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4
Maximum entropy distributions

Bayesian analysis illustrates scientific reasoning where consistent reasoning
(in the sense that two individuals with the same background knowledge,
evidence, and perceived veracity of the evidence reach the same conclusion)
is fundamental. In the next few pages we survey foundational ideas: Bayes’
theorem (and its product and sum rules), maximum entropy probability
assignment, and consistent updating with maximum entropy probability
assignments (posterior probability assignment).

4.1 Bayes’theorem and consistent reasoning

Consistency is the hallmark of scientific reasoning. When we consider prob-
ability assignment to events, whether they are marginal, conditional, or
joint events their assignments should be mutually consistent (match up
with common sense). This is what Bayes’product and sum rules express
formally.
The product rule says the product of a conditional likelihood (or distri-

bution) and the marginal likelihood (or distribution) of the conditioning
variable equals the joint likelihood (or distribution).

p (x, y) = p (x|y) p (y)

= p (y|x) p (x)

The sum rule says if we sum over all events related to one (set of) vari-
able(s) (integrate out one variable or set of variables), we are left with the
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likelihood (or distribution) of the remaining (set of) variables(s).

p (x) =

n∑
i=1

p (x, yi)

p (y) =

n∑
j=1

p(xj , y)

Bayes’theorem combines these ideas to describe consistent evaluation of
evidence. That is, the posterior likelihood associated with a proposition, θ,
given the evidence, y, is equal to the product of the conditional likelihood
of the evidence given the proposition and marginal or prior likelihood of
the conditioning variable (the proposition) scaled by the likelihood of the
evidence. Notice, we’ve simply rewritten the product rule where both sides
are divided by p (y) and p (y) is simply the sum rule where θ is integrated
out of the joint distribution, p (θ, y).

p (θ | y) =
p (y | θ) p (θ)

p (y)

For Bayesian analyses, we often find it convenient to suppress the normal-
izing factor, p (y), and write the posterior distribution is proportional to
the product of the sampling distribution or likelihood function and prior
distribution.

p (θ | y) ∝ p (y | θ) p (θ)

or for a particular draw y = y0

p (θ | y = y0) ∝ ` (θ | y = y0) p (θ)

where p (y | θ) is the sampling distribution, ` (θ | y = y0) is the likelihood
function evaluated at y = y0, and p (θ) is the prior distribution for θ. Bayes’
theorem is the glue that holds consistent probability assignment together.

Example 1 (Bayes sum and product rules) Consider the following joint
distribution:

p (y = y1, θ = θ1) p (y = y2, θ = θ1) p (y = y1, θ = θ2) p (y = y2, θ = θ2)

0.1 0.4 0.2 0.3

The sum rule yields the following marginal distributions:

p (y = y1) p (y = y2)

0.3 0.7

and
p (θ = θ1) p (θ = θ2)

0.5 0.5
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The product rule gives the conditional distributions:

p (y | θ = θ1) p (y | θ = θ2)

y1 0.2 0.4

y2 0.8 0.6

and
p (θ | y = y1) p (θ | y = y2)

θ1
1
3

4
7

θ2
2
3

3
7

as common sense dictates.

4.2 Maximum entropy distributions

From the above, we see that evaluation of propositions given evidence is
entirely determined by the sampling distribution, p (y | θ), or likelihood
function, ` (θ | y), and the prior distribution for the proposition, p (θ). Con-
sequently, assignment of these probabilities is a matter of some considerable
import. How do we proceed? Jaynes suggests we take account of our back-
ground knowledge, =, and evaluate the evidence in a manner consistent
with both background knowledge and evidence. That is, the posterior like-
lihood (or distribution) is more aptly represented by

p (θ | y,=) ∝ p (y | θ,=) p (θ | =)

Now, we’re looking for a mathematical statement of what we know and
only what we know. For this idea to be properly grounded requires a sense
of complete ignorance (even though this may never represent our state of
background knowledge). For instance, if we think that µ1 is more likely the
mean or expected value than µ2 then we must not be completely ignorant
about the location of the random variable and consistency demands that
our probability assignment reflect this knowledge. Further, if the order of
events or outcomes is not exchangeable (if one permutation is more plausible
than another), then the events are not seen as stochastically independent
or identically distributed.1 The mathematical statement of our background
knowledge is defined in terms of Shannon’s entropy (or sense of diffusion
or uncertainty).

1Exchangeability is foundational for independent and identically distributed events
(iid ), a cornerstone of inference. However, exchangeability is often invoked in a con-
ditional sense. That is, conditional on a set of variables exchangeability applies – a
foundational idea of conditional expectations or regression.
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4.3 Entropy

Shannon defines entropy as2

h = −
n∑
i=1

pi ∗ log (pi)

for discrete events where
n∑
i=1

pi = 1

or differential entropy as3

h = −
∫
p (x) log p (x) dx

for events with continuous support where∫
p (x) dx = 1

Shannon derived a measure of entropy so that five conditions are satisfied:
(1) a measure h exists, (2) the measure is smooth, (3) the measure is
monotonically increasing in uncertainty, (4) the measure is consistent in
the sense that if different measures exist they lead to the same conclusions,
and (5) the measure is additive. Additivity says joint entropy equals the
entropy of the signals (y) plus the probability weighted average of entropy
conditional on the signals.

h (x, y) = H(y) + Pr(y1)H(x|y1) + · · ·+ Pr(yn)H(x|yn)

This latter term, Pr(y1)H(x|y1)+ · · ·+Pr(yn)H(x|yn), is called conditional
entropy. Internal logical consistency of entropy is maintained primarily via
additivity – the analog to the workings of Bayes’theorem for probabilities.

2The axiomatic development for this measure of entropy can be found in Jaynes
[2003] or Accounting and Causal Eff ects: Econometric Challenges, ch. 13.

3Jaynes [2003] argues that Shannon’s differential entropy logically includes an invari-
ance measure m (x) such that differential entropy is defined as

h = −
∫
p (x) log

p (x)

m (x)
dx
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4.4 Discrete maximum entropy examples4

4.4.1 Discrete uniform

Example 2 (discrete uniform) Suppose we know only that there are three
possible (exchangeable) events, x1 = 1, x2 = 2,and x3 = 3. The maximum
entropy probability assignment is found by solving the Lagrangian

L ≡ max
pi

[
−

3∑
i=1

pi log pi − (λ0 − 1)

(
3∑
i=1

pi − 1

)]
First order conditions yield

pi = e−λ0 for i = 1, 2, 3

and
λ0 = log 3

Hence, as expected, the maximum entropy probability assignment is a dis-
crete uniform distribution with pi = 1

3 for i = 1, 2, 3.

4.4.2 Discrete nonuniform

Example 3 (discrete nonuniform) Now suppose we know a little more.
We know the mean is 2.5.5 The Lagrangian is now

L ≡ max
pi

[
−

3∑
i=1

pi log pi − (λ0 − 1)

(
3∑
i=1

pi − 1

)
− λ1

(
3∑
i=1

pixi − 2.5

)]
First order conditions yield

pi = e−λ0−xiλ1 for i = 1, 2, 3

and

λ0 = 2.987

λ1 = −0.834

The maximum entropy probability assignment is

p1 = 0.116

p2 = 0.268

p3 = 0.616

4A table summarizing some maximum entropy probability assignments is found at
the end of the chapter (see Park and Bera [2009] for additional maxent assignments).

5Clearly, if we knew the mean is 2 then we would assign the uniform discrete distri-
bution above.
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4.5 Normalization and partition functions

The above analysis suggests a general approach for assigning probabilities
where normalization is absorbed into a denominator. Since

exp [−λ0]

n∑
k=1

exp

− m∑
j=1

λjfj (xi)

 = 1,

p (xi) =
exp [−λ0] exp

[
−
∑m
j=1 λjfj (xi)

]
1

=
exp [−λ0] exp

[
−
∑m
j=1 λjfj (xi)

]
exp [−λ0]

∑n
k=1 exp

[
−
∑m
j=1 λjfj (xi)

]
=

exp
[
−
∑m
j=1 λjfj (xi)

]
∑n
k=1 exp

[
−
∑m
j=1 λjfj (xi)

]
=

k (xi)

Z (λ1, . . . , λm)

where fj (xi) is a function of the random variable, xi, reflecting what we
know,7

k (xi) = exp

− m∑
j=1

λjfj (xi)


is a kernel, and

Z (λ1, . . . , λm) =

n∑
k=1

exp

− m∑
j=1

λjfj (xk)


is a normalizing factor, called a partition function.8 Probability assignment
is completed by determining the Lagrange multipliers, λj , j = 1, . . . ,m,
from the m constraints which are function of the random variables.

7Since λ0 simply ensures the probabilities sum to unity and the partition function
assures this, we can define the partition function without λ0. That is, λ0 cancels as
demonstrated above.

8 In physical statistical mechanics, the partition function describes the partitioning
among different microstates and serves as a generator function for all manner of results
regarding a process. The notation, Z, refers to the German word for sum over states,
zustandssumme. An example with relevance for our purposes is

−∂ logZ
∂λ1

= µ
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Return to the example above. Since we know support and the mean,
n = 3 and the function f (xi) = xi. This implies

Z (λ1) =

3∑
i=1

exp [−λ1xi]

and

pi =
k (xi)

Z (λ1)

=
exp [−λ1xi]∑3
k=1 exp [−λ1xk]

where x1 = 1, x2 = 2, and x3 = 3. Now, solving the constraint

3∑
i=1

pixi − 2.5 = 0

3∑
i=1

exp [−λ1xi]∑3
k=1 exp [−λ1xk]

xi − 2.5 = 0

produces the multiplier, λ1 = −0.834, and identifies the probability assign-
ments

p1 = 0.116

p2 = 0.268

p3 = 0.616

We utilize the analog to the above partition function approach next to
address continuous density assignment as well as a special case involving
binary (Bernoulli) probability assignment which takes the shape of a logistic
distribution.

4.5.1 Special case: Logistic shape, Bernoulli distribution

Example 4 (Bernoulli) Suppose we know a binary (0, 1) variable has
mean equal to 3

5 . The maximum entropy probability assignment by the par-

where µ is the mean of the distribution. For the example below, we find

−∂ logZ
∂λ1

=
3 + 2eλ1 + e2λ1

1 + eλ1 + e2λ1
= 2.5

Solving gives λ1 = −0.834 – consistent with the approach below.
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tition function approach is

p (x) =
exp [−λ (1)]

exp [−λ (0)] + exp [−λ (1)]

=
exp [−λ]

1 + exp [−λ]

=
1

1 + exp [λ]

This is the shape of the density for a logistic distribution (and would be a
logistic density if support were unbounded rather than binary).9 Solving for
λ = log 2

3 or p (x = 1) = 3
5 , reveals the assigned probability of success or

characteristic parameter for a Bernoulli distribution.

4.6 Combinatoric maximum entropy examples

Combinatorics, the number of exchangeable ways events occur, plays a key
role in discrete (countable) probability assignment. The binomial distribu-
tion is a fundamental building block.

4.6.1 Binomial

Suppose we know there are binary (Bernoulli or "success"/"failure") out-
comes associated with each of n draws and the expected value of success
equals np. The expected value of failure is redundant, hence there is only
one moment condition. Then, the maximum entropy assignment includes
the number of combinations which produce x1 "successes" and x0 "fail-
ures". Of course, this is the binomial operator,

(
n

x1,x0

)
= n!

x1!x0! where
x1 + x0 = n. Let mi ≡

(
n

x1i,x0i

)
and generalize the entropy measure to

account for m,

s = −
n∑
i=1

pi log

(
pi
mi

)
Now, the kernel (drawn from the Lagrangian) is

ki = mi exp [−λ1xi]

Satisfying the moment condition yields the maximum entropy or binomial
probability assignment.

p (x, n) =
ki
Z

=

(
n

x1i,x0i

)
px1 (1− p)x0 , x1 + x0 = n

0 otherwise

9This suggests logistic regression is a natural (as well as the most common) strategy
for modeling discrete choice.
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Example 5 (binomial; balanced coin) Suppose we assign x1 = 1 for
each coin flip resulting in a head, x0 = 1 for a tail, and the expected
value is E [x1] = E [x0] = 6 in 12 coin flips. We know there are 212 =∑
x1+x0=12

(
12

x1,x0

)
= 4, 096 combinations of heads and tails. Solving λ1 = 0,

the maximum entropy probability assignment associated with x equal x1

heads and x0 tails in 12 coin flips is

p (x, n = 12) =

(
12
x1

)
1
2

x1 1
2

x0 , x1 + x0 = 12

0 otherwise

Example 6 (binomial; unbalanced coin) Continue the coin flip exam-
ple above except heads are twice as likely as tails. In other words, the
expected values are E [x1] = 8 and E [x0] = 4 in 12 coin flips. Solving
λ1 = − log 2, the maximum entropy probability assignment associated with
s heads in 12 coin flips is

p (x, n = 12) =

(
12
x1

)
2
3

x1 1
3

x0 , x1 + x0 = 12

0 otherwise

p (x, n = 12)
[x1, x0] balanced coin unbalanced coin

[0, 12] 1
4,096

1
531,441

[1, 11] 12
4,096

24
531,441

[2, 10] 66
4,096

264
531,441

[3, 9] 220
4,096

1,760
531,441

[4, 8] 495
4,096

7,920
531,441

[5, 7] 792
4,096

25,344
531,441

[6, 6] 924
4,096

59,136
531,441

[7, 5] 792
4,096

101,376
531,441

[8, 4] 495
4,096

126,720
531,441

[9, 3] 220
4,096

112,640
531,441

[10, 2] 66
4,096

67,584
531,441

[11, 1] 12
4,096

24,576
531,441

[12, 0] 1
4,096

4,096
531,441
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Canonical analysis

The above is consistent with a canonical analysis based on relative entropy∑
i pi log

(
pi

pold,i

)
where pold,i reflects probabilities assigned based purely on

the number of exchangeable ways of generating xi; hence, pold,i =
( nxi)∑
i (

n
xi

)
=

mi∑
imi

. Since the denominator of pold,i is absorbed via normalization it can

be dropped, then entropy reduces to
∑
i pi log

(
pi
mi

)
and the kernel is the

same as above
ki = mi exp [−λ1x1i]

4.6.2 Multinomial

The multinomial is the multivariate analog to the binomial accommodating
k rather than two nominal outcomes. Like the binomial, the sum of the
outcomes equals n,

∑k
i=1 xi = n where xk = 1 for each occurrence of event

k. We know there are

kn =
∑

x1+···+xk=n

(
n

x1, · · · , xk

)
=

∑
x1+···+xk=n

n!

x1! · · ·xk!

possible combinations of k outcomes, x = [x1, · · · , xk], in n trials. From
here, probability assignment follows in analogous fashion to that for the
binomial case. That is, knowledge of the expected values associated with
the k events leads to the multinomial distribution when the n!

x1!···xk! ex-
changeable ways for each occurrence x is taken into account, E [xj ] = npj
for j = 1, . . . , k−1. Only k−1 moment conditions are employed as the kth
moment is a linear combination of the others, E [xk] = n−

∑k−1
j=1 E [xj ] =

n
(

1−
∑k−1
j=1 pj

)
.

The kernel is

n!

x1! · · ·xk!
exp [−λ1x1 − · · · − λk−1xk−1]

which leads to the standard multinomial probability assignment when the
moment conditions are resolved

p (x, n) =
p (x, n) = n!

x1!···xk!p
x1
1 · · · p

xk
k ,

∑k
i=1 xi = n,

∑k
i=1 pi = 1

0 otherwise

Example 7 (multinomial; one balanced die) Suppose we roll a bal-
anced die (k = 6) one time (n = 1), the moment conditions are E [x1] =
· · ·E [x6] = 1

6 . Incorporating the number of exchangeable ways to generate
n = 1 results, the kernel is

1!

x1! · · ·x6!
exp [−λ1x1 − · · · − λ5x5]
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Solving for λ1 = · · · = λ5 = 0, yields the multinomial distribution

p (x, n = 1) =
1!

x1!···x6!
1
6

x1 · · · 1
6

x6 = 1
6 ,

∑k
j=1 xj = 1

0 otherwise

Example 8 (multinomial; one unbalanced die) Suppose we roll an un-
balanced die (k = 6) one time (n = 1) where the moment conditions are
E [x1] = 1

21 , E [x2] = 2
21 , E [x3] = 3

21 , E [x4] = 4
21 , E [x5] = 5

21 , E [x6] = 6
21 .

Incorporating the number of exchangeable ways to generate n = 1 results,
the kernel is

1!

x1! · · ·x6!
exp [−λ1x1 − · · · − λ5x5]

Solving for λ1 = 1.79176, λ2 = 1.09861, λ3 = 0.693147, λ4 = 0.405465, and
λ5 = 0.182322, yields the multinomial distribution

p (x, n = 1) =
1!

x1!···x6!
1
21

x1 2
21

x2 3
21

x3 4
21

x4 5
21

x5 6
21

x6 ,
∑k
j=1 xj = 1

0 otherwise

Example 9 (multinomial; two balanced dice) Suppose we roll two bal-
anced dice (k = 6) one time (n = 2), the moment conditions are E [x1] =
· · ·E [x6] = 2

(
1
6

)
= 1

3 . The number of combinations is k
n = 62 = 6 +

2 ∗ 15 = 36, that is, 6 permutations of [2, 0, 0, 0, 0, 0] and 15 permutations
of [1, 1, 0, 0, 0, 0] times two orders of the dice. Incorporating the number of
exchangeable ways to generate n = 2 results, the kernel is

2!

x1! · · ·x6!
exp [−λ1x1 − · · · − λ5x5]

Solving for λ1 = · · · = λ5 = 0, yields the multinomial distribution

p (x, n = 2) =
2!

x1!···x6!
1
6

x1 · · · 1
6

x6 = 1
6 ,

∑k
j=1 xj = 2

0 otherwise

Example 10 (multinomial; two unbalanced dice) Suppose we roll two
unbalanced dice (k = 6) one time (n = 2) where the moment conditions are
E [x1] = 2

21 , E [x2] = 4
21 , E [x3] = 6

21 , E [x4] = 8
21 , E [x5] = 10

21 , E [x6] = 12
21 .

Incorporating the number of exchangeable ways to generate n = 2 results,
the kernel is

2!

x1! · · ·x6!
exp [−λ1x1 − · · · − λ5x5]

Solving for λ1 = 1.79176, λ2 = 1.09861, λ3 = 0.693147, λ4 = 0.405465, and
λ5 = 0.182322, yields the multinomial distribution

p (x, n = 2) =
2!

x1!···x6!
1
21

x1 2
21

x2 3
21

x3 4
21

x4 5
21

x5 6
21

x6 ,
∑k
j=1 xj = 2

0 otherwise
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p (x, n = 2)
[x1, x2, x3, x4, x5, x6] balanced dice unbalanced dice

[2, 0, 0, 0, 0, 0] 1
36

1
441

[0, 2, 0, 0, 0, 0] 1
36

4
441

[0, 0, 2, 0, 0, 0] 1
36

9
441

[0, 0, 0, 2, 0, 0] 1
36

16
441

[0, 0, 0, 0, 2, 0] 1
36

25
441

[0, 0, 0, 0, 0, 2] 1
36

36
441

[1, 1, 0, 0, 0, 0] 1
18

4
441

[1, 0, 1, 0, 0, 0] 1
18

6
441

[1, 0, 0, 1, 0, 0] 1
18

8
441

[1, 0, 0, 0, 1, 0] 1
18

10
441

[1, 0, 0, 0, 0, 1] 1
18

12
441

[0, 1, 1, 0, 0, 0] 1
18

12
441

[0, 1, 0, 1, 0, 0] 1
18

16
441

[0, 1, 0, 0, 1, 0] 1
18

20
441

[0, 1, 0, 0, 0, 1] 1
18

24
441

[0, 0, 1, 1, 0, 0] 1
18

24
441

[0, 0, 1, 0, 1, 0] 1
18

30
441

[0, 0, 1, 0, 0, 1] 1
18

36
441

[0, 0, 0, 1, 1, 0] 1
18

40
441

[0, 0, 0, 1, 0, 1] 1
18

48
441

[0, 0, 0, 0, 1, 1] 1
18

60
441

4.6.3 Hypergeometric

The hypergeometric probability assignment is a purely combinatorics exer-
cise. Suppose we take n draws without replacement from a finite population
of N items of which m are the target items (or events) and x is the num-
ber of target items drawn. There are

(
m
x

)
ways to draw the targets times(

N−m
n−x

)
ways to draw nontargets out of

(
N
n

)
ways to make n draws. Hence,

our combinatoric measure is

(mx)(N−mn−x )
(Nn)

, x ∈ {max (0,m+ n−N) ,min (m,n)}
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and
min(m,n)∑

x=max(0,m+n−N)

(
m
x

)(
N−m
n−x

)(
N
n

) = 1

which completes the probability assignment as there is no scope for moment
conditions or maximizing entropy.10

Example 11 (hypergeometric) Suppose we have an inventory of six
items (N = 6) of which one is red, two are blue, and three are yellow.
We wish to determine the likelihood of drawing x = 0, 1, or 2 blue items in
two draws without replacement (m = 2, n = 2).

p (x = 0, n = 2) =

(
2
0

)(
6−2
2−0

)(
6
2

)
=

4

6
· 3

5
=

6

15

p (x = 1, n = 2) =

(
2
1

)(
6−2
2−1

)(
6
2

)
=

2

6
· 4

5
+

4

6
· 2

5
=

8

15

p (x = 2, n = 2) =

(
2
2

)(
6−2
2−2

)(
6
2

)
=

2

6
· 1

5
=

1

15

4.7 Continuous maximum entropy examples

The partition function approach for continuous support involves density
assignment

p (x) =
exp

[
−
∑m
j=1 λjfj (x)

]
∫ b
a

exp
[
−
∑m
j=1 λjfj (x)

]
dx

10 If we omit
(N
n

)
in the denominator, it would be captured via normalization. In other

words, the kernel is

k =
(m
x

)(N −m
n− x

)
exp [0]

and the partition function is

Z =

min(m,n)∑
x=max(0,m+n−N)

k =
(N
n

)
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where support is between a and b.

4.7.1 Continuous uniform

Example 12 (continuous uniform) Suppose we only know support is
between zero and three. The above partition function density assignment is
simply (there are no constraints so there are no multipliers to identify)

p (x) =
exp [0]∫ 3

0
exp [0] dx

=
1

3

Of course, this is the density function for a uniform with support from 0 to
3.

4.7.2 Known mean

Example 13 (truncated exponential) Continue the example above but
with known mean equal to 1.35. The partition function density assignment
is

p (x) =
exp [−λ1x]∫ 3

0
exp [−λ1x] dx

and the mean constraint is ∫ 3

0

xp (x) dx− 1.35 = 0∫ 3

0

x
exp [−λ1x]∫ 3

0
exp [−λ1x] dx

dx− 1.35 = 0

so that λ1 = 0.2012, Z =
∫ 3

0
exp [−λ1x] dx = 2.25225, and the density

function is a truncated exponential distribution with support from 0 to 3.

p (x) = 0.444 exp [−0.2012x] , 0 ≤ x ≤ 3

The base (non-truncated) distribution is exponential with mean approxi-
mately equal to 5 (4.9699).

p (x) = 1
4.9699 exp

[
− x

4.9699

]
, 0 ≤ x <∞

p (x) = 0.2012 exp [−0.2012x]

4.7.3 Gaussian (normal) distribution and known variance

Example 14 (Gaussian or normal) Suppose we know the average dis-
persion or variance is σ2 = 100. Then, a finite mean must exist, but even
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if we don’t know it, we can find the maximum entropy density function for
arbitrary mean, µ. Using the partition function approach above we have

p (x) =
exp

[
−λ2 (x− µ)

2
]

∫∞
−∞ exp

[
−λ2 (x− µ)

2
]
dx

and the average dispersion constraint is∫ ∞
−∞

(x− µ)
2
p (x) dx− 100 = 0

∫ ∞
−∞

(x− µ)
2

exp
[
−λ2 (x− µ)

2
]

∫∞
−∞ exp

[
−λ2 (x− µ)

2
]
dx
− 100 = 0

so that λ2 = 1
2σ2 and the density function is

p (x) =
1√
2πσ

exp

[
− (x− µ)

2

2σ2

]

=
1√

2π10
exp

[
− (x− µ)

2

200

]

Of course, this is a Gaussian or normal density function. Strikingly, the
Gaussian distribution has greatest entropy of any probability assignment
with the same variance.

4.7.4 Multivariate normal distribution

As with the univariate normal distribution, knowledge of the variances
(and covariances) of a collection of n random variables leads to a natural
(maximum entropy) multivariate normal probability assignment. The ker-
nel accounts for all n (n+ 1) /2 known moment conditions

k (x) = exp

 −λ1 (x1 − µ1)
2 − · · · − λn (xn − µn)

2

−λn+1 (x1 − µ1) (x2 − µ2)− · · ·
−λn(n+1)/2

(
xn−1 − µn−1

)
(xn − µn)


and the density function is

f (x) =
k (x)

Z (x)

where

Z (x) =

∫
k (x) dx1 · · · dxn
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Then, the multipliers are found by solving the known moment conditions
in the usual manner.
However, there is a computationally simpler approach. Let V ar [x] ≡

Σ = ΓΓT where the latter is determined via Cholesky decomposition. Let

z ≡ Γ−1 (x− µ)

V ar [z] = E
[
Γ−1 (x− µ) (x− µ)

T (
Γ−1

)T ]
= Γ−1E

[
(x− µ) (x− µ)

T
] (

Γ−1
)T

= Γ−1Σ
(
Γ−1

)T
= I

In other words, all random variables in vector z have variance one and
covariance zero along with zero mean. Since maximum entropy corresponds
to zero covariance, the covariance terms drop out (the multipliers are zero)
and the kernel is simply

k (z) = exp
[
−λ1z

2
1 − · · · − λnz2

n

]
As the variances are all equal to one, their multipliers are all equal and we
can utilize the univariate normal result indicating the multipliers are 1

2 .
From here, we have the choice of normalizing to find the density func-

tion f (z) and transform z to x to find f (x) = |J | f (z) where |J | =∣∣∣∣∣∣∣
∂z1
∂x1

· · · ∂z1
∂xn

...
. . .

...
∂zn
∂x1

· · · ∂zn
∂xn

∣∣∣∣∣∣∣ refers to the Jacobian
f (x) = |J | (2π)

−n/2
exp

[
−1

2
(x− µ)

T
Σ−1 (x− µ)

]
= (2π)

−n/2 |Σ|−
1
2 exp

[
−1

2
(x− µ)

T
Σ−1 (x− µ)

]
or rewrite the kernel in terms of x and normalize to recover f (x).

k (z) = exp

[
−1

2
zT z

]
= exp

[
−1

2
(x− µ)

T (
Γ−1

)T
Γ−1 (x− µ)

]
= exp

[
−1

2
(x− µ)

T
Σ−1 (x− µ)

]
This is recognized as the kernel for a multivariate normal distribution with
normalizing constant as above (2π)

−n/2 |Σ|−
1
2 . We complete this discussion

with a bivariate example.
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Example 15 (bivarate normal distribution) Suppose our background
knowledge indicates

V ar

[
x1

x2

]
=

[
3 1
1 2

]
Then, the kernel is

k (x) = exp
[
−λ1 (x1 − µ1)

2 − λ2 (x2 − µ2)
2 − λ3 (x1 − µ1) (x2 − µ2)

]
and the partition function is

Z (x) =

∫
k (x) dx1dx2

Together, they give

f (x) =
k (x)

Z (x)

Now, we solve for the multipliers utilizing f (x) = k(x)
Z(x) .∫

f (x) (x1 − µ1)
2
dx1dx2 = 3∫

f (x) (x2 − µ2)
2
dx1dx2 = 2∫

f (x) (x1 − µ1) (x2 − µ2) dx1dx2 = 1

This yields

λ1 =
1

5
, λ2 =

3

10
, λ3 = −1

5

Substituting the multipliers into f (x) gives the bivariate normal density
function.

f (x) =
(

2π
√

5
)−1

exp

{
− 1

2 (5)

[
x1 − µ1

x2 − µ2

]T [
2 −1
−1 3

] [
x1 − µ1

x2 − µ2

]}

Alternatively, employ Cholesky decomposition of Σ = ΓΓT to transform x
into uncorrelated, unit variance (mean zero) random variables z.[

z1

z2

]
= Γ−1

[
x1 − µ1

x2 − µ2

]

=

[ x1−µ1√
3√

3
5 (x2 − µ2)− x1−µ1√

15

]

The kernel for z is

k (z) = exp
[
−λ1z

2
1 − λ2z

2
2 − λ3z1z2

]
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and the partition function is

Z (z) =

∫
k (z) dz1dz2

then the density function for z is

f (z) =
k (z)

Z (z)

Hence, the multipliers are determined from∫
f (z) z2

1dz1dz2 = 1∫
f (z) z2

2dz1dz2 = 1∫
f (z) z1z2dz1dz2 = 0

This gives

λ1 =
1

2
, λ2 =

1

2
, λ3 = 0

This is the density function for independent, bivariate standard normal
random variables.

f (z) = (2π)
−1

exp

{
−1

2

[
z1

z2

]T [
z1

z2

]}
Transformation of variables yields the density for x.

f (x) =

|J | (2π)
−1

exp

−1

2

[ x1−µ1√
3√

3
5 (x2 − µ2)− x1−µ1√

15

]T [ x1−µ1√
3√

3
5 (x2 − µ2)− x1−µ1√

15

]
where the Jacobian is

|J | =

∣∣∣∣∣ ∂z1
∂x1

∂z1
∂x2

∂z2
∂x1

∂z2
∂x2

∣∣∣∣∣
=

∣∣∣∣∣
1√
3

0

− 1√
15

√
3
5

∣∣∣∣∣ =

√
1

5

Of course, this is the same density function as above.

f (x) =
(

2π
√

5
)−1

exp

{
− 1

2 (5)

[
x1 − µ1

x2 − µ2

]T [
2 −1
−1 3

] [
x1 − µ1

x2 − µ2

]}
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4.7.5 Lognormal distribution

Example 16 (lognormal) Suppose we know the random variable has pos-
itive support (x > 0) then it is natural to work with (natural) logarithms.

If we also know E [log x] = µ = 1 as well as E
[
(log x)

2
]

= σ2 = 10, then

the maximum entropy probability assignment is the lognormal distribution

p (x) = 1
x
√

2πσ
exp

[
− (log x−µ)2

2σ2

]
, 0 < x, µ, σ <∞

Again, we utilize the partition function approach to demonstrate.

p (x) =
exp

[
−λ1 log x− λ2 (log x)

2
]

∫∞
0

exp
[
−λ1 log x− λ2 (log x)

2
]
dx

and the constraints are

E [log x] =

∫ ∞
0

log xp (x) dx− 1 = 0

and

E
[
(log x)

2
]

=

∫ ∞
0

(log x)
2
p (x) dx− 10 = 0

so that λ1 = 0.9 and λ2 = 1
2σ2 = 0.05. Substitution gives

p (x) ∝ exp

[
−2 (9)

20
log x− 1

20
(log x)

2

]
Completing the square and adding in the constant (from normalization)
exp

[
− 1

20

]
gives

p (x) ∝ exp [− log x] exp

[
− 1

20
+

2

20
log x− 1

20
(log x)

2

]
Rewriting produces

p (x) ∝ exp
[
log x−1

]
exp

[
− (log x− 1)

2

20

]
which simplifies as

p (x) ∝ x−1 exp

[
− (log x− 1)

2

20

]
Including the normalizing constants yields the probability assignment as-
serted above

p (x) = 1
x
√

2π10
exp

[
− (log x−1)2

2(10)

]
, 0 < x <∞



20 4. Maximum entropy distributions

4.7.6 Logistic distribution

The logistic or extreme-value distribution is symmetric (1− F (z) = F (−z))
with cumulative distribution function (cdf)

F (z) =
1

1 + exp [−z]

=
exp [z]

1 + exp [z]

and

F (x) =
1

1 + exp
[
−x−µs

]
where z = x−µ

s with mean µ and variance π2s2

3 , and probability density
function (pdf)

f (z) =
1

s
F (z)F (−z)

=
exp [z]

s (1 + exp [z])
2

=
1

s
(
exp

[
− z2
]

+ exp
[
z
2

])2
and

f (x) =
1

s
(
exp

[
−x−µ2s

]
+ exp

[
x−µ
2s

])2
logistic as posterior distribution

The logistic distribution is the posterior distribution (cdf) following from
a binary state and Normally distributed evidence.

Pr (s1 | y = y0) =
pf (y0 | s1)

pf (y0 | s1) + (1− p) f (y0 | s0)

where p = Pr (s1), f (y | sj) = 1√
2πσ

exp

[
− (y−µj)

2

2σ2

]
, j = 0, 1. Since the

variances of the evidence conditional on the state are the same the nor-
malizing constant, 1√

2πσ
, cancels in the ratio. Accordingly, substitution

produces

Pr (s1 | y = y0) =
p exp

[
− (y0−µ1)2

2σ2

]
p exp

[
− (y0−µ1)2

2σ2

]
+ (1− p) exp

[
− (y0−µ0)2

2σ2

]
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Now, mulitply by
1
p exp

[
(y0−µ1)2

2σ2

]
1
p exp

[
(y0−µ1)2

2σ2

] to find

Pr (s1 | y = y0) =
1

1 + 1−p
p exp

[
− (y0−µ0)2

2σ2 + (y0−µ1)2

2σ2

]
Rewrite as log-odds ratio and expand and simplify the exponential term

Pr (s1 | y = y0) =
1

1 + exp
[
log
(

1−p
p

)]
exp

[
y0− (µ0+µ1)

2
σ2

µ0−µ1

]
Collecting terms gives

Pr (s1 | y = y0) =
1

1 + exp

[
y0− (µ0+µ1)

2 + σ2

µ0−µ1
log( 1−pp )

σ2

µ0−µ1

]
=

1

1 + exp

[
y0−

{
(µ0+µ1)

2 − σ2

µ0−µ1
log( 1−pp )

}
σ2

µ0−µ1

]
which is the cdf for a logistic random variable with mean (µ0+µ1)

2 − σ2

µ0−µ1
log
(

1−p
p

)
and scale parameter s = σ2

µ0−µ1
.

Example 17 (logistic distribution) Suppose we know

E
[
log
(

exp
[
−z

2

]
+ exp

[z
2

])]
= 1

where z = x−µ
s then the kernel is

k (z) = exp
[
−λ log

(
exp

[
−z

2

]
+ exp

[z
2

])]
the partition function is

Z =

∞∫
−∞

exp
[
−λ log

(
exp

[
−z

2

]
+ exp

[z
2

])]
dz

The moment constraint

E
[
log
(

exp
[
−z

2

]
+ exp

[z
2

])]
=

∞∫
−∞

log
(

exp
[
−z

2

]
+ exp

[z
2

]) k (z)

Z
dz = 1

yields λ = 2. Hence,

f (z) =
k (z;λ = 2)

Z (λ = 2)
=

1

s
(
exp

[
− z2
]

+ exp
[
z
2

])2
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and by transformation of variables we have

f (x) =
1

s
(
exp

[
−x−µ2s

]
+ exp

[
x−µ
2s

])2
the density function for a logistic random variables with mean µ and vari-
ance π2s2

3 .

4.7.7 Logistic regression as maximum entropy assignment

For binary choice, the log-odds ratio is

log
p

1− p

If we employ a logistic link function along with an index function, XT γ,11

to describe the conditional probabilities we have

log

(
1 + exp

[
−XT γ

])−1

(1 + exp [XT γ])
−1 = log

(
exp

[
XT γ

])
= XT γ

which is suggestive of a natural connection for the logistic distribution to
binary choice.
From here we can provide a more rigorous argument for the frequent

utilization of logistic regression when faced with discrete choice analysis.
The logit model for discrete choice D conditional on (regime differences in)
covariates X is

Pr (D | X) =
1

1 + exp [−Y ]

=
1

1 + exp [−XT γ]

Following Blower [2004], we develop this model specification from the max-
imum entropy principle.
Bayesian revision yields

Pr (D | X) =
Pr (D,X)

Pr (X)

and for treatment selection

Pr (D = 1 | X) =
Pr (D = 1, X)

Pr (D = 1, X) + Pr (D = 0, X)

11XT γ = (X1 −X0)T γ where Xj describes obervable characteristics associated with
individuals when choosing option j while γ describes the relative weight on the various
characteristics. X is the difference in the characteristic between the choices.
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Rewrite this expression as

Pr (D = 1 | X) =
1

1 + Pr(D=0,X)
Pr(D=1,X)

The maximum entropy probability assignments, denoted ~, for the joint
likelihoods, Pr (D = 1, X) and Pr (D = 0, X), are

Pr (D = 1, X, ~) =

exp

[
m∑
j=1

λjfj (X1)

]
Z (λ1, . . . , λm)

and

Pr (D = 0, X, ~) =

exp

[
m∑
j=1

λjfj (X0)

]
Z (λ1, . . . , λm)

The likelihood ratio is

Pr (D = 0, X, ~)

Pr (D = 1, X, ~)
=

exp

[
m∑
j=1

λjfj (X0)

]

exp

[
m∑
j=1

λjfj (X1)

]
= exp [−Y ]

where

Y =

m∑
j=1

λj {fj (X1)− fj (X0)}

Hence, we have the logistic regression specification as a maximum entropy
probability assignment where the m fj (X1) − fj (X0) and multipliers λj
identify observable characteristics related to choice and their regression
weights.12

Pr (D = 1 | X, ~) =
1

1 + Pr(D=0,X,~)
Pr(D=1,X,~)

=
1

1 + exp [−Y ]

12For the latent variable random utility model with index structure (Y =

(X1 −X0)T γ = XT γ) and unobservable ν a logistic random variable we have

D∗ = XT γ − ν
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Example 18 (logistic regression) Suppose the data generating process
(DGP) is described by the following joint distribution for choice, D = 0, 1,
and conditions, B = 1, 2, 3 and C = L,M,H.

Pr (D = 1, B,C)
B = 1 B = 2 B = 3 Pr (D = 1, C)

C = L 0.008 0.022 0.02 0.05
C = M 0.009 0.027 0.024 0.06
C = H 0.013 0.041 0.036 0.09

Pr (D = 1, B) 0.03 0.09 0.08
Pr (D = 1) 0.2

Pr (D = 0, B, C)
B = 1 B = 2 B = 3 Pr (D = 0, C) Pr(C)

C = L 0.060 0.145 0.078 0.283 0.333
C = M 0.058 0.140 0.075 0.273 0.333
C = H 0.052 0.125 0.067 0.244 0.334

Pr (D = 0, B) 0.17 0.41 0.22
Pr (D = 0) 0.8

Pr (B) 0.2 0.5 0.3

Since we only observe D = 0, 1, we write

Pr (D = 1 | X) = Pr (D∗ ≥ 0 | X)

= Pr
(
ν ≤ XT γ | X

)
= Fν

(
XT γ

)
=

1

1 + exp [−XT γ]

=
1

1 + exp [−Y ]
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Suppose we have the following background knowledge.13

E [D] = 0.2

E [B1] = 0.2

E [B2] = 0.5

E [CL] = 0.333

E [CM ] = 0.333

E [DB1] = 0.03

E [DB2] = 0.09

E [DCL] = 0.05

E [DCM ] = 0.06

With this background knowledge the kernel determined by maximum entropy
is

k = exp

[
λ1D + λ2B1 + λ3B2 + λ4CL + λ5CM

+λ6DB1 + λ7DB2 + λ8DCL + λ9DCM

]
where all variables, D,B1, B2, CL, and CM , are indicator variables. Scaling
k by the partition function, Z =

∑
k, and solving for the multipliers that

satisfy the moment conditions reveals

λ1 = −0.6227

λ2 = −0.2578

λ3 = 0.6225

λ4 = 0.1483

λ5 = 0.1123

λ6 = −0.7230

λ7 = −0.5047

λ8 = −0.7361

λ9 = −0.5178

13Complete knowledge includes all the interactions as well as the nine moments indi-
cated. The other eight moments are

E [B1CL] = 0.068

E [B1CM ] = 0.067

E [B2CL] = 0.167

E [B2CM ] = 0.167

E [DB1CL] = 0.008

E [DB1CM ] = 0.009

E [DB2CL] = 0.022

E [DB2CM ] = 0.027
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This produces the following probability assignment.14

Pr (D = 1, B,C)
B = 1 B = 2 B = 3

C = L 0.0075 0.0225 0.02
C = M 0.009 0.027 0.024
C = H 0.0135 0.0405 0.036

Pr (D = 0, B,C)
B = 1 B = 2 B = 3

C = L 0.0601375 0.1450375 0.077825
C = M 0.0580125 0.1399125 0.075075
C = H 0.05185 0.12505 0.0671

Hence, the maximum entropy conditional probabilities are

Pr (D = 1 | B,C) =
Pr (D = 1, B,C)

Pr (D = 1, B,C) + Pr (D = 0, B,C)

A linear probability model supplies effective starting values for maximum
likelihood estimation of a logistic regression. The linear probability model
is15

Pr (D = 1 | B,C) = Xβ

= 0.3342− 0.1147B1 − 0.0855B2 − 0.1178CL − 0.0881CH

Logistic regression is

Pr (D = 1 | B,C) =
1

1 + exp [Xγ]

Equating the two expressions and solving gives

Xγ = log
1−Xβ
Xβ

or starting values

γ0 =
(
XTX

)−1
XT log

1−Xβ
Xβ

γT0 =
[
−0.5991 −0.7463 −0.5185 −0.7649 −0.5330

]
Maximum likelihood estimation with a logistic link function gives

γT =
[
−0.6227 −0.7230 −0.5047 −0.7361 −0.5178

]
14Of course, this doesn’t match the DGP as our background knowledge is incomplete.
15Since the model involves only indicator variables, the predicted values are bounded

between zero and one.
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As the previous discussion indicates maximum entropy probability assign-
ment and logistic regression give the same probability of D conditional on
B and C while the linear probability model differs somewhat.

Pr (D = 1 | B,C) maxent or mle linear probability model
B1, CL 0.1109 0.1018
B2, CL 0.1343 0.1310
B3, CL 0.2044 0.2164
B1, CM 0.1343 0.1314
B2, CM 0.1618 0.1607
B3, CM 0.2422 0.2461
B1, CH 0.2066 0.2196
B2, CH 0.2446 0.2488
B3, CH 0.3492 0.3342

On the other hand, the complete background information model (with 17
moment conditions) implies a saturated, fully interactive regression model
for which maximum entropy probability assignment, maximum likelihood
logistic regression, and a linear (ordinary least squares) probability model
each reproduce the DGP joint (and conditional) probabilities. That is, illus-
tration of the equivalence of maximum entropy and logistic regression draws
from limited background information as all consistent models are equivalent
with full background knowledge.

4.8 Maximum entropy posterior distributions

We employ maximum entropy to choose among a priori probability distribu-
tions subject to our knowledge of moments (of functions) of the distribution
(e.g., the mean). When new evidence is collected, we’re typically interested
in how this data impacts our posterior beliefs regarding the parameter
space. Of course, Bayes’ theorem provides guidance. For some problems,
we simply combine our maximum entropy prior distribution with the like-
lihood function to determine the posterior distribution. Equivalently, we
can find (again, by Lagrangian methods) the maximum relative entropy
posterior distribution conditional first on the moment conditions then con-
ditional on the data so that the data eventually outweighs the moment
conditions.
When sequential or simultaneous processing of information produces the

same inferences we say the constraints commute, as in standard Bayesian
updating. However, when one order of the constraints reflects different
information (addresses different questions) than a permutation, the con-
straints are noncommuting. For noncommuting constraint problems, con-
sistent reasoning demands we modify our approach from the standard one
above (Giffi n and Caticha [2007]). Moment constraints along with data
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constraints are typically noncommuting. Therefore, we augment standard
Bayesian analysis with a "canonical" factor. We illustrate the difference
between sequential and simultaneous processing of moment and data con-
ditions via a simple three state example.

4.8.1 Sequential processing for three states

Suppose we have a three state process (θ1, θ2, θ3) where, for simplicity,

θi ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}

and
3∑
i=1

θi = 1

We’ll refer to this a die generating process where θ1 refers to outcome one
or two, θ2 to outcome three or four, and θ3 corresponds to die face five or
six. The maximum entropy prior with no moment conditions is

pold (θ1, θ2, θ3) =
1∑8
j=1 j

=
1

36

for all valid combinations of (θ1, θ2, θ3) and the likelihood function is multino-
mial

p (x | θ) =
(n1 + n2 + n3)!

n1!n2!n3!
θn11 θn22 θn33

where ni represents the number of i draws in the sample of n1 + n2 + n3

total draws.
Now, suppose we know, on average, state one (θ1) is twice as likely as

state three (θ3). That is, the process produces "die" with these average
properties. The maximum entropy prior given this moment condition is
generated from solving

max
p(θ)

h = −
∑
θ p (θ1, θ2, θ3) log p (θ1, θ2, θ3)

s.t.
∑
θ p (θ1, θ2, θ3) (θ1 − 2θ3) = 0

Lagrangian methods yield16

p (θ) =
exp [λ (θ1 − 2θ3)]

Z

where the partition function is

Z =
∑
θ

exp [λ (θ1 − 2θ3)]

16Frequently, we write p (θ) in place of p (θ1, θ2, θ3) to conserve space.
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and λ is the solution to

−∂ logZ

∂λ
= 0

In other words,

p (θ) =
exp [1.44756 (θ1 − 2θ3)]

28.7313

and

p (x, θ) = p (x | θ) p (θ)

=
(n1 + n2 + n3)!

n1!n2!n3!
θn11 θn22 θn33

exp [1.44756 (θ1 − 2θ3)]

28.7313

Hence, prior to collection and evaluation of evidence expected values of θ
are

E [θ1] =
∑
x

∑
θ

θ1p (x, θ)

=
∑
θ

θ1p (θ) = 0.444554

E [θ2] =
∑
x

∑
θ

θ2p (x, θ)

=
∑
θ

θ2p (θ) = 0.333169

E [θ3] =
∑
x

∑
θ

θ3p (x, θ)

=
∑
θ

θ3p (θ) = 0.222277

where E [θ1 + θ2 + θ3] = 1 and E [θ1] = 2E [θ3]. In other words, probability
assignment matches the known moment condition for the process.
Next, we roll one "die" ten times to learn about this specific die and the

outcome x is m = {n1 = 5, n2 = 3, n3 = 2}. The joint probability is

p (θ, x = m) = 2520θ5
1θ

3
2θ

2
3

exp [1.44756 (θ1 − 2θ3)]

28.7313

the probability of the data is

p (x) =
∑
θ

p (θ, x = m) = 0.0286946

and the posterior probability of θ is

p (θ | x = m) = 3056.65θ5
1θ

3
2θ

2
3 exp [1.44756 (θ1 − 2θ3)]
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Hence,

E [θ1 | x = m] =
∑
θ

p (θ | x = m) θ1

= 0.505373

E [θ2 | x = m] =
∑
θ

p (θ | x = m) θ2

= 0.302243

E [θ3 | x = m] =
∑
θ

p (θ | x = m) θ3

= 0.192384

and

E [θ1 + θ2 + θ3 | x = m] = 1

However, notice E [θ1 − 2θ3 | x = m] 6= 0. This is because our priors includ-
ing the moment condition refer to the process and here we’re investigating
a specific "die".
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To help gauge the relative impact of priors and likelihoods on posterior
beliefs we tabulate the above results and contrast with uninformed priors
as well as alternative evidence. It is important to bear in mind we subscribe
to the notion that probability beliefs represent states of knowledge.

background knowledge uninformed E [θ1 − 2θ3] = 0

Pr (θ) 1
36

exp[1.44756(θ1−2θ3)]
28.7313

E

 θ1

θ2

θ3

  1
3
1
3
1
3

  0.444554
0.333169
0.22277


Pr

θ∣∣∣∣∣
 n1 = 5
n2 = 3
n3 = 2

 3337.45θ5
1θ

3
2θ

2
3

3056.65θ5
1θ

3
2θ

2
3

× exp [1.44756 (θ1 − 2θ3)]

E

 θ1

θ2

θ3

∣∣∣∣∣
 n1 = 5

n2 = 3
n3 = 2

  0.4609
0.3067
0.2324

  0.5054
0.3022
0.1924


Pr

θ∣∣∣∣∣
 n1 = 3
n2 = 4
n3 = 3

 5527.55θ5
1θ

3
2θ

2
3

7768.49θ5
1θ

3
2θ

2
3

× exp [1.44756 (θ1 − 2θ3)]

E

 θ1

θ2

θ3

∣∣∣∣∣
 n1 = 3

n2 = 4
n3 = 3

  0.3075
0.3850
0.3075

  0.3500
0.3922
0.2578


Next,we repeat the above question utilizing maximum relative entropy

for the joint distribution for θ and x. Then, we consider evaluation of the
process; this involves maximization of relative entropy for the joint distri-
bution again but with simultaneous consideration of the moment and data
conditions.

4.8.2 Another frame: sequential maximum relative entropy

Now, we repeat the sequential processing of the moment condition for the
process followed by processing of the data for a specific die but utilize
relative entropy for the joint distribution (as compared with maximization
of entropy for the prior distribution of θ above). That is, the problem can
be formulated as

max
p(x,θ)

s = −
∑
x

∑
θ p (x, θ) log p(x,θ)

pold(x,θ)

s.t.
∑
x

∑
θ p (x, θ) (θ1 − 2θ3) = 0
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where pold (x, θ) equals the likelihood pold (x | θ) = (n1+n2+n3)!
n1!n2!n3! θn11 θn22 θn33

times pold (θ) = 1
36 , or, pold (x, θ) = (n1+n2+n3)!

36n1!n2!n3! θ
n1
1 θn22 θn33 . Lagrangian

methods yield

p (x, θ) =
exp [λθ (θ1 − 2θ3)]

Z (θ)
pold (x, θ)

where the partition function is

Z (θ) =
∑
θ

exp [λθ (θ1 − 2θ3)] pold (θ)

and λθ is the solution to

−∂ logZ (θ)

∂λθ
= 0

Since λθ = λ in the original frame, we have the same joint distribution
given the moment condition as for the original frame

p (x, θ) =
exp [1.44756 (θ1 − 2θ3)]

28.7313

(n1 + n2 + n3)!

n1!n2!n3!
θn11 θn22 θn33

In turn, this implies data for a specific die where outcome x is m =
{n1 = 5, n2 = 3, n3 = 2} produces identical inferences as above. The joint
probability is

p (θ, x = m) = 2520θ5
1θ

3
2θ

2
3

exp [1.44756 (θ1 − 2θ3)]

28.7313

the probability of the data is

p (x) =
∑
θ

p (θ, x = m) = 0.0286946

and the posterior probability of θ is

p (θ | x = m) = 3056.65θ5
1θ

3
2θ

2
3 exp [1.44756 (θ1 − 2θ3)]

Hence,

E [θ1 | x = m] =
∑
θ

p (θ | x = m) θ1

= 0.505373

E [θ2 | x = m] =
∑
θ

p (θ | x = m) θ2

= 0.302243
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E [θ3 | x = m] =
∑
θ

p (θ | x = m) θ3

= 0.192384

and
E [θ1 + θ2 + θ3 | x = m] = 1

as above.
This maximum relative entropy analysis for the joint distribution helps

set up simultaneous evaluation of moment and data conditions when we’re
evaluating the process rather than a specific die.

4.8.3 Simultaneous processing of moment and data conditions

Suppose we know, on average, the process produces die where, on average,
θ1 = 2θ3 and we randomly sample die producingm = {n1 = 5, n2 = 3, n3 = 2}
to learn more about the process. This is a different question and calls for
a different, simultaneous analysis.
The analysis is deceptively similar to the previous analysis but the key

difference is the data are considered simultaneously with the moment con-
ditions. That is,

max
p(x,θ)

s = −
∑
x

∑
θ p (x, θ) log p(x,θ)

pold(x,θ)

s.t.

∑
x

∑
θ p (x, θ) (θ1 − 2θ3) = 0

x = m

Since the likelihood function remains the same, Lagrangian methods yield

p (x = m, θ) =
exp

[
λ(x,θ) (θ1 − 2θ3)

]
Z (m, θ)

pold (x = m, θ)

where the partition function is

Z (m, θ) =
∑
θ

exp
[
λ(x,θ) (θ1 − 2θ3)

]
pold (x = m, θ)

and λ(x,θ) is the solution to

−∂ logZ (m, θ)

∂λ(x,θ)
= 0

In other words, the joint probability given the moment and data conditions
is

p (x = m, θ) = exp [0.0420198 (θ1 − 2θ3)]
2520

36
θ5

1θ
3
2θ

2
3
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Since p (x = m) =
∑
θ p (x = m, θ) = 0.0209722, the posterior probabil-

ity of θ is

p (θ | x = m,E [θ1 − 2θ3] = 0) = 70
exp [0.0420198 (θ1 − 2θ3)]

0.0209722

Hence,

E [θ1 | x = m,E [θ1 − 2θ3] = 0] =
∑
θ

p (θ | x = m,E [θ1 − 2θ3] = 0) θ1

= 0.462225

E [θ2 | x = m,E [θ1 − 2θ3] = 0] =
∑
θ

p (θ | x = m,E [θ1 − 2θ3] = 0) θ2

= 0.306663

E [θ3 | x = m,E [θ1 − 2θ3] = 0] =
∑
θ

p (θ | x = m,E [θ1 − 2θ3] = 0) θ3

= 0.2311125

E [θ1 + θ2 + θ3 | x = m,E [θ1 − 2θ3] = 0] = 1

and unlike the previous analysis of a specific die, for the process the moment
condition is maintained

E [θ1 − 2θ3 | x = m,E [θ1 − 2θ3] = 0] = 0

What we’ve done here is add a canonical term,
exp[λ(x,θ)(θ1−2θ3)]

Z(m,θ) , to the
standard Bayesian posterior for θ given the data, pold (θ | x = m), to ac-
count for the moment condition. The partition function, Z (m, θ), serves to
normalize the moment conditioned-posterior distribution.

4.9 Convergence or divergence in beliefs

Probability beliefs derive from background knowledge = mapped into prior
beliefs and likelihood functions to produce posterior beliefs.

Pr (θ | y,=) ∝ ` (θ | y,=) Pr (θ,=)

A specific sample or draw maps into a sampling distribution Pr (y | θ,=)
to produce a likelihood function ` (θ | y,=).

4.9.1 diverse beliefs

Now, imagine beginning with complete ignorance (uninformed priors) then
diversity of posterior beliefs derives entirely from differences in likelihood
functions say due to differences in interpretation of the veracity of the
evidence and/or asymmetry of information.
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4.9.2 complete ignorance

Complete ignorance refers to lack of knowledge regarding location and scale
of the random variables of interest.

location

Complete ignorance regarding location translates into f (x) = 1 uniform
or rectangular. Uninformed or constant priors means likelihood functions
completely determine posterior beliefs regarding location.

scale

Complete ignorance regarding scale translates intof (x) = 1
x for x > 0

or assigning a uniform distribution to the log of scale,f (y) = 1 where
y = log (x) (note: log σ2 = 2 log σ so it matters little whether we speak,
for instance, of standard deviation, x = σ, or variance, x = σ2, which
makes sense as both are indicators of scale and we’re depicting ignorance
regarding scale). Intuition for this is probability assignment is invariant
to choice of units. This translates into f (x) dx = f (bx) d (bx) for some
constant b > 0. Since d (bx) = bdx (d(bx)

dx = b which implies d (bx) = bdx),
we requiref (x) dx = bf (bx) dx and this is only true for f (x) = 1

x .

f (x) dx =
dx

x

bf (bx) dx =
b

bx
dx =

dx

x

For example, f (x) = f (bx) = 1 (uniform) leads to f (x) dx 6= bf (bx) dx or
1dx 6= b1dx, which is not scale invariant. Nor does f(x) = exp (−x) satisfy
scale invariance as f (x) dx = exp (−x) dx 6= bf (bx) dx = b exp (−bx) dx.
However, it is intuitively appealing to consider scale ignorance as as-

signing a uniform probability to the log of scale x, y = log x, f (y) = 1.

Then, f (x) = f (y)
∣∣∣ dydx ∣∣∣ = 1

x . Uninformed priors means likelihood functions

completely determine posterior beliefs regarding scale.
The point here is consistency suggests, or rather demands, that diver-

gence in probability beliefs builds from different likelihood functions (process-
ing the information differently and/or processing different information).

4.9.3 convergence in beliefs

Why do probability beliefs converge? Individuals share the same informa-
tion, individuals agree on the information’s veracity, and/or information
cascades form. The first two are straightforward extensions of the above dis-
cussion. Information cascades arise when individuals regard public process-
ing of information as so compelling that their own private information
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leaves their posterior beliefs largely unaffected. Then, collectively individu-
als are dissuaded from engaging in (private) information search and an in-
formation cascade results characterized by herding behavior. Such bubbles
are sustained until some compelling information event bursts it. Changing
herding behavior or bursting an information bubble involves a likelihood
so powerful it overwhelms the public (common) information prior.
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4.10 Appendix: summary of maximum entropy
probability assignments

distribution moment constraints kernel form17 mass function

discrete:

uniform none exp [0] = 1
Pr (xi = i) = 1

n ,
i = 1, . . . , n

nonuniform E [x] = µ exp [−λxi]
Pr (xi = i) = pi,
i = 1, . . . , n

Bernoulli E [x] = p exp [−λ]
Pr (x = 1) = p,
x = (0, 1)

binomial18
E [x | n] = np,

Pr (x = 1 | n = 1) = p

(
n
x

)
exp [−λx]

Pr (x = s | n) =(
n
s

)
ps (1− p)n−s ,
s = (0, . . . , n)

multinomial19
E [xi | n] = npi,

Pr (xi = 1 | n = 1) = pi,
i = 1, . . . , k − 1

n!
x1!···xk!×

exp
[
−
∑k−1
i=1 λixi

] Pr (x1, . . . , xk | n) =
n!

x1!···xk!p
x1
1 · · · p

xk
k ,

xi = (0, . . . , n)

Poisson20 E [x] = µ 1
x! exp [−λx]

Pr (x = s) =
µs

s! exp [−µ] ,
s = (0, 1, . . .)

geometric21
E [x] = 1

p ,

Pr (x = 1) = p
exp [−λx]

Pr (x = r) =

p (1− p)r−1

r = 1, 2, . . .

negative
binomial22

E [x] = pr
1−p ,

Pr (x = 1) = p

(
x+r−1
x

)
× exp [−λx]

Pr (x = s; r) =(
s+r−1
s

)
×ps (1− p)r ,
s = (0, 1, . . .)

logarithmic23

E [x] = − p
(1−p) log(1−p) ,

E [log x] =
∞∑
x=1
− px log x
x log(1−p)

=

∂
∂t

( ∞∑
k=1

pk

kt

)
|t=1

log(1−p)

exp [−λ1x− λ2 log x]

Pr (x) =

− px

x log(1−p) ,

x = (1, 2, . . .)

hyper-
geometric24

none
(note: E [x] = nm

N )
(mx)(N−mn−x )

(Nn)

Pr (x = s;m,n,N) =
(ms )(N−mn−s )

(Nn)

17 excluding partition function
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Γ (z) =
∫∞

0
e−ttz−1dt

Γ (n) = (n− 1)! for n a positive integer
Γ
′
(z) = Γ (z) dLog(Γ(z))

dz

B (a, b) = Γ(a)Γ(b)
Γ(a+b)

18The kernel for the binomial includes a measure of the number of exchangeable ways
to generate x successes in n trials,

(n
x

)
. The measure, say m (x), derives from general-

ized entropy, S = −
∑
i p log

pi
mi
, where mi reflects a measure that ensures entropy is

invariant under transformation (or change in units) as required to consistently capture
background information including complete ignorance (see Jeffreys [1939], Jaynes [2003]
or Sivia and Skilling [2006]). The first order condition from the Lagrangian with mean
moment condition yields the kernel mi exp [−λxi], as reflected for the binomial probabil-
ity assignment. Since mi 6= 1

n
for the binomial distribution, mi is not absorbed through

normalization.
19Analogous to the binomial, the kernel for the multinomial includes a measure of the

number of exchangeable ways to generate x1, . . . , xk events in n trials,
n!

x1!···xk!
, where

events are mutually exclusive (as with the binomial) and draws are with replacement.
20Like the binomial, the kernel for the Poisson includes an invariance measure based

on the number of exchangeable permutations for generating x occurrences in a given
interval, n

x

x!
. Since a Poisson process resembles a binomial process with a large number

of trials within a fixed interval, we can think of nx as the large n approximation to
n!

(n−x)! . n
x is absorbed via nxpx =

(
nλ
n

)x
where expected values for the binomial

and Poisson are equated, np = λ implies p = λ
n
. The Poisson distribution is a Taylor

series expansion of exp [µ] around zero (which is equal to
∑∞
x=0

λx

x!
) and normalized via

exp [−µ] (which is equal to lim
n→∞

(
1− λ

n

)n−x
). Hence, lim

n→∞

(n
x

)
px (1− p)n−x = e−λλx

x!
.

21The geometric distribution indicates the likelihood success occurs in the rth trial.
Hence, the measure for the number of ways for this to occur is one.
22Like the binomial, the kernel for the negative binomial includes a measure of the

number of exchangeable ways to generate x successes before r failures occur,
(x+r−1

x

)
.

23Like the Poisson distribution, the logarithmic distribution is a Taylor series expan-
sion. The expansion involves − log [1− p] around zero and normalized via − 1

log[1−p] .
24Like the binomial, the hypergeometric distribution includes a measure of the number

of exchangeable ways to generate x successes in n trials from a finite population of

size N containing m successes without replacement,

(
m
x

)(
N−m
n−x

)
(
N
n

) . However, no moment

conditions are needed.
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distribution moment constraints kernel form density function

continuous:

uniform none exp [0] = 1
f (x) = 1

b−a ,

a < x < b

exponential E [x] = µ > 0 exp [−λx]

f (x) =
1
µ exp

[
− x
µ

]
,

0 < x <∞

gamma
E [x] = a > 0,

E [log x] = Γ
′
(a)

Γ(a)

exp [−λ1x− λ2 log x]

f (x) =
1

Γ(a) exp [−x]xa−1,

0 < x <∞

chi-squared25

ν d.f.

E [x] = ν > 0,

E [log x] =
Γ
′
( 12 )

Γ( 12 )
+ log 2

exp [−λ1x− λ2 log x]

f (x) = 1
2ν/2Γ(ν/2)

exp
[
−x2
]
xν/2−1,

0 < x <∞

beta26

E [log x] =
Γ
′
(a)

Γ[a] −
Γ
′
(a+b)

Γ[a+b] ,

E [log (1− x)] =
Γ
′
(b)

Γ(b) −
Γ
′
(a+b)

Γ[a+b] ,

a, b > 0

exp

[
−λ1 log x

−λ2 log (1− x)

] f (x) = 1
B(a,b)

xa−1 (1− x)
b−1

,
0 < x < 1

normal or
Gaussian

E
[
(x− µ)

2
]

= σ2 exp
[
−λ (x− µ)

2
] f (x) = 1√

2πσ

exp
[
− (x−µ)2

2σ2

]
,

−∞ < x <∞

student’s t E
[
log
(
ν + x2

)] (
ν + x2

)−λ f (x) =
Γ( ν+12 )√
νπΓ( ν2 )(

1 + x2

ν

)− ν+12
−∞ < x <∞

lognormal

E [log x] = µ

E
[
(log x)

2
]

=

σ2 + µ2

exp

[
−λ1 log x

−λ2 (log x)
2

] f (x) = 1
x
√

2πσ

exp
[
− (log x−µ)2

2σ2

]
,

0 < x <∞

Pareto E [log x] = 1+α log xm
α ,

α > 0
exp [−λ log x]

f (x) =
αxαm
xα+1 ,

0 < xm ≤ x <∞

Laplace
E [|x|] = 1

β ,

β > 0
exp [−λ |x|]

f (x) =
β
2 exp [−β |x|] ,
−∞ < x <∞

25 special case of gamma distribution



40 4. Maximum entropy distributions

distribution moment constraints kernel form density function

logistic E

[
log

(
exp

[
− z2
]

+ exp
[
z
2

] )] = 1 exp

[
−λ log

(
exp

[
− z2
]

+ exp
[
z
2

] )] f (x) =
1

s(exp[− z2 ]+exp[ z2 ])
2

z = x−µ
s

Wishart
n d.f.

E [tr (Σ)] = ntr (Ψ)
n > p− 1

Σ symmetric,
positive definite

E [log |Σ|] = log |Ψ|
+Ω (n) , real
where Ω (n) is
a function of n

exp

[
−λ1tr (Σ)
−λ2 log |Σ|

] f (Σ) =

|Ψ|−
n
2 |Σ|

n−p−1
2

2
np
2 Γ(n2 )

exp

[
− tr(Ψ−1Σ)

2

]

26The Dirichlet distribution is the multivariate extension of the beta distribution with
maxent moment conditions involving E [log xj ] for all j.


