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6

Conjugate families

Conjugate families arise when the likelihood times the prior produces a
recognizable posterior kernel

p(01y)oct(0]y)p()

where the kernel is the characteristic part of the distribution function that
depends on the random variable(s) (the part excluding any normalizing
constants). For example, the density function for a univariate Gaussian or

normal is
1 1 ( )2
exp | ——= (z —
2ro P72 WA

and its kernel (for o known) is

exp [—222 (z — u)2]

1
V2o
family results! and uninformative prior results to connect with classical

results.

as

is a normalizing constant. Now, we discuss a few common conjugate

1A more complete set of conjugate families are summarized in chapter 7 of Accounting
and Causal Effects: Econometric Challenges as well as tabulated in an appendix at the
end of the chapter.



2 6. Conjugate families
6.1 Binomial - beta prior

A binomial likelihood with unknown success probability, 6,
ew|gny:<2)9%1—m"5

5= 1Y, vi=1{0,1}
combines with a beta(6; a, b) prior (i.e., with parameters a and b)

I'(a+0b)

a—1 _ b—1
rare’ 77

p(0) =
to yield
p@y) o« 0°(1-0)""0 " (1-0)""

x 05+a—1 (1 _ g)n—s—i-b—l

which is the kernel of a beta distribution with parameters (a + s) and
(b+n—s), beta(d | y;a+ s,b+n —s).

6.1.1 Uninformative priors

Suppose priors for 6 are uniform over the interval zero to one or, equiva-
lently, beta(1,1).? Then, the likelihood determines the posterior distribu-
tion for 6.

p(0]y)oc6®(1—-0)""

which is beta(6 | y; 1+ 5,1 +n — s).

6.2 Gaussian (unknown mean, known variance)

A single draw from a Gaussian likelihood with unknown mean, 6, known
standard deviation, o,

2
(0 y,0) x exp [_;wa—ﬁ]

combines with a Gaussian or normal prior for € given o2 with prior mean

. . 2
6o and prior variance T

1(0—00)*
p (6] 02;90,73) X exp [—27_(2)

2Some would utilize Jeffreys’ prior, p (6) (xbeta(@; %, %) which is invariant to trans-
formation, as the uninformative prior.



6.2 Gaussian (unknown mean, known variance) 3

or writing 73 = 0% /kg, we have

1 Ko (6 — 6o)
(9‘0’2 9070' /HO)O(GXP[ 20_2‘|

to yield

2 2

g

Expansion and rearrangement gives

P (9 | y, 0,00, 02//10) o exp [— (y2 + 509(2) — 200 + 6% + Ko (92 - 2990))}

202
Any terms not involving 6 are constants and can be discarded as they are
absorbed on normalization of the posterior

p(01y,0,00,0% ko) ox exp { (6% (ko + 1) — 20 (koo + y))}

9252
Completing the square (add and subtract %)7 dropping the term
subtracted (as it’s all constants), and factoring out (kg + 1) gives

Ko +1 9,”090+y 2
202 I{Q—‘rl

p (0 | y7079030—2//€0) X exp

Finally, we have

1(0—061)°
(6 | Yy,o, 90a0 /14,0) X €exp _57
1
h 0 Kobo+y %00+0%y d 72 o? 1 th teri
wnere v; = o1 %+U% an Tl—m—%,or € posterior

distribution of the mean given the data and priors is Gaussian or normal.
Notice, the posterior mean, 61, weights the data and prior beliefs by their
relative precisions.

For a sample of n exchangeable draws, the likelihood is

(0] y,0)x Hexp [—9)]

combined with the above prior yields

(0|y70' Ho,a/mo)o(expl M]

2
2 TZ



4 6. Conjugate families

_ L oo+ 2y 2
_ robotny _ 70TV 2 _ o _
where 6,, = Rotn T Ly y is the sample mean, and 77 = o =
%, or the posterior distribution of the mean, 6, given the data and
7o, o2

priors is again Gaussian or normal and the posterior mean, 6,,, weights the
data and priors by their relative precisions.

6.2.1 Uninformative prior

An uninformative prior for the mean, 6, is the (improper) uniform, p (0 | 02) =
1. Hence, the likelihood

0|y, o) Hexp l—;W]

o . )
X exp —M{ny—Qny9+n92}]

L i=1

1 - 2 —2 0 —\2

X exp T 952 Zyi*ny +n(0—7)

L i=1

F »
X exp —ﬁn(g—y)

determines the posterior

P (0 | 0'2,y) X exp [—2(00221)]

which is the kernel for a Gaussian or N(G | 02,457, ”72), the classical result.

6.3 Gaussian (known mean, unknown variance)

For a sample of n exchangeable draws with known mean, p, and unknown
variance, 0, a Gaussian or normal likelihood is

T -1 1 (y; — p)*
QOPYIES I Cart [—29
combines with an inverted-gamma(a, b)

p(0;a,b) x =T exp [Z}

n+2a
2

to yield an inverted—gamma( ,b+ %t) posterior distribution where

(yi — p)°

t =

n

i



6.4 Gaussian (unknown mean, unknown variance) 5

Alternatively and conveniently (but equivalently), we could parameterize
the prior as an inverted-chi square(yo, 0%)3

vg 2
P (9; 1/0,0(2)) o (9)7(7“) exp { Vggo}

and combine with the above likelihood to yield

_(ntra 1
p(0]y) o 0~ CF ) exp {‘29<Vooa+t>]

2
. : t
an inverted chi-square (1/0 +n, Vﬁ;’j_z )

6.3.1 Uninformative prior
An uninformative prior for scale is
p(0) <0t

Hence, the posterior distribution for scale is
n t
0 0~ (5 exp |~
p(0y) < exp [~ 5

which is the kernel of an inverted-chi square (0; n, %)

6.4 Gaussian (unknown mean, unknown variance)

For a sample of n exchangeable draws, a normal likelihood with unknown
mean, 0, and unknown (but constant) variance, o2, is

?(0 2 - —1 1 (yZ - 9)2
( ,o |y)o<i1;[10 exp BT
Expanding and rewriting the likelihood gives

n

—n 1y? — 2y,0 + 67
6(9,02|y)o<0 exp [Z—ngz
i=1

Adding and subtracting Y, 2y,7 = 2n¥y*, we write

n

s 1 n
L (9,02 | y) x (02) ? exp l—w Z {(yf — Zy@—l-f) + @2 — 250 + 92)}
i=1

Vo2
3% is a scaled, inverted-chi square(uo,ag) with scale O'g where X is a chi

square(vo) random variable.




6 6. Conjugate families

or

£(0,0% ) o (0) % exp [—Zi {w-9+@- 9)2}]
i=1

which can be rewritten as

n

€(0,0° | y) ox (%) * exp [_1 {n-ns +n(y—9)2}}

202

where s? = L3 (y; —7)%. The above likelihood combines with a

Gaussian or normal (0 | 02; 60, 0%/ko) x inverted-chi square(o?; vo, o) prior*

1 [_ Ko (9 — 90)2]

P(9\02§90702/F60)XP(UQ;Voaag) x EQXP

V()O'% —+ Ko (0 — 90)2‘|

X exp [ 552

to yield a normal(9 | 02;HW,U%/mn)*inverted—Chi square(az;yn,ai) joint
posterior distribution® where

v, = UVgp+n
Kn = Ko+n
vno? = wveoi+(n—1)s*+ H:O—fn (0o —7)°
That is, the joint posterior is
_ n+4vg+3
p(9,02 |y;90,02/50,uo70(2]) x (02) 2
1 voog + (n—1)s?
Xexp | —— +k0 (0 — 0)
202 2

6.4.1 Completing the square

The expression for the joint posterior is written by completing the square.
Completing the weighted square for 6 centered around

1
n = 0 Y
/<;0+n(/€0 0 + 1Y)

4The prior for the mean, 6, is conditional on the scale of the data, o2.

5The product of normal or Gaussian kernels produces a Gaussian kernel.



6.4 Gaussian (unknown mean, unknown variance) 7
where = 1 3% | y; gives

(ko +n) (0 —0,)° = (ko+n)6® —20 (ko +n) b, + (ko +n)62
= (ko +n) 6% — 20 (kobo + n7) + (ko +n) 62
While expanding the exponent includes the square plus additional terms
as follows
ko (0—00)> +n(0—7)° = ko (0% —2000+063) +n (6% — 205 +7°)
= (ko +n) 6% — 20 (kobo + nT) + robp + N7

Add and subtract (ko 4+ n) 62 and simplify.

ko (0 —00)> +n(0—7)° = (ko+n)0%—20(ko+n)0, + (ko +n)02
— (ko + 1) 02 + Kob2 + ny?
= (ko+n)(0—0,)
1 (ko +n) (/ﬂoﬁg + 7@2)
(Ko +m) { — (kobo + ng)* }
Expand and simplify the last term.

Ron

2 2 _ 2
Iio(@—@o) +n(9—y) —("@0"'”)(9 071) +/€0—|—TL

(o —?)2

Now, the joint posterior can be rewritten as

_ ntwo+3
p(9702 | y;90702/HO7V07U(2)) X (U 2
vood + (n—1)s?
Kon —\2
Xexp | =55 20 (6o — ) ,
+ (ko +n)(0—0,)
or
_ntvo 4 1

exp [— 957 z/noi]

xo~texp L (ko +n) (0 —0,)
202

p (0,02 | y;0070—2/’€0,1/0703) X (U

Hence, the conditional posterior distribution for the mean, , given o2 is

a3 2. o
Gaussian or normal (6’ | 02;0,, Py +n)'

6.4.2 Marginal posterior distributions

We're often interested in the marginal posterior distributions which are
derived by integrating out the other parameter from the joint posterior. The
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marginal posterior for the mean, 6, on integrating out ¢2 is a noncentral,
2
scaled-Student t (9; 0., Z—“, un)6 for the mean

p (07 On, or

n?

2 . 2\ T2
p (s 228 ) o (14 20207
KRn l/nO'n

and the marginal posterior for the variance, o2, is an inverted-chi square(a
on integrating out 6.

Kn, Vn) X

or

%vn, 07)

2
p (0% vn,00) o (02)_(’/"/2+l) exp {— Vé;”]

Derivation of the marginal posterior for the mean, 8, is as follows. Let

ZZ%Where
2 2 Romn _\2 2
A = wvoog+(n—1)s"+ (0o —7)" + (ko +n) (0 — 0,)
Ko +mn

= 102 + (ko4 n) (0 —0,)°

The marginal posterior for the mean, #, integrates out o2 from the joint
posterior

p(0]y) = /Ooop(e,aﬂy)da?

> _ntvo+s A
2 2 2
e ——|d
/0 (O’ ) Xp [ 2} o

Utilizing o2 = 2—’2 and dz = 7%6102 or do? = 7%(12’
oly « [ (3 A
p y) ; 2% 9.2 exp |—z|dz
< /4 _%
< (5) e
0

ntvg+l

o0
_ ntvg+l
x AT 2 / z7 2 Lexp[—2]dz
0

-0y
on/vkn

6The noncentral, scaled-Student t(@; 0,02 /Kin, I/n) implies has a standard
v+l

l_,’_(UZ;\S/ZT) :| :

Student-t(vy) distribution p (6 | y)

Vn




6.4 Gaussian (unknown mean, unknown variance) 9
The integral fooo P exp [—z] dz is a constant since it is the kernel of
a gamma density and therefore can be ignored when deriving the kernel of
the marginal posterior for the mean

p(O]y) o ATTES
_ﬁi%ﬁi
o [Vnai + (ko +n) (6 — Gn)ﬂ
5 7n+1/20+1
x (14 000 ]
vno2

2
which is the kernel for a noncentral, scaled Student t(&; Ons o+ Vo).

Derivation of the marginal posterior for o2 is somewhat simpler. Write
the joint posterior in terms of the conditional posterior for the mean mul-
tiplied by the marginal posterior for o2.

p(0,0%y) =p(0] 0 y)p(c®|y)

Marginalization of o2 is achieved by integrating out 6.

pwﬂw=/“pwﬂwpww%ww

— 00

Since only the conditional posterior involves 6 the marginal posterior for
o? is immediate.

ntvg+3

p(0,0%|y) o< (0%) 7 exp {_]

gy — Rt vnol] (0 +n) (6 — 6)°
(0?) m% ]g mﬂ )

Integrating out 6 yields

_ ntvg+2 v O.2
2 2 2 _n”n
p(a |y) o (a) exp[ 202}
s} _ 2
X / o texp |- (Ko +n) (0 = bn) do
oo 202

202

Vn 2
x (02)*(T+1) exp {_ Vnan]

2

which we recognize as the kernel of an inverted-chi square (a i Vn, J%).

6.4.3 Uninformative priors

The case of uninformative priors is relatively straightforward. Since priors
convey no information, the prior for the mean is uniform (proportional to
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a constant, o — 0) and an uninformative prior for 02 has vo — 0 degrees
of freedom so that the joint prior is

p(6.0%) o (%)

The joint posterior is
p(0,0%|y) < (0% (n/2+1) Xp|: 257 {(n—l)s +n(0—7) }}
x (o )7[(n D/241] [ }

> o
o lexp [ . 5 (0 —7) }
where
02 =(n—1)s*
The conditional posterior for § given o2 is Gaussian (y, ) And, the mar-

ginal posterior for € is noncentral, scaled Student t(y, =n- 1), the clas-

sical estimator.
Derivation of the marginal posterior proceeds as above. The joint poste-
rior is

p(0,0° | y) x (02)*(n/2+1) exp[ 212 {(n— 1)s>4+n((0—7) }}

Let 2 = 52 where A= (n —1)s>+n (0 — 7)%. Now integrate o out of the
joint posterior following the transformation of variables.

> —(n A
p(0|y) /0 (02) (n/2+1) exp [—w} do?
0o
x A—n/2 / Zn/2—le—zdz

0

As before, the integral involves the kernel of a gamma density and therefore
is a constant which can be ignored. Hence,

p(Oly) o AT

x [(n=1)s*+n(0-7)’]
n(e—y>2]n2m

(n—1)s2

n

-2

14

which we recognize as the kernel of a noncentral, scaled Student t (0 Y, m — 1)
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6.5 Multivariate Gaussian (unknown mean, known
variance)

More than one random variable (the multivariate case) with joint Gaussian
or normal likelihood is analogous to the univariate case with Gaussian
conjugate prior. Consider a vector of k random variables (the sample is
comprised of n draws for each random variable) with unknown mean, 6,
and known variance, 3. For n exchangeable draws of the random vector
(containing each of the m random variable), the multivariate Gaussian
likelihood is

arere Hexp -5 -0 = - 0)

where superscript T refers to transpose, y; and 0 are k length vectors and
Y is a k X k variance-covariance matrix. A Gaussian prior for the mean
vector, #, with prior mean, 6y, and prior variance, Yg,is

1
p(0]:60, o) o exp {2 (0 —00)" Tt (6 — 90)]

The product of the likelihood and prior yields the kernel of a multivariate
posterior Gaussian distribution for the mean

1 _
p(0]%,y;00,To) o< exp {—2(9—90)TT01(9—90)]

X €Xp lz *% (yi —0)" 27 (y; — ‘9)]

i=1

6.5.1 Completing the square
Expanding terms in the exponent leads to

n

(0 —00)" T (6 — 6o) Z : “Hyi - 9)

= 0T (Y, +n2h) 0 - 29T (TO 10y +nX7'y)
+O5 Y5 00+ )yl Sy,
i=1

where 7 is the sample average. While completing the (weighted) square
centered around

0= (Y5 +n2 ) (Y500 + 0T 'y)
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leads to

(0-9)" (5! +n=Y) (0-0)

0" (Yot +nxt) 0
20" (Yo' +n2 )0
40" (Y5t +nu )0

Thus, adding and subtracting 9 (To_l + n2*1)5 in the exponent com-
pletes the square (with three extra terms).

(0 —00)" Yo' (0—00)+ > (i —0)" =7 (y; — 0)
=1
— 0T (Y 4 nn ) 0 — 207 (Yo +nS )G +0 (T 402 )0
0 (Y 0 )OO0 00+ >yl Ty
=1

= (0-9)" (x;' +n=Y) (0-10)

0 (Yo 0= )0+ 07T 00+ >yl Ty,
=1

Dropping constants (the last three extra terms unrelated to 6) gives
1 _ _
p (0] X, y;00,To) x exp [—2 (0 — 9)T (Tal + nE_l) (6 —0)

Hence, the posterior for the mean @ has expected value 6 and variance

Var[0|y,S,00,To] = (Yo' +nZ™ )1

As in the univariate case, the data and prior beliefs are weighted by their
relative precisions.

6.5.2  Uninformative priors

Uninformative priors for 6 are proportional to a constant. Hence, the like-
lihood determines the posterior

(0| X, y) x exp

Z “yi —0)

MM—A
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Expanding the exponent and adding and subtracting ny’ ¥~'% (to com-
plete the square) gives

Wi—0)"S 1 yi—0) = > yIs Ty —2m0"S g+ o 80
= =1

i=1

+ny' STy —ny 87y
= n@E-0""F-0)

+> Sy - ng" sy

i=1
The latter two terms are constants, hence, the posterior kernel is

n

PO Z.y) xexp |5 (7-0)" 57 (7-0)]

which is Gaussian or N(H;y, %E), the classical result.

6.6 Multivariate Gaussian (unknown mean,
unknown variance)

When both the mean, 6, and variance, ¥, are unknown, the multivariate
Gaussian cases remains analogous to the univariate case. Specifically, a
Gaussian likelihood

(0.319) o T[mE e |5 - 0757 - 0)
SN N U I YN (R M ()
* ‘”‘p[ 2{ -0 5 G0 H
x \Z|_%exp {—;{(n—1)52+n(y—9)T§]_1(y—9)}]

where s = L3 (y; — 7)" 2! (y; — 7) combines with a Gaussian-
inverted Wishart prior

Y 1 1
p<9 | 2;90,) xp (S, U) o X Zexp {—2(9—90)Tn02_1 (9—90)]
Ko

v vkt tr (\112_1)
<] |5 ep |-

2




14 6. Conjugate families

where tr (-) is the trace of the matrix and v is degrees of freedom, to produce

v _vtntktl tr (\IIZ_l)
.3 1y) o [wfE s T e |-

1 1 (n-1)s2+n@Fm—0"2"(F—0)
xIZl eXpl_z{ Hhio (0 — 00)T 271 (0 — 6) H

6.6.1 Completing the square

Completing the square involves the matrix analog to the univariate un-
known mean and variance case. Consider the exponent (in braces)

n=1)s>+n@G—0)" S G —0)+ro(0—00)" L7 (0—6)

= (n-1)s+nyg' 2y - 20Ty + noTL 10
+r00T X710 — 2k00T 700 + Kobp X716,

= (n—1)8>+ (ko +n) 072710 — 207571 (koby + n7) + (ko +n) 025710,
— (ko +n) 93:2_19,1 + fioé’gZ_lGO +nyl ey

= n—1)s+(ro+n)(0—0,)" (6 —0,)

Ko7 \T «—1 —
0o — b)) 6o —
no—i—n(o y) (0 y)

Hence, the joint posterior can be rewritten as

v vtntktl tr (I21
p(0,5]y) o [P [X] 2 exp l—(Q)]
) L[ o+ n) (0 —0,)" =71 (0 - 0,)
X |X] 72 exp —3 +(n—1)s?
+-2m (9 — )T 21 (6) — )

Ko+mn

v _vtndktl 1 tr (U + (n—1)s? H
LA ERDY 2 exp |—= o _ _ _
R P[ 2{ 5 (00 —7)" £ (60— 7)

X2 7F exp H { (ko tm) (00,751 (0~ 6,) }]

6.6.2 Inverted-Wishart kernel

We wish to identify the exponent with Gaussian by inverted-Wishart ker-
nels where the inverted-Wishart involves the trace of a square, symmetric
matrix, call it ¥,,, multiplied by .

To make this connection we utilize the following general results. Since a
quadratic form, say 7"z, is a scalar, it’s equal to its trace,

2Ty e =tr (J:TZ_lx)
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Further, for conformable matrices A, B and C, D,
tr(A)+tr(B) =tr (A+ B)

and
tr (CD) = tr (DC)

We immediately have the results
tr (a:Tx) =1r (m:T)

and
tr (mTEflx) =tr (EilxxT) =tr (xxTEfl)

Therefore, the above joint posterior can be rewritten as a N (9; On, (Ko + n)_l Z) X
inverted-Wishart (E’l; v+n, \I/n)

v+nt+k+1
2

pO.51y) o [, s e [;t (ml)}

X |S|77 exp [— "OJ” (0—0,)" 271 (0 enﬂ
where
0, = 0 7
K0+n(/€0 0 +nY)
and
n Ko _ T
U =U+> (-7 Ww-79 + o =00 (=)

Now, it’s apparent the conditional posterior for 8 given X is N (Gn, (ko + n)71 Z)

Ko +n
2

p (0] .y) ox exp [— 00,75 (0 em]

6.6.3 Marginal posterior distributions

Integrating out the other parameter gives the marginal posteriors, a mul-
tivariate Student t for the mean,

Student t (6;0,,T,v+n—Fk+1)
and an inverted-Wishart for the variance,
I-W (E_l; v+n, \Iln)

where
L= (ko+n) ' v+n—k+1)7'¥,
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Marginalization of the mean derives from the following identities (see Box
and Tiao [1973], p. 427, 441). Let Z be a m x m positive definite symmetric
matrix consisting of £m (m + 1) distinct random variables z;; (i, = 1,...,m;i > j).
And let ¢ > 0 and B be an m x m positive definite symmetric matrix. Then,
the distribution of z;;,

p(Z) x |Z)* " exp [~Ltr (ZB)], Z>0

is a multivariate generalization of the y? distribution obtained by Wishart
[1928]. Integrating out the distinct z;; produces the first identity.

1 1 1
/ |Z|29 exp [—tr (ZB)} dz = |B|2letm=Y) (L1)
Z>0 2

g la+m—1) (q +m— 1)
m\ T2

where I'y, (b) is the generalized gamma function (Siegel [1935])

00 = [ T e e), 0>

2 2
a=1

and

or for integer n,
I'(n)=(mn-1)

The second identity involves the relationship between determinants that
allows us to express the above as a quadratic form. The identity is

[ = PQ| = |l — QP (I.2)

for P a k x [ matrix and @ a [ x k matrix.
If we transform the joint posterior to p (0, x| y), the above identities

can be applied to marginalize the joint posterior. The key to transformation

is

o

—1 _

where |%|is the (absolute value of the) determinant of the Jacobian or

0%
ox-1

_ 8(01170127~-~70kk)
O (o1, o2, ..., okk)

|E|k+1
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with o;; the elements of ¥ and 0% the elements of ¥~1. Hence,

v+n+k+1
2

P05y x [T exp [—;tr (wnz—l)}

Ko +n
2

< |77 exp [— 0—0,)" 2 (9—9n>}

where S (0) = U, + (ko +n) (0 — 0,) (0 — 6,,)", can be rewritten

v4+n+k+2 2k+2

P (9,2_1 | y) x X7 T exp [—;tr (S (0) 2_1)} |32

v+n—k

x [T T exp {;tr (5(‘9)21)}

Now, applying the first identity yields

/ p(0,571 | y)ds o |S(6) B
¥-1>0

T—%(V—&-n—&-l)
o< ’\Iln—i—(no—i—n)(@—On)(G—Hn) ‘

7%(V+’ﬂ+1)
~ ’1 + (ko +n) U (0 —0,) (0 — an)T(

And the second identity gives

T —3(v+n+1)
P (0 |) o [L+ (ko +m) (6= 0,)" 0 (0—0,)]

We recognize this is the kernel of a multivariate Student ty (6;6,,,T,v +n — k + 1)
distribution.

6.6.4 Uninformative priors

The joint uninformative prior (with a locally uniform prior for 6) is
ki1
p(0,%) oc |52

and the joint posterior is

n

POl x 157 s e -5 {n- D2 rn@-0Ts G- 0)

nt+k+1

15 e | {0 E - 07 G- 0))]

n+k+1

x [Z|TF exp [—tr(s(@z_l)}
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where now S (0) = " (G —v:) G —vi)" +n (G —0)(F—0)". Then, the
conditional posterior for 6 given X is N@, n_1§])

pO|Sy) xexp -2 (6-7)" 57 (9-7)]

The marginal posterior for 8 is derived analogous to the above informed
conjugate prior case. Rewriting the posterior in terms of X! yields

n+k+1

p(0,57 [y o« [T 2

2k+2

exp [—;tr (S(0) 21)} i

o }2*1|nifki1 exp {;tr (5(0) 21)}

p(Oly) o / p (6,57 [y)ds!
»-1>0

n—k—1 1
x / |Z_1| ? exp {—tr (5(0) E_l)} dxt
Z_1>O 2
The first identity (I.1) produces

p@ly) < |SO) %

n

w3

T—v) G—w) +n@—0)G-0"
1

K2

n -1 2
S @-vi) G- yi)T] -0 G—0)"

i=1

x |I+n

The second identity (I.2) identifies the marginal posterior for 6 as (multi-
variate) Student tx (6;7, 2% n — k)

_n
2

P01 |14 5z -0 -0

where (n —k)s? =>" , (y— y:)" (¥ — y;). The marginal posterior for the
variance is -W (271 n, ¥,,) where now ¥, = 37" | (7 — ;) (¥ — yi)".

6.7 Bayesian linear regression

Linear regression is the starting point for more general data modeling
strategies, including nonlinear models. Hence, Bayesian linear regression
is foundational. Suppose the data are generated by

y=XG+e
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where X is a n x p full column rank matrix of (weakly exogenous) regres-
sors and € ~ N (0,0%I,) and E [ | X] = 0. Then, the sample conditional
density is (y | X, 8,0%) ~ N (X8,0%I,).

6.7.1 Known variance

If the error variance, 021, is known and we have informed Gaussian priors

for 8 conditional on o2,

p(B|0®) ~ N (B, 0°Vo)

where we can think of V) = (XOTXO)f1 as if we had a prior sample (yg, Xo)
such that .
Bo = (XOTXO) XoTyo

then the conditional posterior for 3 is

p(B10%y,X;80, Vo) ~ N (B,Vs)

where B ) R
B = (X3 Xo+XTX) " (XT XoB, + XTXP)

1

=(xTx)" xTy

and )
Vg = o? (X(F}FX() +XTX)

The variance expression follows from rewriting the estimator

B o= (X'Xo+XxTx)™" (Xg“ XoB + XTXB)

(X X0 + X7 x) " (XOTXO (XFXo) " XTyo+ XTX (XTx) XTy)
= (XTXo+ XTX) " (XEyo + XTy)
Since the DGP is

yo = XoB +¢c0, €0~ N (0,0%1,,)
y=XB+e, e~N 0,0’2In)

then
— -1
B=(XgXo+X"X) (X XoB+XJeo+ X "XB+XTe)

The conditional (and by iterated expectations, unconditional) expected
value of the estimator is

E[B|X,Xo] = (X X0+ XTX) ™" (XT X0+ XTX) B =3
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Hence,
B-—E[B|X,Xo] = B-8
= (XTI X0+ XTX) " (XTe0 + X7e)
so that
Vs = Var[B|X,Xo]

— BE[(B-8)(F-8)" X X]

_ | X+ XTX) T (XTeo + XTe) (X0 + XTe) T
I x (XTXo+ XTX) ™' | X, Xo
[y -1 [ Xo €0gd Xo + XTeel X

- E (X5 X0+ X7X) ( +XTeoe? X + XTeTeT X

i x (XT X0+ XTX) 7" | X, X,

= (XX + XTX) (X% 1 X0+ X o TIX) (XT X0+ XTX) ™
= o (XIXo+ XTX) " (XTI Xo+ XTX) (XX + XTX)

= P (XT X+ XTX)

1

Now, let’s backtrack and derive the conditional posterior as the product
of conditional priors and the likelihood function. The likelihood function
for known variance is

1
é(ﬂ | 02,y,X) X exp {—W

(v— X3 (y— Xﬁ)}

Conditional Gaussian priors are
1 _
p(B|0%) ocexp [_W (B=B0)" Vo' (8- ﬁo)}

The conditional posterior is the product of the prior and likelihood

L (v—=XB)" (v — XP)

p ﬁ'ojvva X eXp |—z 5 —
( ) 202 | + (8= B0)" Vo (8- Bo)
L V-2 X+ BTTXTX,B
= o | g5 T6XTXoB — 28; X XoB
+80 X3 XoB,

The first and last terms in the exponent do not involve  (are constants)
and can ignored as they are absorbed through normalization. This leaves

1 ' TxTx TxTx,
p(810%0.X) o exp |- { VORI ]

202
1 BT (XTI X0+ XTX) B
T P T 2 (v X+ BTXTX0) B
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which can be recognized as the expansion of the conditional posterior
claimed above.

p(Blo%yX) ~ N(B_»Vﬁ)
x exp _»(ﬁ B) Vit (s - 6)]

i (BfB)T (XT X + XTX) (55)}

. B 7gXOTX o+ XTX)p
= P |5 —2,8 (XIXo+XTX)
e (xfXo+XTX)B

1 g (XgX()+XTX)Tﬂ
= exp | -5 —27(%)(0TX060+XTy) ﬁ
+6 (X§Xo+XTX)3

The last term in the exponent is all constants (does not involve ) so its
absorbed through normalization and disregarded for comparison of kernels.
Hence,

(3-B)" ;" (3-7)

1 BT (XEXo+ XTX) B
202 72(yTX+6gX )5

1
p(Blo*y,X) o GXP[—2

X exp [—

as claimed.

Uninformative priors

If the prior for g is uniformly distributed conditional on known variance,
o2, p(B]0?) o 1, then it’s as if X{ Xo — 0 (the information matrix for
the prior is null) and the posterior for (3 is

-~ -1
p(81o%y.X) ~ N (B.o* (X"X) ")
equivalent to the classical parameter estimators.

To see this intuition holds, recognize combining the likelihood with the
uninformative prior indicates the posterior is proportional to the likelihood.

p(B|0o%y, X) o exp {—2;2 (y —Xﬁ)T(y—Xﬁ)}

Expanding this expression yields

p(B|o*y,X) ocexp [—;Z (yTy— 2yTX6+BTXTXﬁ)}
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The first term in the exponent doesn’t depend on § and can be dropped
as it’s absorbed via normalization. This leaves

p(B]0*y,X) o exp {—2;2 (—2yTXﬂ + BTXTXB)}
Now, write p (8 | 02,y,X) ~ N (B,U2 (XTX)_I)
T ~
p(81 0%y X) o exp [—2; (8-8) xTx (8- 6)]
and expand
p (80 y, X) o exp [—i (5TXTX5 —28TXTXG + BXTXBﬂ

The last term in the exponent doesn’t depend on 3 and is absorbed via
normalization. This leaves

P30, X) o exp |50 (87XTX5 - 25" X7 X))
x  exp _—% (BTXTXﬁ — 98T XTX (XTX) XTyﬂ
X exp —% (BTXTXB - QBTXT?JH

As this latter expression matches the simplified likelihood expression, the
demonstration is complete, p (3 | 02,y, X) ~ N (B,O’Q (XTX)_l).

6.7.2 Unknown variance

In the usual case where the variance as well as the regression coefficients,
0, are unknown, the likelihood function can be expressed as

E(B,UZ | y,X) ox o "exp [%;

(- X8 (y— Xﬁ)}

Rewriting gives

. 1
E(ﬁ,az | y,X) ox o "exp [—WETE]

since ¢ = y — X 3. The estimated model is y = Xb+ ¢, therefore X5+ ¢ =
Xb+ e where b = (XTX)_1 XTy and e = y — Xb are estimates of 8 and
g, respectively. This implies e = e — X (8 — b) and

» 1 eTe—2(B8-b)" XTe
£(B," |y, X) oo™ exp [_2”2{ +(B—=b)" XTX (B-1b) H
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Since, X7e = 0 by construction, this simplifies as

t(B,0% |y, X) xo "exp [—%; {eTe+ B-b"XTX (8- b)}}

or

(5.0 0.X) o~ exp | 50z {(n =) + (50" XTX (8- )}

where s2 = L eTe.7
n—p

The conjugate prior for linear regression is the Gaussian (6 | 02; B, 02961)—
inverse chi square (02; Vo, 0%)

T
p(B10% By, Q") xp(0®v0,00) x o Pexp [—(ﬂ —Bo) 2?; (5—50)1

202

2
)= (0/2+1) {VO"O}

Combining the prior with the likelihood gives a joint Gaussian (B, o%Q,; 1)—
inverse chi square(uo +n, ofl) posterior

_ 2
p(6702 ‘ an;ﬁO7029617V07U(2)) X 0-_" exp |:_(np)5:|

202
_pnrxr —
e [_(ﬁ WIXTX (6 b)]
T
<o exp l_ CRENELTCR m)]

2
% (02)*(Vo/2+1) exp [_ 1/20;720}

"Notice, the univariate Gaussian case is subsumed by linear regression where X = ¢
(a vector of ones). Then, the likelihood as described earlier,

£6.0% |3.X) o exp |~ {(n =)+ (5 - 07 XTX (5 -0}
becomes
L(B=0,0"y,X = L) < o~ exp [—ﬁ {(n— 1) s? +n(6‘—§)2}:|

where 0 = 8, b= (XTX) "' XTy =7, p=1, and XTX = n.
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Collecting terms and rewriting, we have

2
p(6702 ‘ an;ﬁO7UQQ(;17VO7U(2)) X (02)7[(V0+n)/2+1} exp -5
g

<ot exp 55 (5-B)7 0 (5 B)
where
B= (2 +XTX) ™" (B, + XTXD)
Q, = (Q + X"X)
and

_ _ ~ T ~
Vnos = voog+(n —p) s*+(B8y — ﬁ)T Qo (Bo — B)+<ﬂ - 6) XTx (3 - 6)

where v,, = vo-+n. The conditional posterior of 3 given o2 is Gaussian (B, o%Q,; 1).

Completing the square

The derivation of the above joint posterior follows from the matrix ver-
sion of completing the square where Qg and X7 X are square, symmetric,

full rank p X p matrices. The exponents from the prior for the mean and
likelihood are

~\T ~
(B=50)" Q(8—By)+ (8-B) X"x (8-7)
Expanding and rearranging gives
57 (90 + X*X) B~ 2 (Qufy + XTXB) 5+ 87008, + B XXB (61)

The latter two terms are constants not involving 8 (and can be ignored
when writing the kernel for the conditional posterior) which we’ll add to
when we complete the square. Now, write out the square centered around

B
(B-B)" (+XTX)(5-F) = B (2 +XTX)p
—98" (9% + XTX) B+ B" (@0 + XTX) B

Substitute for 3 in the second term on the right hand side and the first two
terms are identical to the two terms in equation (6.1). Hence, the exponents
from the prior for the mean and likelihood in (6.1) are equal to

(B-5)" (2 +X"X) (8- B)
—B" (0 + XTX) B+ T8, + B XTXP
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which can be rewritten as
(5-5)" (+X"X) (8- 7)
+ (8o~ B)" (8- B) + (B-B) X"X (B-5)
or (in the form analogous to the univariate Gaussian case)
(6-5)" (+X"X)(3-7)
~\T ~
+ (80— B) (0912002, + Q09,1200 9%) (8, - B)
where Q7 = XTX.

Stacked regression

Bayesian linear regression with conjugate priors works as if we have a prior
sample {Xo,yo}, Qo = X Xo, and initial estimates

By = (Xgﬂxo)i1 ngo

Then, we combine this initial "evidence" with new evidence to update our
beliefs in the form of the posterior. Not surprisingly, the posterior mean is
a weighted average of the two "samples" where the weights are based on
the relative precision of the two "samples".

Marginal posterior distributions

The marginal posterior for 3 on integrating out o2 is noncentral, scaled

multivariate Student t, (3,029, ', vo +n)

p(Bly.X) o« [vmoi+(B-B) @ (3-B)|

_vot+ntp
2

1

Vpo2

x [1+ B-B)" Q. (5ﬁ)}
where Q,, = Qo+X7T X. This result corresponds with the univariate Gaussian
case and is derived analogously by transformation of variables where z =
% where A = 02 + (ﬁ — B)T Q, (6 — B) The marginal posterior for o2 is
inverted-chi square(oQ; Vn’ai).

Derivation of the marginal posterior for 3 is as follows.

p(Bly) = /Ooop(ﬁ,UQIy)dU2

0 _ ntrotp+2 A
2 2 2
- -2 la
/0 (0?) exp{ 202] .
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Utilizing o2 = 2—AZ and dz = —%da2 or do? = —%dz, (=1 and 2 are
constants and can be ignored when deriving the kernel)
Gl = [ (3 T A ol
= 2 exp|—
D y) 2z 5,2 exp[—z]dz

ntvg+p

X g+
x ATz / 22 exp [—2]dz
0

n4v k
The integral [ 2 1 exp [—z] dz is a constant since it is the kernel of

a gamma density and therefore can be ignored when deriving the kernel of
the marginal posterior for beta

p(Bly) o« ATTET
< [rok+(B-B)" @ (E-B)]
_T - 7n+1/20+13
NP CEY:) QT;(ﬁ—ﬂ)]
Vnos,

the kernel for a noncentral, scaled (multivariate) Student t,, (8; 8,022, ", n 4 o).

6.7.3  Uninformative priors

Again, the case of uninformative priors is relatively straightforward. Since
priors convey no information, the prior for the mean is uniform (propor-
tional to a constant, 9 — 0) and the prior for 02 has vy — 0 degrees of
freedom so that the joint prior is p (8,0?%) o (02)_1.
The joint posterior is

p (0% 19) o (%) Mo |- oL

(v— X8 (y— Xm]

Since y = Xb + e where b = (XTX)f1 XTy, the joint posterior can be
written

p (507 ) o (o) "V exp [—; {n-p)s*+(B-0)"XTX (B~ b)}]

Or, factoring into the conditional posterior for 3 and marginal for o2, we
have

p(B,o?y) o< p(a®|y)p(B]a®y)

2
—[(n—p)/2+1 o
(02) [(n—p)/ ]eXp {_ 202}

xo P exp {—2; B-b"XTX (8- b)}
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where

o, = (n—p)s’

Hence, the conditional posterior for 3 given o2 is Gaussian (b, o? (XTX) _1) .

The marginal posterior for 3 is multivariate Student t,, (ﬁ; b, s? (XTX) -t ,n— p) ,
the classical estimator. Derivation of the marginal posterior for 3 is analo-
gous to that above. Let z = 52 where A = (n — p) s?+(3 — v XTX (8 —b).
Integrating o2 out of the joint posterior produces the marginal posterior
for 3.

p(Bly) /p(BJQI:t/)dU2
o /(02)_7132 exp {—21:2} do?

n+2

p(Bly) /(f)QQ'erxp[_z]dz

z
x A_%/z%_lexp[—z] dz

Substitution yields

As before, the integral involves the kernel of a gamma distribution, a con-
stant which can be ignored. Therefore, we have

p(Bly) o A%
x |n=p)s*+ (B0 XTX (8- b)

G- XTx@B-b] "’
(n —p)s?

w3

1+

X

which is multivariate Student t,, (B; b, 52 (XTX)f1 ,n— p).

6.8 DBayesian linear regression with general error
structure

Now, we consider Bayesian regression with a more general error structure.
That is, the DGP is

y=XB+e (¢]X)~N(0,5)

First, we consider the known variance case, then take up the unknown
variance case.
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6.8.1 Known variance

If the error variance, ¥, is known, we simply repeat the Bayesian linear re-
gression approach discussed above for the known variance case after trans-
forming all variables via the Cholesky decomposition of ¥. Let

¥ =117

and .
271 — (FT) 1—171
Then, the DGP is
Iy =T"'Xp+T e
where
e~ N(0,1,)

With informed priors for 8, p(8 | X) ~ N (8, Xs) where it is as if ¥g =
(XOTZalXO)_l, the posterior distribution for 8 conditional on X is

where
B o= (XIyy'Xe+xTy1x)™" (Xg“zglxoﬁo + XTZ*IXB)
—1 R
_ (EEI +XTZ_1X) (Eglﬂo +XTE_1Xﬂ)
B=(xTelx) T XTx Ty
and

Vi o= (XIS X+ XTyx)
_ (251+XT2—1X)_1

It is instructive to once again backtrack to develop the conditional pos-
terior distribution. The likelihood function for known variance is

(B1%,y,X) o exp [—; (y—XxB) ' =t (y—XB)}

Conditional Gaussian priors are

p(B|X) o exp |:_%i_2 B - 50)T Vﬁil (B - 50)}

The conditional posterior is the product of the prior and likelihood
L[ =-xB)"'s7 1 (y—XB)
p(Blo%y,X) o exp|—55 _
(51 ) [ 202{+(6—ﬂo)TVgl(6—ﬂo)
{ 1 { yTe 1y — 2T X8+ T XTE-1Xp3
= exp|—53 Ti,~1p  oaly,—1 Ty, —1
202 | 48TV B 280V B+ BTV B,

f
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The first and last terms in the exponent do not involve 3 (are constants)
and can ignored as they are absorbed through normalization. This leaves

1 [ —2To 'Xp+ 47 XTe1Xp3
202 +8TV B - 285V 1B
1 AT+ XTI X)) 8

= exp|—=—
202 | —2(y"= X+ 87V ) B

p(Bloy,X) o exp [—

which can be recognized as the expansion of the conditional posterior
claimed above.

x exp —% (5 —B)TV/;l (5 —ﬁ)}

- _; (6-B)" (vt +xT27x) (8 - ,3)}

5T (vﬁ—l + XTE*X) 3
— exp|—={ —28" (Vgl + XTE—IX) 3
+BT (VB_1 n XTZ—1X> 3

AT (X5 X0+ XTX) 8
= exp|-—={ —2 <yTE—1X +ﬂoTV571)TB

+53 (XT X0+ XTX)B

The last term in the exponent is all constants (does not involve ) so its
absorbed through normalization and disregarded for comparison of kernels.
Hence,

P31 X) x e |3 (0-B) Vi (0-B)]

1 BT (XTXo + XTX) 8
AP o (yTZ*1X+ﬁOTV[;1) B

as claimed.

6.8.2 Unknown variance

Bayesian linear regression with unknown general error structure, X, is some-
thing of a composite of ideas developed for exchangeable (021, error struc-
ture) Bayesian regression and the multivariate Gaussian case with mean
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and variance unknown where each draw is an element of the y vector and
X is an n X p matrix of regressors. A Gaussian likelihood is

08,2y, X) o |2 Fexp 1(y—B)T21(y—ﬁ)}

3
S e | L] - XDTS @ x)

X IR 40T XTEIX (b p)

o Iel e |5 {0 =)+ 0= 57 XS X 0 )

where b = (XTE_lX)_l XTIy =1y and s? = %_p (y— Xb)" =71 (y — Xb).
Combine the likelihood with a Gaussian-inverted Wishart prior

p(31%:60: %) xp (570 ¥) o exp -3 (8- 5" 5 (- 50)

vtp+1

-1
0¥ 5] e | -2

2

where tr (+) is the trace of the matrix, it is as if ¥g = (ngalXo)_l, and
v is degrees of freedom to produce the joint posterior

v _ vintptl tr (U1
p(B,X [y, X) o [¥[Z|E[ 2 exp[—(z)

. (n—p)s®
Xexp | —= +(b—5)T XTY=1X (b—-p)
+ (8= Bo)" T3 (8= Bo)
Completing the square

Completing the square involves the matrix analog to the univariate un-
known mean and variance case. Consider the exponent (in braces)

(n=p)s*+ (b= B XTSTX (b—B8)+ (B—By)" 5" (B By)
= n—p 2+ XTe1Xb— 28" X" X+ BT XTE"1Xp
+68755"8 - 287558y + B3 25" Bo
= (n-p)s?+pT (251 + XTz*X) 3
—28T VI B+ 0" XTSI Xb + 8555 By
= (n—p)s"+ V'8 -28"V B+ XTETIXb + 558,

I
Il

(25" + X757'X) - (2580 + X721 xD)

Vs (zglﬁo + XTz*Xb)
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and Vg = (ZEI _’_XTZ_lX)fl.
Variation in 3 around 3 is
(8-P) Vit (3=F) =p"Vs '8~ 28"V "B+ 5 V5B

The first two terms are identical to two terms in the posterior involving
and there is apparently no recognizable kernel from these expressions. The

joint posterior is

(8,2 ]y, X)
v _vkntptl tr (\I/E*I)
] e | )

—\ T _ I
(B-8) V5 (3-8)
xexp | =53 +(n—p)s?—F V;'B
+TXTEIXb+ 855" B,
tr (US) + (n—p) s?
v _vtntptl 1 =T . 1=
o< U]z ]3| R -8 Vs'B
+TXTE1Xb+ 8555 B,

1 T _
x exp [—2{ (5-5)"vi' (5-5) }]
Therefore, we write the conditional posteriors for the parameters of interest.

First, we focus on § then we take up X.
The conditional posterior for 5 conditional on X involves collecting all

terms involving 3. Hence, the conditional posterior for § is (8 |%) ~

N (ﬂ, VB) or
1 o _

P61z ) xew -1 { (3-9) v (5-7) }]

Inverted- Wishart kernel
Now, we gather all terms involving 3 and write the conditional posterior

for X.
p(X|6,y,X)
v vtndpl 1 tr (U271 + (n— p) 2
\I/ 2 E 2 .
SR R Rt A
I tr (U1 +
v _ vdndptl 1 T <1
oo [TPFIETFexp | -5 (y— Xb)" X7 (y — Xb)

+(b-p)"XTSIX (b B)

y _vingp [ 1 x0T (y —
o BT _2{”( U+ (y— Xb)" (y — Xb)

=)

+(b—B)" XTX (b—B)
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We can identify the kernel as an inverted-Wishart involving the trace of
a square, symmetric matrix, call it ¥,,, multiplied by X ~!.
The above joint posterior can be rewritten as an inverted-Wishart (Z_l; v+n, \I/n)

v4+ntp+1

vin _ 1
P03 |9) x [0l 5 515 exp |- (9,27

where
U, =0+ (y—Xb)" (y—Xb)+(b-B)" X"X (b-p)

With conditional posteriors in hand, we can employ McMC' strategies
(namely, a Gibbs sampler) to draw inferences around the parameters of
interest, 8 and X. That is, we sequentially draw S conditional on ¥ and
¥, in turn, conditional on 3. We discuss McMC strategies (both the Gibbs
sampler and its generalization, the Metropolis-Hastings algorithm) later.

6.8.3 (Nearly) uninformative priors

As discussed by Gelman, et al [2004] uninformative priors for this case is
awkward, at best. What does it mean to posit uninformative priors for a
regression with general error structure? Consistent probability assignment
suggests that either we have some priors about the correlation structure
or heteroskedastic nature of the errors (informative priors) or we know
nothing about the error structure (uninformative priors). If priors are un-
informative, then maximum entropy probability assignment suggests we
assign independent and unknown homoskedastic errors. Hence, we discuss
nearly uninformative priors for this general error structure regression.
The joint uninformative prior (with a locally uniform prior for () is

p(8,%) o 5|2

and the joint posterior is

p.2100) & SR e |- {008+ 0-0) XX 0= 0)}]

n+1

_ 1
o B

exp [—2 {(n -p) s+ (b- B)T XTy-1x (b-— 5)}]

o [T exp Htr (S(B)E‘l)]

where now S (8) = (y — Xb)" (y — Xb)+ (b — 8)" XTX (b— B). Then, the
conditional posterior for 3 given ¥ is N (b, (XTZle)fl | E)

P(8] 5y, X) xexp |~ (8- )" XX (8- b)]
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The conditional posterior for ¥ given ( is inverted-Wishart (E_l; n, \Iln)

n+t

n _n+tl 1 _
p(B,2 | y) o< |¥,|2 |X]” 2 exp {—2757” (V,% 1)}

where

U, =(y—Xb)" (y—Xb)+(b-8)" XX (- p)

As with informed priors, a Gibbs sampler (sequential draws from the condi-
tional posteriors) can be employed to draw inferences for the uninformative
prior case.

Next, we discuss posterior simulation, a convenient and flexible strategy
for drawing inference from the evidence and (conjugate) priors.
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6.9 Appendix: summary of conjugacy

focal prior likelihood posterior
parameter(s) m(0) 200 |y) m(0]y)
0
discrete data:
beta-binomial beta binomial beta
P xpt(1—p)" ocp* (1—p)"* oc prtet (1 —p)
gamma-poisson gamma poisson gamma
A . )\a—lefb)\ x \e—nA x )\a-‘rS—lef(bJrn))\
gamma-exponential gamma exponential gamma
0 x 92 te b0 o 0" e=s? o grtnle—(b+s)0
beta-negative beta negative beta
binomial a1 b—1 binomial adnr—1 bts—1
D xXp (1_p) O(pnr(].fp)s xXp (l—p)
beta-binomial-
;.8
hypergezmetrlc hypergeometric
k unknown beta-binomial ( i ) ( {:{:f ) beta;—\}tnﬁm;mml
population success n N E— o
N known z T'(a+k)T(b+N—k)T(a+b+n)
opulation size D(a+z)0(btn—a)[(a+b) n T(a+2)L(b+n—=z)I(a+b+N)’
bop D(@)(B)I'(a+btn) samplin k=z,z+1
n known r=0,1,2,...,n uping =%
sample size without x+N—n
= known replacement
sample success
multinomial- Dirichlet . . Dirichlet
Dirichlet K . multinomial K e
a; — S1.,..pHSK aiT8i—
6 (vector) o 1,1;[1 0; o O7" - OF x il;ll 05
n |
§ =2 i1 Y ( = ) = =)
O[O0 41 . s . _ TI(a)T(b)
I'(z) = [, e *t*'dt, T'(n)=(n—1)!for n a positive integer, B (a,b) = N EE)

8See Dyer and Pierce [1993].
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focal prior likelihood posterior
parameter(s) 7 (6) L0 y) m (0| y)
0

continuous data:

Pareto-uniform

w .
uniform
w unknown Pareto 1 Pareto
a —_n a+n
upper bound ab wn? (atn) max[bz;]*""
pé)k o ’ wett w > max (x;) & waFn T
nown
lower bound
Pareto-Pareto
B Pareto Pareto Pareto
[ unknown ab®® o g (a—an)ple—ame
- BaFT X o —
precision, pett’ K go—entt
a known p>b 0 <f < min (z;) a>an,B>b
shape
amma-Pareto
& Pareto
& gamma o &8 gamma
o unknown o0 le—a/b mo¥T ~ gatn—1—a/b!
shape, X T m = I] i, T ()
6 known a>0 i:1, b= %—Hogm—nlog,@ >0
precision 0 < < min (z;)
gamma- exponential gamina
. gamima n_—s6 0a+n71€79/b/
exponential ga—1,—0/b x 0"e™%Y] X @)
X T n
0 I'(a)b> s=5S"_x r_ b
Zz_l ¢ b = 1+bs
inverse gamma-
gamma .
B i gamma inverse gamma,
inverse gamma Ry g1—a—an —1/p
B unktnown ~ Bl;(ze)_bl/ﬂb T X Tlatan)@)eFen
rate a)b® = . r_ b
7 =l b
a known
shape
conjugate prior-
mm
gamuina nonstandard gama na
o a*Tipee X F=anr (o) nonstandard
x — B (@)
o unknown I(a) n (am)e—1getetn)
shape a,b,c>0 m =[] @, X @
’ i=1
8 known a>0 z; >0

rate
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focal prior likelihood posterior
parameter(s) 7 (6) L0 y) (6| y)
0
continuous data:
normal normal
normal-normal Ilorr(nal )2 (gs—)? x exp [_ (u;uzn)?
- p—p ; ,
M X exp |: 2000 ] ) X Hexp |: y202 } - Hoﬂoi?@
0.2 L Py = W?
0™ ko = exp [ 2?782] g% = Iig+n

inverse gamma
-normal

o2

(normal | 02) X
inverse gamma-
normal

p, 02

inverse gamma
- (02)*(a+1)
exp [~z

(normal | 6?) x

inverse gamma

(H—No)z
202

x 051 exp [— 3
5 (02)*(%1)

exp [~ 5],
2 o2
0=

normal

1
> (o7

exp [~ 55|

normal

1
> Gy

exp [~ 55

inverse gamma

o (02) "5
|: b+%ss]

exp | ——23

joint posterior:
(normal | 02) x
inverse gamma

/5 exp | o lr)”
x(;)[(a/ﬂ) ]

4]

Student t marginal
posterior for u:

’ 1\ 2 720‘/2-*—1
e

inverse gamma
marginal
g
posterior for o2
!
—la +1
o (o%) (a'+1)
b/
M
! !’
a =a-+ 2,/10—530*}*’&,
SSs
b’ _ b + 2
= ron@—po)?
2(ko+n)

! KoMgtny
Ho = rKotn
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focal prior likelihood posterior
parameter(s) 7 (6) L0 y) (0] y)
0
continuous data:
bilateral
bilateral bilateral b;/ arljte
. areto
bivariate bivariate uniform
Pareto- Pareto N (a +<n/) (Cf —tﬁ b
. a(a+1)(ro—rq1)® (T) 2T
unllform WM’ u=l 7(,&2_”;%2,
» U L <ri,u>ry rizmin(rl,xi),
Ty = max (7o, ;)
log normal normal
normal- normal n _(p—py)®
1 1 < |- B=r0)? (log y: —p1)* o 5P 207 |7
ognorma X exp Qgg ) X Hexp 207 = rosig+nlogy
H o2 =2 i=1 . o Ko+n ’
v =exp [~53%] ok =
inverse gamma- inverse gamma normal inverse gaglma
— — qul
lognormal I (02) (a+1) X 7(02;71/2 x (02 ( 12 )
2 b+1i
. exp [ ] exp [ 23] exp | ~24]

lss = Z?Zl (logy; —

p)?
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continuous data:
multivariate normal
X inverted Wishart-
multivariate normal
by 22
prior 7 (u, X)

multivariate normal 7 (| )

x inverted Wishart 7 (X)

likelihood £ (1, 2 | )

multivariate normal

joint posterior 7 (u, X | y)

multivariate normal 7 (i | 3, y)

x inverted Wishart 7 (X | y)

marginal posterior

multivariate Student t 7 (p | y)

inverted Wishart 7 (X | y)

where

__ RKoMo+ny
p‘n - Ko+n

v, =¥+ Z?:l (yz

o |1+ (ro+m) (= )" 93 (= )|

T — Komn
=) (Wi —Y) + 5% (o

_1 P _
o 37 exp [ (1= p10)" =7 (0= )]

v+k+1

x |07 |57

o[- 127

x[= Fexp [-3 {n- D2+ @G- 0 S G- w}]

o exp [*% (= p) " 27 (e — un)}

vdntk+1
2

TR h ate2 )

exp { >
— % (v+n+1)

vdntkt1

vin
oc W= X

tr(\I/nEl):|

exp [ 5
tr (-) is the trace of a matrix,
T e _
s? =LY wi—y) S (i —7),

- ?)T (1o — )
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continuous data:
linear regression
normal X inverse chi square-normal
/87 0-2
prior 7 (B, 02)
normal 7 (3 | 02)

X inverse chi square m (02)

normal likelihood ¢ (83,0 | y, X)

normal

joint posterior p (B, o? | y,X)
normal p (6 | 02,y,X)

x inverse chi square 7 (¢ | y, X)

marginal posterior

Student t 7 (ﬂ | 027y,X)

x inverse chi square 7 (o | y, X)

where
e =1y — Xb,

B=(Q+XTX)"" (B + XTXD),

x o Pexp [~k (5 B0)" D (5 - By)|

X 0~ (0/2D) exp Lo
o o~ " exp [—ﬁ {eTe + (B - b)T XTX (B~ b)}]

x o Pexp [—ﬁ (B —B)TQn (8 —B)]
p[-5]

__vot+ntp

% (02)*[(V0+n)/2+1] ex

x [14 542 (8-5)" 2 (8- B)]
exp [—;ﬂ]

b= (XTX)" XTy,

- (02) —[(vo+n)/2+1]

Q, =+ XTX,

vac? = voad + e+ (B~ B) (3, - B) + (3-7) x7x (B-5).

and v, =vg+n
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continuous data:
linear regression
with general variance
normal X inverted Wishart-normal

B, %
prior 7 (8, %)
normal 7 (3 | X) o exp [—% (B—By)" Egl B - 50)]
x inverted Wishart 7 (¥) X |\If|% |E|7U+g+1 exp |:_t7(\11221):|

normal likelihood ¢ (5, % | y, X)

normal x |72 exp [—% {(n —p) 2+ (B-b" XTL1X (8- b)H

conditional posterior

normal p (5 | %,, X) xexp |4 (5-5)" V' (5-7)]

v+n4p+1 tr(\pnzl):|

inverted Wishart 7 (X | 8, y, X) x |\II|V+TW |77 2 exp [ 5

where tr (+) is the trace of a matrix,

2=-L (y—xp)'S1(y - Xb), b= (XTS1x) "' XTsly,

n—p

Vs = (z[;l + XTz—lx)fl , 3= (2[;1 4 XTz—IXY1 (25150 n XT2—1Xb) 7
W, =W+ (y— Xb)" (y—Xb)+ (b—5)" XTX (b—7),

and X5 = (XTS5 Xo) ™




