
This is page iii
Printer: Opaque this

Contents

5 Loss functions 1
5.1 Decision analysis . . . . . . . . . . . . . . . . . . . . . . . . 1
5.2 Quadratic loss . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5.3 Linear loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
5.4 All or nothing loss . . . . . . . . . . . . . . . . . . . . . . . 3
5.5 Experimentation . . . . . . . . . . . . . . . . . . . . . . . . 3



This is page 1
Printer: Opaque this

5
Loss functions

5.1 Decision analysis

Bayesian analysis is combined with decision analysis via explicit recognition
of a loss function. Relative to classical statistics this is a strength as a loss
function always exists but is sometimes not acknowledged. For simplicity
and brevity we’ll explore symmetric versions of a few loss functions.1

Let  denote an estimator for , c

, 

denote a loss function, and

p ( | y) denote the posterior distribution for  given evidence y. A sensible
strategy for consistent decision making involves selecting the estimator, ,
to minimize the average or expected loss.

min

E [loss] = min


E

c

, 


Briefly, for symmetric loss functions, we find the expected loss minimizing
estimator is the posterior mean for a quadratic loss function, is the median
of the posterior distribution for a linear loss function, and is the posterior
mode for an all or nothing loss function.

1The more general case, including asymmetric loss, is addressed in chapter 4 of Ac-
counting and Causal Eects: Econometric Challenges.
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5.2 Quadratic loss

Let c

, 

= 


  

2
for  > 0, then (with support from a to b)
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The first order conditions are
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p ( | y) d = 0

Expansion of the integrand gives
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= 0

Dierentiation gives
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= 0

and the solution is

 =
 b

a

p ( | y) d

where
 b
a
p ( | y) d is the posterior mean.

5.3 Linear loss

Let c

, 

= 

  
 for  > 0, then

min

E

c
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= min
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 p ( | y) d

The first order conditions are
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 p ( | y) d = 0

Rearrangement of the integrand gives
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= 0
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= 0

where F

 | y


is cumulative posterior probability evaluated at . Dier-

entiation gives
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and the solution is
F

 | y


=
1

2

or the median of the posterior distribution.

5.4 All or nothing loss

Let

c

, 

=


 > 0 if  = 
0 if  = 

Then, we want to assign  the maximum value of p ( | y) or the posterior
mode.

5.5 Experimentation

The science of experimentation and evaluation of evidence is a deep and
subtle art. Essential ingredients include careful framing of the problem
(theory development), matching of data to be collected with the frame, and
iterative model specification that complements the data and problem frame
so that causal eects can be inferred. Consistent evaluation of evidence
draws from the posterior distribution which is proportional to the product
of the likelihood and prior. When they combine to generate a recognizable
posterior distribution, our work is made simpler. Next, we briefly discuss
conjugate families which produce recognizable posterior distributions.


