



1

2
tr

S ()1


d1

The first identity (I.1) produces

p ( | y)  |S ()|
n
2





n

i=1

(y  yi) (y  yi)
T
+ n (y  ) (y  )T



n
2




I + n


n

i=1

(y  yi) (y  yi)
T

1
(y  ) (y  )T



n
2

The second identity (I.2) identifies the marginal posterior for  as (multi-
variate) Student tk


; y, 1ns

2, n k


p ( | y) 

1 +

n

(n k) s2
(y  )T (y  )T

n
2

where (n k) s2 =
n

i=1 (y  yi)
T
(y  yi). The marginal posterior for the

variance is I-W

1;n,n


where now n =

n
i=1 (y  yi) (y  yi)

T .

6.7 Bayesian linear regression

Linear regression is the starting point for more general data modeling
strategies, including nonlinear models. Hence, Bayesian linear regression
is foundational. Suppose the data are generated by

y = X + 
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where X is a n p full column rank matrix of (weakly exogenous) regres-
sors and   N


0,2In


and E [ | X] = 0. Then, the sample conditional

density is

y | X,,2


 N


X,2In


.

6.7.1 Known variance

If the error variance, 2In, is known and we have informed Gaussian priors
for  conditional on 2,

p

 | 2


 N


0,

2V0


where we can think of V0 =

XT
0 X0

1
as if we had a prior sample (y0, X0)

such that
0 =


XT
0 X0

1
XT
0 y0

then the conditional posterior for  is

p

 | 2, y,X;0, V0


 N


, V



where
 =


XT
0 X0 +X

TX
1 

XT
0 X00 +X

TX


 =

XTX

1
XT y

and
V = 

2

XT
0 X0 +X

TX
1

The variance expression follows from rewriting the estimator

 =

XT
0 X0 +X

TX
1 

XT
0 X00 +X

TX


=

XT
0 X0 +X

TX
1 

XT
0 X0


XT
0 X0

1
XT
0 y0 +X

TX

XTX

1
XT y



=

XT
0 X0 +X

TX
1 

XT
0 y0 +X

T y


Since the DGP is

y0 = X0 + 0, 0  N

0,2In0



y = X + ,   N

0,2In



then

 =

XT
0 X0 +X

TX
1 

XT
0 X0 +X

T
0 0 +X

TX +XT 


The conditional (and by iterated expectations, unconditional) expected
value of the estimator is

E

 | X,X0


=

XT
0 X0 +X

TX
1 

XT
0 X0 +X

TX

 = 
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Hence,

  E

 | X,X0


=   

=

XT
0 X0 +X

TX
1 

XT
0 0 +X

T 


so that

V  V ar

 | X,X0



= E

  

 
  

T
| X,X0



= E

 
XT
0 X0 +X

TX
1 

XT
0 0 +X

T 
 
XT
0 0 +X

T 
T



XT
0 X0 +X

TX
1 | X,X0



= E





XT
0 X0 +X

TX
1


XT
0 0

T
0X0 +X

T T0X0
+XT

0 0
TX +XT T TX





XT
0 X0 +X

TX
1 | X,X0





=

XT
0 X0 +X

TX
1 

XT
0 

2IX0 +X
TT IX

 
XT
0 X0 +X

TX
1

= 2

XT
0 X0 +X

TX
1 

XT
0 X0 +X

TX
 
XT
0 X0 +X

TX
1

= 2

XT
0 X0 +X

TX
1

Now, let’s backtrack and derive the conditional posterior as the product
of conditional priors and the likelihood function. The likelihood function
for known variance is



 | 2, y,X


 exp



1

22
(y X)T (y X)



Conditional Gaussian priors are

p

 | 2


 exp



1

22
(  0)

T
V 10 (  0)



The conditional posterior is the product of the prior and likelihood

p

 | 2, y,X


 exp



1

22


(y X)T (y X)

+ (  0)
T
V 10 (  0)



= exp



 1

22






yT y  2yTX + TXTX

+TXT
0 X0  2

T
0X

T
0 X0

+T0X
T
0 X00










The first and last terms in the exponent do not involve  (are constants)
and can ignored as they are absorbed through normalization. This leaves

p

 | 2, y,X


 exp



1

22


2yTX + TXTX + TXT

0 X0

2T0XT
0 X0



= exp



1

22


T

XT
0 X0 +X

TX



2

yTX + T0X

T
0 X0
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which can be recognized as the expansion of the conditional posterior
claimed above.

p

 | 2, y,X


 N


, V



 exp



1

2


  

T
V 1


  



= exp



1

22

  

T 
XT
0 X0 +X

TX
 
  



= exp




1

22






T
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0 X0 +X

TX



2
T 
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0 X0 +X

TX



+
T 
XT
0 X0 +X

TX












= exp




1

22






T

XT
0 X0 +X

TX



2

XT
0 X00 +X

T y
T


+
T 
XT
0 X0 +X

TX












The last term in the exponent is all constants (does not involve ) so its
absorbed through normalization and disregarded for comparison of kernels.
Hence,

p

 | 2, y,X


 exp



1

2


  

T
V 1


  



 exp



1

22


T

XT
0 X0 +X

TX



2

yTX + T0X

T
0 X0






as claimed.

Uninformative priors

If the prior for  is uniformly distributed conditional on known variance,
2, p


 | 2


 1, then it’s as if XT

0 X0  0 (the information matrix for
the prior is null) and the posterior for  is

p

 | 2, y,X


 N


,2


XTX

1

equivalent to the classical parameter estimators.
To see this intuition holds, recognize combining the likelihood with the

uninformative prior indicates the posterior is proportional to the likelihood.

p

 | 2, y,X


 exp



1

22
(y X)T (y X)



Expanding this expression yields

p

 | 2, y,X


 exp



1

22


yT y  2yTX + TXTX
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The first term in the exponent doesn’t depend on  and can be dropped
as it’s absorbed via normalization. This leaves

p

 | 2, y,X


 exp



1

22


2yTX + TXTX



Now, write p

 | 2, y,X


 N


,2


XTX

1

p

 | 2, y,X


 exp



1

22


  

T
XTX


  



and expand

p

 | 2, y,X


 exp



1

22


TXTX  2TXTX + XTX



The last term in the exponent doesn’t depend on  and is absorbed via
normalization. This leaves

p

 | 2, y,X


 exp



1

22


TXTX  2TXTX



 exp



1

22


TXTX  2TXTX


XTX

1
XT y



 exp



1

22


TXTX  2TXT y



As this latter expression matches the simplified likelihood expression, the

demonstration is complete, p

 | 2, y,X


 N


,2


XTX

1
.

6.7.2 Unknown variance

In the usual case where the variance as well as the regression coecients,
, are unknown, the likelihood function can be expressed as



,2 | y,X


 n exp



1

22
(y X)T (y X)



Rewriting gives



,2 | y,X


 n exp



1

22
T 



since  = yX. The estimated model is y = Xb+ e, therefore X +  =
Xb + e where b =


XTX

1
XT y and e = y Xb are estimates of  and

, respectively. This implies  = eX (  b) and



,2 | y,X


 n exp



1

22


eT e 2 (  b)T XT e

+(  b)T XTX (  b)
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Since, XT e = 0 by construction, this simplifies as



,2 | y,X


 n exp



1

22


eT e+ (  b)T XTX (  b)



or



,2 | y,X


 n exp



1

22


(n p) s2 + (  b)T XTX (  b)



where s2 = 1
npe

T e.7

The conjugate prior for linear regression is the Gaussian

 | 2;0,2

1
0


-

inverse chi square

2; 0,

2
0



p

 | 2;0,

210

 p


2; 0,

2
0


 p exp



(  0)

T
0 (  0)
22



(0/2+1) exp


0

2
0
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Combining the prior with the likelihood gives a joint Gaussian

,21n


-

inverse chi square

0 + n,

2
n


posterior

p

,2 | y,X;0,

210 , 0,
2
0


 n exp



(n p) s2
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(  b)T XTX (  b)

22



p exp



(  0)

T
0 (  0)
22





2
(0/2+1)

exp



0

2
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22



7Notice, the univariate Gaussian case is subsumed by linear regression where X = 
(a vector of ones). Then, the likelihood as described earlier,



,2 | y,X


 n exp




1
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(n p) s2 + (  b)T XTX (  b)



becomes



 = ,2 | y,X = 


 n exp




1

22


(n 1) s2 + n (  y)2



where  = , b =

XTX

1
XT y = y, p = 1, and XTX = n.



24 6. Conjugate families

Collecting terms and rewriting, we have

p

,2 | y,X;0,

210 , 0,
2
0





2
[(0+n)/2+1]

exp



2n
22



p exp


1

22
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where
 =


0 +X

TX
1 

00 +X
TXb



n =

0 +X

TX


and

n
2
n = 0

2
0+(n p) s
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0  

T
0

0  


+

  

T
XTX


  



where n = 0+n. The conditional posterior of  given 2 is Gaussian

,21n


.

Completing the square

The derivation of the above joint posterior follows from the matrix ver-
sion of completing the square where 0 and XTX are square, symmetric,
full rank p  p matrices. The exponents from the prior for the mean and
likelihood are

(  0)
T
0 (  0) +


  

T
XTX


  



Expanding and rearranging gives

T

0 +X

tX

  2


00 +X

TX
T
 + T0 00 +


T
XTX (6.1)

The latter two terms are constants not involving  (and can be ignored
when writing the kernel for the conditional posterior) which we’ll add to
when we complete the square. Now, write out the square centered around



  

T 
0 +X

TX
 
  


= T


0 +X

TX



2
T 
0 +X

TX

 + 

T 
0 +X

TX



Substitute for  in the second term on the right hand side and the first two
terms are identical to the two terms in equation (6.1). Hence, the exponents
from the prior for the mean and likelihood in (6.1) are equal to


  

T 
0 +X

TX
 
  




T 
0 +X

TX

 + T0 00 +


T
XTX



6.7 Bayesian linear regression 25

which can be rewritten as

  

T 
0 +X

TX
 
  



+

0  

T
0

0  


+

  

T
XTX


  



or (in the form analogous to the univariate Gaussian case)


  

T 
0 +X

TX
 
  



+

0  

T 
1

1
n 0

1
n 1 + 0

1
n 1

1
n 0

 
0  



where 1 = XTX.

Stacked regression

Bayesian linear regression with conjugate priors works as if we have a prior
sample {X0, y0}, 0 = XT

0 X0, and initial estimates

0 =

XT
0 X0

1
XT
0 y0

Then, we combine this initial "evidence" with new evidence to update our
beliefs in the form of the posterior. Not surprisingly, the posterior mean is
a weighted average of the two "samples" where the weights are based on
the relative precision of the two "samples".

Marginal posterior distributions

The marginal posterior for  on integrating out 2 is noncentral, scaled
multivariate Student tp


,2n

1
n , 0 + n



p ( | y,X) 

n

2
n +


  

T
n

  

 0+n+p
2



1 +

1

n2n


  

T
n

  


0+n+p

2

where n = 0+XTX. This result corresponds with the univariate Gaussian
case and is derived analogously by transformation of variables where z =
A
22 where A = 

2
n+


  

T
n

  


. The marginal posterior for 2 is

inverted-chi square

2; n,

2
n


.

Derivation of the marginal posterior for  is as follows.

p ( | y) =
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p

,2 | y
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2
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2 exp



A

22
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Utilizing 2 = A
2z and dz =  2z2

A d
2 or d2 =  A

2z2 dz, (1 and 2 are
constants and can be ignored when deriving the kernel)
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A

2z
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2 A

2z2
exp [z] dz

 A
n+0+p

2

 

0

z
n+0+p

2 1 exp [z] dz

The integral

0
z
n+0+k

2 1 exp [z] dz is a constant since it is the kernel of
a gamma density and therefore can be ignored when deriving the kernel of
the marginal posterior for beta
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n

2
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T
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T
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n2n
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2

the kernel for a noncentral, scaled (multivariate) Student tp

;,2n

1
n , n+ 0


.

6.7.3 Uninformative priors

Again, the case of uninformative priors is relatively straightforward. Since
priors convey no information, the prior for the mean is uniform (propor-
tional to a constant, 0  0) and the prior for 2 has 0  0 degrees of
freedom so that the joint prior is p


,2




2
1

.
The joint posterior is

p

,2 | y




2
[n/2+1]

exp



1

22
(y X)T (y X)



Since y = Xb + e where b =

XTX

1
XT y, the joint posterior can be

written
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2
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(n p) s2 + (  b)T XTX (  b)



Or, factoring into the conditional posterior for  and marginal for 2, we
have
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where
2n = (n p) s

2

Hence, the conditional posterior for  given 2 is Gaussian

b,2


XTX

1
.

The marginal posterior for  is multivariate Student tp

; b, s2


XTX

1
, n p


,

the classical estimator. Derivation of the marginal posterior for  is analo-
gous to that above. Let z = A

22 whereA = (n p) s
2+(  b)T XTX (  b).

Integrating 2 out of the joint posterior produces the marginal posterior
for .

p ( | y) 
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,2 | y
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2
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2 exp
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d2

Substitution yields

p ( | y) 
 

A

2z

n+2
2 A

2z2
exp [z] dz
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n
2


z
n
21 exp [z] dz

As before, the integral involves the kernel of a gamma distribution, a con-
stant which can be ignored. Therefore, we have

p ( | y)  A
n
2



(n p) s2 + (  b)T XTX (  b)

n
2




1 +

(  b)T XTX (  b)
(n p) s2

n
2

which is multivariate Student tp

; b, s2


XTX

1
, n p


.

6.8 Bayesian linear regression with general error
structure

Now, we consider Bayesian regression with a more general error structure.
That is, the DGP is

y = X + , ( | X)  N (0,)

First, we consider the known variance case, then take up the unknown
variance case.
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6.8.1 Known variance

If the error variance, , is known, we simply repeat the Bayesian linear re-
gression approach discussed above for the known variance case after trans-
forming all variables via the Cholesky decomposition of . Let

 = T

and
1 =


T
1

1

Then, the DGP is
1y = 1X + 1

where
1  N (0, In)

With informed priors for , p ( | )  N (0,) where it is as if  =
XT
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1
0 X0

1
, the posterior distribution for  conditional on  is
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1

It is instructive to once again backtrack to develop the conditional pos-
terior distribution. The likelihood function for known variance is

 ( | , y,X)  exp


1

2
(y X)T 1 (y X)



Conditional Gaussian priors are
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The conditional posterior is the product of the prior and likelihood
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The first and last terms in the exponent do not involve  (are constants)
and can ignored as they are absorbed through normalization. This leaves

p
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 exp
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which can be recognized as the expansion of the conditional posterior
claimed above.
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The last term in the exponent is all constants (does not involve ) so its
absorbed through normalization and disregarded for comparison of kernels.
Hence,
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as claimed.

6.8.2 Unknown variance

Bayesian linear regression with unknown general error structure, , is some-
thing of a composite of ideas developed for exchangeable (2In error struc-
ture) Bayesian regression and the multivariate Gaussian case with mean
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and variance unknown where each draw is an element of the y vector and
X is an n p matrix of regressors. A Gaussian likelihood is

 (, | y,X)  ||
n
2 exp



1

2
(y  )T 1 (y  )



 ||
n
2 exp



1

2


(y Xb)T 1 (y Xb)

+ (b )T XT1X (b )



 ||
n
2 exp



1

2


(n p) s2 + (b )T XT1X (b )



where b =

XT1X

1
XT1y and s2 = 1

np (y Xb)
T
1 (y Xb).

Combine the likelihood with a Gaussian-inverted Wishart prior
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where tr (·) is the trace of the matrix, it is as if  =

XT
0 

1
0 X0

1
, and

 is degrees of freedom to produce the joint posterior

p (, | y,X)  ||

2 ||

+n+p+1
2 exp



tr

1



2



 exp



1
2






(n p) s2

+(b )T XT1X (b )
+ (  0)

T
1 (  0)










Completing the square

Completing the square involves the matrix analog to the univariate un-
known mean and variance case. Consider the exponent (in braces)

(n p) s2 + (b )T XT1X (b ) + (  0)
T
1 (  0)

= (n p) s2 + bTXT1Xb 2TXT1Xb+ TXT1X

+T1   2T1 0 + 
T
0 

1
 0

= (n p) s2 + T

1 +XT1X




2TV 1  + bTXT1Xb+ T0 
1
 0

= (n p) s2 + TV 1   2TV 1  + bTXT1Xb+ T0 
1
 0

where

 =

1 +XT1X

1 
1 0 +X

T1Xb


= V


1 0 +X

T1Xb
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and V =

1 +XT1X

1
.

Variation in  around  is

  

T
V 1


  


= TV 1   2TV 1  + 

T
V 1 

The first two terms are identical to two terms in the posterior involving 
and there is apparently no recognizable kernel from these expressions. The
joint posterior is

p (, | y,X)

 ||

2 ||

+n+p+1
2 exp



tr

1



2



 exp




1

2







  

T
V 1


  



+(n p) s2  
T
V 1 

+bTXT1Xb+ T0 
1
 0










 ||

2 ||

+n+p+1
2 exp




1

2






tr

1


+ (n p) s2


T
V 1 

+bTXT1Xb+ T0 
1
 0










 exp


1

2

 
  

T
V 1


  

 


Therefore, we write the conditional posteriors for the parameters of interest.
First, we focus on  then we take up .
The conditional posterior for  conditional on  involves collecting all

terms involving . Hence, the conditional posterior for  is ( | ) 
N

, V


or

p ( | , y,X)  exp


1

2

 
  

T
V 1


  

 


Inverted-Wishart kernel

Now, we gather all terms involving  and write the conditional posterior
for .

p ( | , y,X)

 ||

2 ||

+n+p+1
2 exp



1

2


tr

1


+ (n p) s2

+(b )T XT1X (b )



 ||

2 ||

+n+p+1
2 exp



1
2






tr

1


+

(y Xb)T 1 (y Xb)
+ (b )T XT1X (b )










 ||

2 ||

+n+p+1
2 exp



1

2


tr


+ (y Xb)T (y Xb)
+ (b )T XTX (b )


1
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We can identify the kernel as an inverted-Wishart involving the trace of
a square, symmetric matrix, call it n, multiplied by 1.
The above joint posterior can be rewritten as an inverted-Wishart


1;  + n,n



p (, | y)  |n|
+n
2 ||

+n+p+1
2 exp



1

2
tr

n

1


where

n = + (y Xb)
T
(y Xb) + (b )T XTX (b )

With conditional posteriors in hand, we can employ McMC strategies
(namely, a Gibbs sampler) to draw inferences around the parameters of
interest,  and . That is, we sequentially draw  conditional on  and
, in turn, conditional on . We discuss McMC strategies (both the Gibbs
sampler and its generalization, the Metropolis-Hastings algorithm) later.

6.8.3 (Nearly) uninformative priors

As discussed by Gelman, et al [2004] uninformative priors for this case is
awkward, at best. What does it mean to posit uninformative priors for a
regression with general error structure? Consistent probability assignment
suggests that either we have some priors about the correlation structure
or heteroskedastic nature of the errors (informative priors) or we know
nothing about the error structure (uninformative priors). If priors are un-
informative, then maximum entropy probability assignment suggests we
assign independent and unknown homoskedastic errors. Hence, we discuss
nearly uninformative priors for this general error structure regression.
The joint uninformative prior (with a locally uniform prior for ) is

p (,)  ||
1
2

and the joint posterior is

p (, | y,X)  ||
1
2 ||

n
2 exp



1

2


(n p) s2 + (b )T XT1X (b )



 ||
n+1
2 exp



1

2


(n p) s2 + (b )T XT1X (b )



 ||
n+1
2 exp



1

2
tr

S ()1



where now S () = (y Xb)T (y Xb)+ (b )T XTX (b ). Then, the
conditional posterior for  given  is N


b,

XT1X

1 | 


p ( | , y,X)  exp


n

2
(  b)T XT1X (  b)
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The conditional posterior for  given  is inverted-Wishart

1;n,n



p (, | y)  |n|
n
2 ||

n+1
2 exp



1

2
tr

n

1


where

n = (y Xb)
T
(y Xb) + (b )T XTX (b )

As with informed priors, a Gibbs sampler (sequential draws from the condi-
tional posteriors) can be employed to draw inferences for the uninformative
prior case.
Next, we discuss posterior simulation, a convenient and flexible strategy

for drawing inference from the evidence and (conjugate) priors.
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6.9 Appendix: summary of conjugacy

focal
parameter(s)



prior
 ()

likelihood
 ( | y)

posterior
 ( | y)

discrete data:

beta-binomial
p

beta
 pa1 (1 p)b1

binomial
 ps (1 p)ns

beta
 pa+s1 (1 p)b+ns1

gamma-poisson


gamma
 a1eb

poisson
 sen

gamma
 a+s1e(b+n)

gamma-exponential


gamma
 a1eb

exponential
 nes

gamma
 a+n1e(b+s)

beta-negative
binomial

p

beta
 pa1 (1 p)b1

negative
binomial

 pnr (1 p)s
beta

 pa+nr1 (1 p)b+s1

beta-binomial-
hypergeometric8

k
k unknown

population success
N known

population size
n known
sample size
x known

sample success

beta-binomial
n
x



(a+x)(b+nx)(a+b)
(a)(b)(a+b+n) ,

x = 0, 1, 2, . . . , n

hypergeometric

 k
x







 N  k
n x







 N
n





sampling
without

replacement

beta-binomial
N  n
k  x



(a+k)(b+Nk)(a+b+n)
(a+x)(b+nx)(a+b+N) ,

k = x, x+ 1, . . . ,
x+N  n

multinomial-
Dirichlet
 (vector)

Dirichlet


K
i=1

ai1i

multinomial
 s11 · · · 

sK
K

Dirichlet


K
i=1

ai+si1i

s =
n

i=1 yi,


n
x


= n!

x!(nx)! ,

 (z) =

0
ettz1dt,  (n) = (n 1)! for n a positive integer, B (a, b) = (a)(b)

(a+b)

8 See Dyer and Pierce [1993].
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focal
parameter(s)



prior
 ()

likelihood
 ( | y)

posterior
 ( | y)

continuous data:

Pareto-uniform
w

w unknown
upper bound,
0 known
lower bound

Pareto
aba

wa+1

uniform
1
wn ,

w > max (xi)

Pareto

 (a+n)max[b,xi]
a+n

wa+n+1

Pareto-Pareto


 unknown
precision,
 known
shape

Pareto
aba

a+1
,

 > b

Pareto
 n,

0 <  < min (xi)

Pareto

 (an)b(an)

an+1
,

a > n, > b

gamma-Pareto


 unknown
shape,
 known
precision

gamma
 a1e/b

ba(a) ,

 > 0

Pareto
 nn

m+1 ,

m =
n
i=1

xi,

0 <  < min (xi)

gamma

 a+n1e/b


(b)a+n(a+n)
,

b = 1
1
b+logmn log 

> 0

gamma-
exponential



gamma
 a1e/b

(a)ba

exponential
 nes,
s =

n
i=1 xi

gamma

 a+n1e/b


(a+n)(b)a+n
,

b = b
1+bs

inverse gamma-
gamma


 unknown
rate,

 known
shape

inverse gamma

 1ae1/b

(a)ba

gamma
 es/

n ,

s =
n

i=1 xi

inverse gamma

 1ane1/b


(a+n)(b)a+n
,

b = b
1+bs

conjugate prior-
gamma


 unknown
shape,
 known
rate

nonstandard

 a1c

()b
,

a, b, c > 0
 > 0

gamma
 m1

n()n
,

m =
n
i=1

xi,

xi > 0

nonstandard

 (am)1(c+n)

()b+n
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focal
parameter(s)



prior
 ()

likelihood
 ( | y)

posterior
 ( | y)

continuous data:

normal-normal
µ

normal

 exp

 (µµ0)

2

220


,

20 =
2

0

normal


n

i=1

exp

 (yiµ)2

22



= exp

 ss
22



normal

 exp

 (µµn)

2

22n


,

µn =
0µ0+ny
0+n

,

2n =
2

0+n

inverse gamma
-normal
2

inverse gamma



2
(a+1)

exp

 b
2



normal
 1

(2)n/2

exp

 ss
22



inverse gamma



2
(n+2a2 +1)

exp

 b+ 1

2 ss

2




normal | 2




inverse gamma-
normal
µ,2


normal | 2




inverse gamma

 10 exp

 (µµ0)

2

220





2
(a+1)

exp

 b
2


,

20 =
2

0

normal
 1

(2)n/2

exp

 ss
22



joint posterior:
normal | 2




inverse gamma






0

2 exp





0


µµ


0

2

22





2



a

+1


exp

 b



2


;

Student t marginal
posterior for µ:




1 +

0b

µµ


0

2

2

 2a

+1
2

;

inverse gamma
marginal

posterior for 2:



2



a

+1


exp

 b



2


,

a

= a+ n

2 ,


0 = 0 + n,

b

=

1
b +

ss
2

+0n(yµ0)
2

2(0+n)

,

µ


0 =
0µ0+ny
0+n

ss =
n

i=1 (yi  µ)
2
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focal
parameter(s)



prior
 ()

likelihood
 ( | y)

posterior
 ( | y)

continuous data:

bilateral
bivariate
Pareto-
uniform
l, u

bilateral
bivariate
Pareto

a(a+1)(r2r1)a

(ul)a+2 ,

l < r1, u > r2

uniform
1
ul

n

bilateral
bivariate
Pareto

(a+ n) (a+ n+ 1)

r

2r


1

a+n

(ul)a+n+2 ,

r


1 = min (r1, xi) ,

r


2 = max (r2, xi)

normal-
lognormal

µ

normal

 exp

 (µµ0)

2

220


,

20 =
2

0

log normal


n

i=1

exp

 (log yiµ)2

22



= exp

 lss
22



normal

 exp

 (µµn)

2

22n


,

µn =
0µ0+nlog y

0+n
,

2n =
2

0+n

inverse gamma-
lognormal

2

inverse gamma



2
(a+1)

exp

 b
2



normal
 1

(2)n/2

exp

 lss
22



inverse gamma



2
(n+2a2 +1)

exp

 b+ 1

2 lss

2



lss =
n

i=1 (log yi  µ)
2
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continuous data:
multivariate normal
 inverted Wishart-
multivariate normal

µ,
prior  (µ,)

multivariate normal  (µ | )  ||
1
2 exp


0

2 (µ µ0)
T
1 (µ µ0)



 inverted Wishart  ()  ||

2 ||

+k+1
2 exp



tr(1)

2



likelihood  (µ, | y)
multivariate normal  ||

n
2 exp


 1
2


(n 1) s2 + (y  µ)T 1 (y  µ)



joint posterior  (µ, | y)
multivariate normal  (µ | , y)  exp


0+n

2 (µ µn)
T
1 (µ µn)



 inverted Wishart  ( | y)  ||
+n
2 ||

+n+k+1
2 exp



tr(n

1)
2



marginal posterior

multivariate Student t  (µ | y) 

I + (0 + n)


(µ µn)

T
1n (µ µn)

 1
2 (+n+1)

inverted Wishart  ( | y)  ||
+n
2 ||

+n+k+1
2 exp



tr(n

1)
2



where tr (·) is the trace of a matrix,

µn =
0µ0+ny
0+n

, s2 = 1
n1

n
i=1 (yi  y)

T
1 (yi  y) ,

n = +
n

i=1 (yi  y)
T
(yi  y) + 0n

0+n
(µ0  y)

T
(µ0  y)
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continuous data:
linear regression

normal  inverse chi square-normal
,2

prior 

,2



normal 

 | 2


 p exp


 1
22 (  0)

T
0 (  0)



 inverse chi square 

2


 (0/2+1) exp

0

2
0

22



normal likelihood 

,2 | y,X



normal  n exp

 1
22


eT e+ (  b)T XTX (  b)



joint posterior p

,2 | y,X



normal p

 | 2, y,X


 p exp


 1
22


  

T
n

  



 inverse chi square 

2 | y,X




2
[(0+n)/2+1]

exp

 2n
22



marginal posterior

Student t 

 | 2, y,X




1 + 1

n2n


  

T
n

  

 0+n+p
2

 inverse chi square 

2 | y,X




2
[(0+n)/2+1]

exp

 2n
22



where
e = y Xb, b =


XTX

1
XT y,

 =

0 +X

TX
1 

00 +X
TXb


, n = 0 +X

TX,

n
2
n = 0

2
0 + e

T e+

0  

T
0

0  


+

  

T
XTX


  


,

and n = 0 + n
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continuous data:
linear regression

with general variance
normal  inverted Wishart-normal

,
prior  (,)

normal  ( | )  exp

 1
2 (  0)

T
1 (  0)



 inverted Wishart  ()  ||

2 ||

+p+1
2 exp



tr(1)

2



normal likelihood  (, | y,X)
normal  ||

n
2 exp


 1
2


(n p) s2 + (  b)T XT1X (  b)



conditional posterior

normal p ( | , y,X)  exp

 1
2


  

T
V 1


  



inverted Wishart  ( | , y,X)  ||
+n
2 ||

+n+p+1
2 exp



tr(n

1)
2



where tr (·) is the trace of a matrix,

s2 = 1
np (y Xb)

T
1 (y Xb) , b =


XT1X

1
XT1y,

V =

1 +XT1X

1
,  =


1 +XT1X

1 
1 0 +X

T1Xb

,

n = + (y Xb)
T
(y Xb) +


b 

T
XTX


b 


,

and  =

XT
0 

1
0 X0

1


