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3
Classical causal e!ects strategies

3.1 Causal e!ects and treatment e!ects

When evaluating accounting choices, we’re deeply interested in their welfare
e!ects. Does choice A make everyone better o! or worse o! compared with
choice B? Or, does one choice make some better o! and the other choice
make others better o! such that self-selection is a Pareto improvement?
These are di"cult questions and their resolution is invariably controver-
sial. The root of the inference or modeling problem can be traced back to
omitted, correlated regressor variables, as discussed in the above simpler
settings.
Causal e!ects may involve choices with which we have experience in fa-

miliar environments or in new environments. Or, we may be interested in
welfare e!ects associated with choices with which we have no experience in
familiar or new environments. In the former case, where we have history on
our side, we might pose treatment e!ect questions and employ historical
data to help make an assessment. Treatment e!ects ask whether an indi-
vidual’s welfare is greater with treatment than without treatment. That
is, other things are held constant and we attempt to explore the impact of
treatment on welfare.
Treatment e!ects are less demanding than causal e!ects of unexplored

choices in new environments. Nonetheless, treatment e!ect analysis poses
serious challenges. The endogenous nature of choice often makes it dif-
ficult to hold other things constant. Observable outcome typically is an
incomplete and ill-timed measure of welfare. While we’re interested in the
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individual’s expected utility, we usually observe ex post outcomes. Ex post
versus ex ante considerations may or may not be easily surmounted. Out-
comes may represent gross gains rather than ex ante di!erences in utility.
Gross gains may be related to net benefits if costs are well understood but
individual specific features (for example, nonpecuniary considerations) may
be particularly elusive. One of the most severe challenges is we typically
observe data for an individual only with treatment or without treatment
but not for both. This implies that we cannot directly assess an individ-
ual’s treatment e!ect. However, homogeneity conditions may allow infer-
ence based on population-level treatment e!ect parameters (for example,
mean or average treatment e!ects).

3.2 A simple treatment e!ect example

The above ANCOVA example illustrates a simple treatment e!ect analysis
if, for instance, counterfactuals have the same probability distribution as
those observed. Counterfactuals are conditions not observed. To fix ideas,
let Y1 denote outcome with treatment and Y0 outcome without treatment.
Then the treatment e!ect is Y1 ! Y0. However, we observe (Y1 | D = 1)
and (Y0 | D = 0) but don’t observe the counterfactuals, (Y1 | D = 0) and
(Y0 | D = 1). We would like to compare outcome with treatment to outcome
without treatment for individuals who chose treatment (treatment e!ect on
the treated – TT ) and for individuals who chose no treatment (treatment
e!ect on the untreated – TUT ). Both treatment e!ects compare factual
with counterfactual outcomes

TT = (Y1 | D = 1)! (Y0 | D = 1)

= (Y1 ! Y0 | D = 1)

and

TUT = (Y1 | D = 0)! (Y0 | D = 0)

= (Y1 ! Y0 | D = 0)

Suppose we have the following DGP (factual and counterfactual)

E [Y1 | D = 1, X = !1] = E [Y1 | D = 0, X = !1]
= E [Y1 | X = !1] = 9

E [Y1 | D = 1, X = 0] = E [Y1 | D = 0, X = 0]

= E [Y1 | X = 0] = 10

E [Y1 | D = 1, X = 1] = E [Y1 | D = 0, X = 1]

= E [Y1 | X = 1] = 11
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E [Y0 | D = 1, X = !1] = E [Y0 | D = 0, X = !1]
= E [Y0 | X = !1] = 4

E [Y0 | D = 1, X = 0] = E [Y0 | D = 0, X = 0]

= E [Y0 | X = 0] = 5

E [Y0 | D = 1, X = 1] = E [Y0 | D = 0, X = 1]

= E [Y0 | X = 1] = 6

Treatment is said to be ignorable or selection is on observables as the re-
gressors are su"ciently informative to make treatment, D, conditionally
uninformative of outcome with treatment, Y1, and outcome without treat-
ment, Y0. Then, the conditional average treatment e!ects on the treated
(ATT (X)) and on the untreated (ATUT (X)) are

ATT (X = !1) = E [Y1 ! Y0 | D = 1, X = !1]
= 9! 4 = 5

ATT (X = 0) = E [Y1 ! Y0 | D = 1, X = 0]

= 10! 5 = 5

ATT (X = 1) = E [Y1 ! Y0 | D = 1, X = 1]

= 11! 6 = 5

ATUT (X = !1) = E [Y1 ! Y0 | D = 0, X = !1]
= 9! 4 = 5

ATUT (X = 0) = E [Y1 ! Y0 | D = 0, X = 0]

= 10! 5 = 5

ATUT (X = 1) = E [Y1 ! Y0 | D = 0, X = 1]

= 11! 6 = 5

If outcome represents net benefit, then, conditional on X, everyone is bet-
ter o! with treatment than without treatment. Since this is true for all
levels of X, it is not surprising that, on applying iterated expectations, the
unconditional average treatment e!ects on the treated (ATT ) and on the
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untreated (ATUT ) indicate an average (over all common X) net benefit as
well.1

ATT = EX [E [Y1 ! Y0 | D = 1, X]]

= E [Y1 ! Y0 | D = 1] = 5

and

ATUT = EX [E [Y1 ! Y0 | D = 0, X]]

= E [Y1 ! Y0 | D = 0] = 5

Of course, this degree of homogeneity implies the average treatment e!ect
is

ATE = Pr (D = 1)ATT + (1! Pr (D = 1))ATUT

= Pr (D = 1)E [Y1 ! Y0 | D = 1] + Pr (D = 0)E [Y1 ! Y0 | D = 0]

= E [Y1 ! Y0] = 5

3.3 Treatment e!ects with limited common
support

Unfortunately, the above DGP, where outcome reflects welfare, outcome is
homogeneous, and common X support, is rarely encountered. Rather, it’s
typical to encounter some heterogeneity in outcome and limited common
support.2 To illustrate the implications of limited common support, sup-
pose we have the following data (where relative population frequencies are
reflected by their sample frequencies).

Y Y1 Y0 D X
4 11 4 0 0
6 12 6 0 !1
5 13 5 0 !1
4 11 4 0 0
11 11 4 1 0
11 11 4 1 0
9 9 3 1 1
10 10 2 1 1

1Common support for X is important as our inferences stem from evidence we have
rather than evidence we don’t have in hand.

2Further, often outcome measures gross benefits (and perhaps incompletely) rather
than net benefits so that welfare implications require knowledge of costs with and without
treatment.
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We don’t observe the counterfactuals: (Y1 | D = 0) or (Y0 | D = 1), but the
key to identifying any average treatment e!ect is

E [Y1 | X = x,D = 1] = E [Y1 | X = x,D = 0]

and
E [Y0 | X = x,D = 1] = E [Y0 | X = x,D = 0]

That is, the pivotal condition is outcome mean conditional independence
of treatment, D. For the only commonly observed value, x = 0

E [Y1 | X = 0, D = 1] = E [Y1 | X = 0, D = 0] = 11

and
E [Y0 | X = 0, D = 1] = E [Y0 | X = 0, D = 0] = 4

conditional mean independence is satisfied. Hence, the only evidence-based
assessment of the treatment e!ect is for X = 0, and

ATE (X = 0) = E [Y1 ! Y0 | X = 0] = 11! 4 = 7

Further, this conditional average treatment e!ect is homogeneous.

ATT (X = 0) = ATUT (X = 0) = ATE (X = 0) = 7

where

ATT (X = 0) = E [Y1 ! Y0 | X = 0, D = 1] = 11! 4 = 7

and

ATUT (X = 0) = E [Y1 ! Y0 | X = 0, D = 0] = 11! 4 = 7

While this conditional average treatment e!ect is, in principle, only non-
parametrically identified, by good fortune, ANCOVA e!ectively estimates
both the conditional (onX = 0) and unconditional average treatment e!ect
via the coe"cient on D.3

E [Y | D,X] = 4 + 7D ! 1.5X

where the observables are

Y = DY1 + (1!D)Y0

Further, the conditional average treatment e!ect also equals the uncondi-
tional average. Since the unconditional average treatment e!ect is uniden-
tified by observable data, both of these results are merely fortuitous. That

3More generally, we include an interaction term,
!
D !

!
X "X

""
, but it’s coe"cient

is zero for this DGP.
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is, the only conclusion we can draw based on the evidence is for the average
treatment e!ect conditional on X = 0. If there is a local interval of common
X support, this is sometimes called a local average treatment e!ect.
To clarify this common support issue, suppose we perturb only the coun-

terfactual outcomes with treatment as follows.

Y Y1 Y0 D X
4 11 4 0 0
6 2 6 0 !1
5 1 5 0 !1
4 11 4 0 0
11 11 4 1 0
11 11 4 1 0
9 9 3 1 1
10 10 2 1 1

Now, the unconditional average treatment e!ect is 8.25 ! 4 = 4.25, the
unconditional average treatment e!ect on the treated is unperturbed from
above, 10.25 ! 3.25 = 7, and the unconditional average treatment e!ect
on the untreated is 6.25 ! 4.75 = 1.5. Hence, outcome is heterogeneous
and none of these unconditional average treatment e!ects are identified by
the data. As above, the only treatment e!ect identifiable from the data is
the conditional average treatment e!ect for X = 0, which continues to be
ATE (X = 0) = 11 ! 4 = 7. Attempting to extrapolate from the evidence
to unconditional average treatment e!ects is not only a stab in the dark,
it is misleading.
Next, we pursue a variation on treatment e!ects based on discontinuity

induced by assignment variable(s). This is referred to as regression disconti-
nuity design and can make identification of the associated treatment e!ects
relatively straightforward.

3.4 Regression discontinuity designs

Suppose we have continuous assignment variable(s), Z, for which treat-
ment is selected or assigned above a cuto!, z0, and no treatment is selected
or assigned below the cuto!. Then, the e!ect of treatment on potential
outcomes with and without treatment can be identified in the region of
the cuto! by simple mean di!erences (it’s said to be nonparametrically
identified) as any discontinuity is attributable to treatment. For such data
generating processes (DGP), regression discontinuity (RD) designs iden-
tify a marginal treatment e!ect in the vicinity of the cuto! and, perhaps,
a weighted average of heterogeneous treatment e!ects.4 For a sharp RD

4 See Lee and Lemieux [2010], p. 298 and a brief subsection under heterogeneous
treatment e!ects.



3.4 Regression discontinuity designs 7

design, no potential outcomes with treatment are observed below the cut-
o! and no potential outcomes without treatment are observed above the
cuto!.
A so-called fuzzy RD design involves a discontinuity at the cuto! as with

the sharp design, however the researcher doesn’t observe all determinants of
treatment. Consequently, treatment is stochastic rather than deterministic.
The key feature of both RD designs is outcome discontinuity as a function
of the assignment variables at the cuto!. The following describes observed
outcome, Yi, for both sharp and fuzzy RD designs.

Yi = DiY1i + (1!Di)Y0i
= !i +Di" i

where !i = Y0i outcome without treatment, Y1i is outcome with treatment,
Di = 1 for treated and zero otherwise, and " i = Y1i ! Y0i. Our discussion
focuses primarily on sharp RD designs for simplicity and clarity. The sharp
RD design identifies treatment e!ect

" =
Y + ! Y !

D+ !D! = Y + ! Y !

since D+ !D! = 1 where

Y + = lim
z
+"z0

E [Yi | Zi = z]

D+ = lim
z
+"z0

E [Di | Zi = z]

the limit approaches the cuto! from above,

Y ! = lim
z
!"z0

E [Yi | Zi = z]

and

D! = lim
z
!"z0

E [Di | Zi = z]

the limit approaches the cuto! from below. Fuzzy RD designs are briefly
discussed at the end of the homogeneous treatment e!ect section where
fuzzy RD treatment e!ects are identified as

" = !r
" =

Y +!Y !

D+!D! , for D+ "= D!

the intent to treat e!ect is " r, and the propensity for treatment is # (see
Hahn, Todd, and van der Klaauw [2001] and Lee and Lemieux [2010]).
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3.4.1 Homogeneous treatment e!ects

For homogeneous treatment e!ects, the key identification condition is out-
come without treatment, Y0, is smooth in the neighborhood of the cuto! z0.
To appreciate this identification strategy, explored as a thought experiment,
recognize outcome with treatment, Y1, is observed on one side of the cuto!
(say, after the trigger) and Y0 is observed before the trigger (cuto!). The
treatment e!ect at the cuto! is (Y1 ! Y0 | Z = z0) but this is not observed.
However, we do observe (Y1 | Z = z0 + $) and (Y0 | Z = z0 ! $). Hence, if
we believe the DGP satisfies (Y0 | Z = z0 ! $) # (Y0 | Z = z0 + $); in other
words, if there is a smooth transition in Y0 from z0! $ (observed) to z0+ $
(unobserved) then the homogeneous treatment e!ect is identified around
the cuto! and can be estimated from observed data.
We consider two homogeneous treatment e!ect examples: one illustrating

a DGP well-suited to RD design, and a second DGP where continuity of Y0
and identification fails (or an alternative interpretation is individuals are
able to "precisely manipulate" the assignment variable, Lee and Lemieux
[2010]).

Example 1 Suppose we have the following sharp RD representative data
where D = 1 refers to treated and D = 0 refers to untreated.

Y0 Y1 Y1 ! Y0 Y D Z
14 15 1 15 1 5
13 14 1 14 1 4
11.5 12.5 1 12.5 1 3.501
11.5 12.5 1 11.5 0 3.499
10 11 1 10 0 3
9 10 1 9 0 2

As is evident from the treatment e!ect column, Y1!Y0, the treatment e!ect
is homogeneous (for instance, treatment on treated and treatment on un-
treated are both equal to one). The marginal (and average, as all treatment
e!ects are equal in this case) treatment e!ect at the cuto! identified by an
RD design is

TE $ " =
Y + ! Y !

D+ !D!

= E [Y1 ! Y0 | Z # z0]

=
12.5! 11.5
1! 0

= 1

where $ defines a narrow region around z0. Since Y = DY1 + (1!D)Y0
is the only potential outcome that is observable, we can estimate the above
treatment e!ect by

estTE $ !" = E [Y | Z = 3.501]! E [Y | Z = 3.449]
= 12.5! 11.5 = 1
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This corresponds to the homogeneous treatment e!ect defined by compar-
ison of observable outcomes with counterfactuals (unobservable potential
outcomes). The data are nonlinear as illustrated in the graph below. The
graph depicts observed outcome, Y , as well as potential outcomes with treat-
ment, Y1, and potential outcomes without treatment, Y0, as a function of the
assignment variable, Z. In principle, nonlinearity creates no problem for
the RD design (we emphasize this to dispel nonlinearity as an explanation
of the problem illustrated in example 2).5

Example 2 On the other hand, suppose the representative data are slightly
perturbed.

Y0 Y1 Y1 ! Y0 Y D Z
14 15 1 15 1 5
13 14 1 14 1 4
12 13 1 13 1 3.501
11 12 1 11 0 3.499
10 11 1 10 0 3
9 10 1 9 0 2

There is a substantive jump in potential outcomes in the vicinity of the cut-
o!. Even though treatment e!ects continue to be homogeneous, RD design
does not identify the treatment e!ect. Rather, the e!ect estimated by RD
produces

estTE = E [Y | Z = 3.501]! E [Y | Z = 3.449]
= 13! 11 = 2 "= " = 1

5Potentially unknown functional form is why we say the RD treatment e!ect is non-
parametrically identified. That is, nonparametric regression allows us to estimate the
treatment e!ect in the neighborhood of the cuto! point by point.
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This doesn’t correspond to the homogeneous treatment e!ect defined by com-
parison of observable outcomes with counterfactuals. The graph below illus-
trates the discontinuity of Y0 in Z around z0; again, outcomes are nonlinear
in the assignment variable but that is not the source of the problem.

Fuzzy RD design example

Next, we briefly illustrate a fuzzy RD design with homogeneous treatment
e!ects.

Example 3 Suppose we have the following fuzzy RD representative data.

Y0 Y1 Y1 ! Y0 Y D Z
14 15 1 15 1 5
13 14 1 14 1 4
11.5 12.5 1 12.5 1 3.501
11.5 12.5 1 11.5 0 3.501
11.5 12.5 1 11.5 0 3.499
10 11 1 10 0 3
9 10 1 9 0 2

As is evident from the treatment e!ect column, Y1!Y0, the treatment e!ect
is homogeneous. The fuzzy treatment e!ect identified by a fuzzy RD design
is

TE $ " =
" r
#

=
Y + ! Y !

D+ !D!

= E [Y1 ! Y0 | Z # z0]

=
0.5

0.5
= 1
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Since Y = DY1+(1!D)Y0 is the only potential outcome that is observable,
we can estimate the above treatment e!ect by

estTE $ !" = E [Y | Z = 3.501]! E [Y | Z = 3.449]
E [D | Z = 3.501]! E [D | Z = 3.449]

=
12! 11.5
0.5! 0.0

= 1

An "intent to treat" e!ect can be identified from the reduced form (Lee and
Lemieux [2010], p. 328). The reduced form follows from substituting the
selection equation

D# = % + #T + g (Z ! z0) + &

into the outcome equation

Y = !+ "D# + f (Z ! z0) + $

to yield
Y = !r + " rT + fr (Z ! z0) + $r

where T = 1 [Z % z0]. The coe"cient on T , " r = "# = 0.5, is the intent
to treat e!ect (a rescaling of the treatment e!ect, " , by the propensity for
treatment around the cuto!, #).

3.4.2 Heterogeneous treatment e!ects

Hahn, Todd, and van der Klaauw [2001] propose two alternative strate-
gies for identification of treatment e!ects where potential outcomes are
heterogeneous. The first strategy adopts an ignorable treatment approach
similar to that invoked by matching strategies. The second strategy may
be more amenable to settings of self-selection as it identifies a discrete mar-
ginal treatment e!ect (a local average treatment e!ect or LATE, for short)
along the lines of Imbens and Angrist [1994].
Conditions on the DGP for the ignorable treatment strategy are

(a) continuity of Y0 in the neighborhood of the cuto!,
(b) continuity of the treatment e!ect, " , in the neighborhood of the cuto!
(again as a function of the assignment variables, Z), and
(c) conditional independence of treatment Di and the treatment e!ect " i
in the neighborhood of the cuto!, z0.
The conditional independence condition maintains that individuals do

not select treatment in anticipation of gains from treatment which may
run counter to self-selection. The LATE strategy replaces conditions (b)
and (c) above with
(b’) (" i, Di (Z)) are jointly independent of Zi near z0, and
(c’) Di (z0 + e) % Di (z0 ! e) for all 0 < e < $. This implies one way flows
into or away from treatment by varying the assignment variable in the
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neighborhood of the cuto!. Imbens and Angrist [1994] refer to this condi-
tion as monotonicity, while Heckman and Vytlacil [2005] refer to this as
uniformity. This condition is always satisfied, by definition, for a sharp RD
design but implies LATE is defined only for a subpopulation of "compliers"
in a fuzzy RD design.
Next, we consider two heterogeneous treatment e!ect examples: one il-

lustrating a DGP well-suited to sharp RD design, and a second DGP where
continuity/smoothness of the treatment e!ect fails. The latter suggests how
an RD design might fail to identify the (marginal) e!ect of treatment.

Example 4 Suppose we have the following representative heterogeneous
data.

Y0 Y1 Y1 ! Y0 Y D Z
10 15 5 15 1 5
11 14 3 14 1 4
11.5 12.5 1 12.5 1 3.501
11.5 12.5 1 11.5 0 3.499
13 12 !1 13 0 3
14 11 !3 14 0 2

As is evident from the treatment e!ect column, Y1 ! Y0, the treatment
e!ect is heterogeneous (for instance, treatment on treated and treatment on
untreated are unequal). The (marginal) treatment e!ect identified by an RD
design is

TE $ " = Y + ! Y !

= E [Y1 ! Y0 | Z # z0] = 1

where $ defines a narrow region of z0. Since Y is the only potential outcome
that is observable, we can estimate the above treatment e!ect by nonpara-
metric local linear regression (that is, point by point estimation to accom-
modate unknown functional form in the neighborhood of the cuto!, z0).

estTE $ !" = E [Y | Z = 3.501]! E [Y | Z = 3.449]
= 12.5! 11.5 = 1

This corresponds to the marginal treatment e!ect (LATE) defined by com-
parison of observable outcomes with counterfactuals (unobservable potential
outcomes) in the vicinity of z0. The data are nonlinear as illustrated in the
graph below. The graph depicts observed outcome, Y , as well as potential
outcomes with treatment, Y1, and potential outcomes without treatment, Y0,
as a function of the assignment variable, Z. While nonlinearity creates no
insurmountable problem for the RD design, to accommodate unknown func-
tional form consistent estimation might employ nonparametric local linear
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regression.

The above graph provides an idea of the potential outcomes. The key is
smoothness of the (unobservable) treatment e!ect or the independence of
the treatment e!ect and the assignment variables in the neighborhood of the
cuto!. This is illustrated below for the DGP.

Treatment e!ects are clearly smooth in the assignment variable, Z, in the
vicinity of the cuto!, z0 = 3.5.

Example 5 On the other hand, suppose the representative data are per-
turbed such that treatment on treated is positive and treatment on untreated
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is negative as depicted below.

Y0 Y1 Y1 ! Y0 Y D Z
13 14 1 14 1 5
13 14 1 14 1 4
13 14 1 14 1 3.501
12 11 !1 12 0 3.499
11 10 !1 11 0 3
11 10 !1 11 0 2

There is clearly a discontinuous jump in the treatment e!ect in the vicinity
of the cuto!. While treatment e!ects are not as erratic as the previous
example, the RD strategy does not identify the marginal treatment e!ect.
Rather, the treatment e!ect estimated by the above strategy produces

estTE $ !" = E [Y | Z = 3.501]! E [Y | Z = 3.449]
= 14! 12 = 2 "= " = E [Y1 ! Y0 | Z # z0] = 0

This doesn’t correspond to the heterogeneous treatment e!ect defined by
(point by point) comparison of observable outcomes with counterfactuals
(in the neighborhood of the cuto!, the treatment e!ect average is zero).
The graph below illustrates nonlinearity of outcomes but that is not the
source of the problem.
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The key picture depicts the relation between (unobservable) treatment e!ects
and the assignment variable. This is presented below.

Clearly, the relationship between the treatment e!ect and the assignment
variable is not smooth and the treatment e!ect is not independent of the
assignment variables in the neighborhood of the cuto!. Consequently, the
regression discontinuity design fails to identify the marginal treatment e!ect
for compliers (individuals who select or are assigned treatment just above
the cuto! and who select or are assigned no treatment just below the cuto!).

Weighted average of heterogeneous treatment e!ects

Lee and Lemieux [2010, p. 298] suggest the RD designs identify a weighted
average of heterogeneous treatment e!ects. Define outcome with unre-
stricted heterogeneity

Y = D" (Z,U) + Z#1 + U

and selection
D# = Z#2 + V

Now, Bayesian manipulation gives

lim
#
+"0

E [Yi | Zi = z0 + $]! lim
#
!"0

E [Yi | Zi = z0 ! $]

=
"

z,u

" (z, u) Pr (Z = z, U = u | D# = z0)

=
"

z,u

" (z, u) Pr (Z = z, U = u)
fD"|Z,U (z0 | Z = z, U = u)

fD" (z0)
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Except for weighting by f(z0|Z=z,U=u)
f(z0)

this expression is the standard un-
conditional average treatment e!ect; hence, we have a weighted average of
potentially heterogeneous treatment e!ects.

3.4.3 Estimation

Sharp and fuzzy RD design treatment e!ects are nonparametrically identi-
fied. Since local linear nonparametric regressions (LLR) are better behaved
at the boundary and converge more quickly than standard kernel density
nonparametric regressions, LLR is expected to have better small sample
properties (Hahn, Todd, and van der Klaauw [2001]).6 Y + is estimated by
#a+ in
$
#a+,#b+

%
$ argmin

a,b

n"

i=1

(Yi ! a! b (Zi ! z0))
2
K

&
Zi ! z0
h

'
1 (Zi > z0)

and Y ! is estimated by #a! in
$
#a!,#b!

%
$ argmin

a,b

n"

i=1

(Yi ! a! b (Zi ! z0))
2
K

&
Zi ! z0
h

'
1 (Zi < z0)

where K (·) is a kernel density and h > 0 is a suitable bandwidth. Hence,
the treatement e!ect is estimated by !" = #a+ ! #a!. Bootstrap inference is
now straightforward.

3.5 Synthetic controls

Suppose one has panel data but very limited evidence on the treated
and/or untreated subpopulations (for example, perhaps only one individ-
ual is treated). Then, standard matching strategies (general or propensity
score) are likely of limited utility. On the other hand, perhaps one can
construct a match for the treated based on a composite of the controls (un-
treated). This is an extension of di!erence-in-di!erences (D-I-D) in which
unobservable factors (perhaps correlated with covariates, Xit) are allowed
to vary cross-sectionally whereas such unobservables are a cross-sectional
constant for the D-I-D strategy. This is commonly referred to as a fac-
tor model since the unobservables can be thought of as factor scores, 't,
(which vary through time) weighted by factor loadings, µi, (which vary
cross-sectionally) both of which are unobservable in a factor analysis.

Yit = !dit + (
TXit + 'tµi + $it

6LLR is an approximation. In other words, the flexibility of nonparametric regression
does not imply that the unknown functional form is completely resolved – bias remains.
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where Yit is outcome for individual i during period t, ( is an unknown vec-
tor of coe"cients common across individuals, $it is unobservable (random)
noise, dit is an indicator of treatment (1) or nontreatment (0), and ! is the
treatment e!ect of interest.
Synthetic controls are constructed based on a convex combination (with

weights wi % 0,
(
wi = 1) of the pre-intervention outcomes, !Y ki =

T0"

t=1

ktYit,

and covariates, Xi, from the control subpopulation such that

argmin
W

(H1 ! [H2 · · ·Hn]W )
T
V (H1 ! [H2 · · ·Hn]W )

where Hi =
)
!Y k1i , !Y k2i , . . . !Y kmi , XT

i

*T
, i = 1 denotes treated while i =

2, . . . , n denotes control, and V is a diagonal matrix controlling potentially
di!erent weights applied to the components of Hi. Abadie et al [2010, 2011]
propose choosing V to minimize the expected mean square error

argmin
V

(Y1 ! Y0W # (V ))
T
(Y1 ! Y0W # (V ))

during the pre-intervention period where Y1 refers to outcomes for the
treated and Y0 outcomes for the control group.
Next, we explore several variations via some highly stylized examples.

First, we visit examples with constant factors such that both D-I-D and
synthetic controls identify the treatment e!ect. Then, we visit settings with
heterogeneous factors in which D-I-D fails but synthetic controls e!ectively
identify the treatment e!ect. Finally, we consider settings where neither
D-I-D nor synthetic variables e!ectively identify the treatment e!ect. The
first failure is due to violation of conditional mean independence of potential
outcome without treatment while the second failure is due to the treated
individuals’ H lying outside the convex hull of the controls. In the latter
case, synthetic controls can produce greater selection bias than D-I-D.

3.5.1 Examples

Suppose there are three individuals who are untreated during the first two
periods but the third individual adopts treatment in the third period. The
data generating process (DGP) is

Y = I1 + I2 + I3 + T + 2I3 & T + 'µ

where Y is observed outcome, Ij denotes and indicator variable equal to
1 for individual j and 0 otherwise, and T is an indicator equal to one
for intervention period three and zero otherwise. In the examples below,
Y0 represents potential outcome without treatment and only 'µ (and, of
course, outcome) varies.
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Example 6 (D-I-D setting) Suppose the DGP is

Y0 Y I1 I2 I3 T d = I3 & T 'µ
2 2 1 0 0 0 0 1
2 2 1 0 0 0 0 1
3 3 1 0 0 1 0 1
2 2 0 1 0 0 0 1
2 2 0 1 0 0 0 1
3 3 0 1 0 1 0 1
2 2 0 0 1 0 0 1
2 2 0 0 1 0 0 1
3 5 0 0 1 1 1 1

! = 5! 3 = 2. D-I-D identifies

E [Y | X] = 2I1 + 2I2 + 2I3 + T + 2I3 & T

That is, even though the nonzero error term biases the coe"cients on the
individual mean e!ects, the treatment e!ect is e!ectively identified. Any
weights V and W produce synthetic controls that e!ectively identify the
treatment e!ect.

Example 7 (D-I-D setting with time variation) Suppose the DGP is

Y0 Y I1 I2 I3 T d = I3 & T 'µ
!2 !2 1 0 0 0 0 !3
!2 !2 1 0 0 0 0 !3
4 4 1 0 0 1 0 2
!2 !2 0 1 0 0 0 !3
!2 !2 0 1 0 0 0 !3
4 4 0 1 0 1 0 2
!2 !2 0 0 1 0 0 !3
!2 !2 0 0 1 0 0 !3
4 6 0 0 1 1 1 2

! = 6! 4 = 2. D-I-D identifies

E [Y | X] = !2I1 ! 2I2 ! 2I3 + 6T + 2I3 & T

That is, even though the nonzero error term biases the coe"cients on the
individual and time mean e!ects, the treatment e!ect is e!ectively identi-
fied. Again, any weights V and W produce synthetic controls that e!ectively
identify the treatment e!ect.
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Example 8 (synthetic control setting WT =
+
0.1 0.9

,
) Suppose the

DGP is

Y0 Y I1 I2 I3 T d = I3 & T 'µ
!2 !2 1 0 0 0 0 !3
!2 !2 1 0 0 0 0 !3
4 4 1 0 0 1 0 2
4 4 0 1 0 0 0 3
4 4 0 1 0 0 0 3
0 0 0 1 0 1 0 !2
3.4 3.4 0 0 1 0 0 2.4
3.4 3.4 0 0 1 0 0 2.4
0.4 2.4 0 0 1 1 1 !1.6

! = 2.4! 0.4 = 2. D-I-D identifies

E [Y | X] = !
1

3
I1 + 2

1

3
I2 + 3

2

5
I3 + T ! 2I3 & T

Cross-sectional variation in the unobservable factors, 'µ, produces substan-
tial bias in the D-I-D estimate of the treatment e!ect. That is, it is so
underestimated the sign is reversed. On the other hand, since the test sub-
ject lies in a convex hull of the control subjects’ predicted outcomes, the
synthetic control strategy e!ectively identifies the treatment e!ect.

V fixed V estimated

V

-

../

I1
I2
!Y t=1i
!Y t=2i

0

112

3

445

0 0 0 0
0 0 0 0
0 0 0.5 0
0 0 0 0.5

6

778

3

445

0.335 0 0 0
0 0.037 0 0
0 0 0.332 0
0 0 0 0.296

6

778

WT
+
0.1 0.9

, +
0.1 0.9

,

! = Y33 !WT

9
Y13
Y23

:
2 2

where !Y t=1i =

2"

t=1

ktYit = Yi1 and !Y t=2i =

2"

t=1

ktYit = Yi2.7

7 Identification is also e!ective with #Y t=1i =

2$

t=1

ktYit =
1
2
(Yi1 + Yi2) (or, for that

matter, any convex combination of Yi1 and Yi2) in place of both #Y t=1i and #Y t=2i .
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Example 9 (synthetic control setting WT =
+
0.9 0.1

,
) Suppose the

DGP is

Y0 Y I1 I2 I3 T d = I3 & T 'µ
!2 !2 1 0 0 0 0 !3
!2 !2 1 0 0 0 0 !3
4 4 1 0 0 1 0 2
4 4 0 1 0 0 0 3
4 4 0 1 0 0 0 3
0 0 0 1 0 1 0 !2

!1.4 !1.4 0 0 1 0 0 !2.4
!1.4 !1.4 0 0 1 0 0 !2.4
3.6 5.6 0 0 1 1 1 !1.6

! = 5.6! 3.6 = 2. D-I-D identifies

E [Y | X] = !1
1

3
I1 + 1

1

3
I2 ! 2

2

5
I3 + T + 6I3 & T

Cross-sectional variation in the unobservable factors, 'µ, produces substan-
tial (overestimation) bias in the D-I-D estimate of the treatment e!ect. On
the other hand, since the test subject lies in a convex hull of the control sub-
jects’ predicted outcomes, the synthetic control strategy e!ectively identifies
the treatment e!ect.

V fixed V estimated

V

-

../

I1
I2
!Y t=1i
!Y t=2i

0

112

3

445

0 0 0 0
0 0 0 0
0 0 0.5 0
0 0 0 0.5

6

778

3

445

0.037 0 0 0
0 0.335 0 0
0 0 0.332 0
0 0 0 0.296

6

778

WT
+
0.9 0.1

, +
0.9 0.1

,

! = Y33 !WT

9
Y13
Y23

:
2 2

where !Y t=1i =

2"

t=1

ktYit = Yi1 and !Y t=2i =

2"

t=1

ktYit = Yi2.

Example 10 (both d-i-d and synthetic controls fail) Suppose the DGP
is almost identical to example 6 except that potential outcome without treat-
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ment is a!ected by the intervention (not conditionally mean independent).

Y0 Y I1 I2 I3 T d = I3 & T 'µ
2 2 1 0 0 0 0 1
2 2 1 0 0 0 0 1
3 3 1 0 0 1 0 1
2 2 0 1 0 0 0 1
2 2 0 1 0 0 0 1
3 3 0 1 0 1 0 1
2 2 0 0 1 0 0 1
2 2 0 0 1 0 0 1
5 5 0 0 1 1 1 1

! = 5! 5 = 0. As before, D-I-D identifies

E [Y | X] = 2I1 + 2I2 + 2I3 + T + 2I3 & T

but the treatment e!ect is not 2 but rather zero. Further, since mean condi-
tional independence fails, synthetic controls cannot e!ectively identify the
treatment e!ect either (also identifies 2 rather than zero).

Example 11 (treated lie outside convex hull of controls) Suppose the
DGP is the same as example 8 for individuals 1 and 2 but the weights are
WT =

+
1 1

,
(not a convex combination).

Y0 Y I1 I2 I3 T d = I3 & T 'µ
!2 !2 1 0 0 0 0 !3
!2 !2 1 0 0 0 0 !3
4 4 1 0 0 1 0 2
4 4 0 1 0 0 0 3
4 4 0 1 0 0 0 3
0 0 0 1 0 1 0 !2
2 2 0 0 1 0 0 0
2 2 0 0 1 0 0 0
4 6 0 0 1 1 1 0

! = 6! 4 = 2. D-I-D identifies

E [Y | X] = !
1

3
I1 + 2

1

3
I2 + 2I3 + T + 3I3 & T

but the treatment e!ect is 2 not 3. Since the test subject lies outside the
convex hull of the control subjects’ predicted outcomes, the synthetic control
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strategy ine!ectively identifies the treatment e!ect.

V fixed V estimated

V

-

/
I1
I2
!Yi

0

2

3

5
1
3 0 0
0 1

3 0
0 0 1

3

6

8

3

5
0.44 0 0
0 0.22 0
0 0 0.34

6

8

WT
+
0.435 0.565

,
"=
+
1 1

, +
1
3

2
3

,
"=
+
1 1

,

! = Y33 !WT

9
Y13
Y23

:
4.26 "= 2 4 23 "= 2

where !Yi =
2"

t=1

ktYit =
1
2 (Yi1 + Yi2). Hence, the bias in the treatment e!ect

is greater with synthetic controls than the bias for D-I-D.

3.6 Dynamic treatment e!ects

Suppose we have a panel data setting in which we observe individuals or
firms potentially adopting and leaving (binary) treatment through time.
What strategy can be employed to identify average treatment e!ects in
each time period?

3.6.1 Ignorable treatment with unobserved heterogeneity

One approach involves mean conditional independence of the history of
treatments given unobserved heterogeneity, ci0, and a set of covariates
{Xit : t = 1, . . . , T}.

E [Y0it | Di, Xi, ci] = E [Y0it | Xi, ci]
= !t0 +Xit%0 + ci0

and

E [Y1it | Di, Xi, ci] = E [Y1it | Xi, ci]
= E [Y0it | Xi, ci] + )t +Xit%1

where Di = {Di1, Di2, . . . DiT }, the entire sequence of treatments.8
Average treatment e!ects are identified via fixed e!ects. That is, estimate

via fixed e!ects

E [Yit | Di, Xi, ci] = ' (t)!t0+Xit%0+' (i) ci0+' (t)Dit" t+Dit
;
Xit !Xt

<
%1

8This discussion follows Wooldridge [2010].
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where ' (i) is an individual or firm fixed e!ect indicator function that
captures heterogeneity, ci0, ' (t) is a time fixed e!ect indicator function
that captures variation in treatment e!ects through time, " t = )t +Xt%1,
and Xt is the cross-sectional sample average of X during time t.9

In other words, panel data accommodate time-varying or dynamic treat-
ment e!ects. The cost of dynamic strategies is greater pressure on common
support as common support issues arise for each time period. Otherwise, we
settle for static interpretation of treatment e!ects where common support
is evaluated over the entire time frame.
Next, we explore some examples involving homogeneous treatment ef-

fects, heterogeneous treatment e!ects (in two variations), and limited com-
mon support.

3.6.2 Examples

Example 12 (homogeneous treatment e!ects) Suppose the DGP is

t i !t Dit Xit ci0 )t Y0it Y1it Yit TEit
1 1 1 0 !3 !2 1 !4 !9 !4 !5
1 2 1 0 0 2 1 3 4 3 1
1 3 1 0 2 0 1 3 8 3 5
1 4 1 1 !3 !2 1 !4 !9 !9 !5
1 5 1 1 0 2 1 3 4 4 1
1 6 1 1 2 0 1 3 8 8 5
2 1 2 0 !1 !2 3 !1 0 !1 1
2 2 2 0 0 2 3 4 7 4 3
2 3 2 0 3 0 3 5 14 5 9
2 4 2 1 !1 !2 3 !1 0 0 1
2 5 2 1 0 2 3 4 7 7 3
2 6 2 1 3 0 3 5 14 14 9
3 1 1 0 !3 !2 1 !4 !9 !4 !5
3 2 1 0 0 2 1 3 4 3 1
3 3 1 0 5 0 1 6 17 3 11
3 4 1 1 !3 !2 1 !4 !9 !9 !5
3 5 1 1 0 2 1 3 4 4 1
3 6 1 1 5 0 1 6 17 17 11

where %0 = 1, %1 = 2, and observed outcome is Yit = DitY1it+(1!Dit)Y0it.
Average treatment e!ects vary through time but are homogeneous across

9The average treatment e!ects are also identified via the fixed e!ects strategy if
DitXit is employed in place of Dit

!
Xit "Xt

"
.
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treatment subpopulations.

t ATE (t) ATT (t) ATUT (t)

1 1
3

1
3

1
3

2 4 13 4 13 4 13

3 2 13 2 13 2 13

unconditional 2 13 2 13 2 13

Since the individual e!ects for i = 1 and 4, i = 2 and 5, and i = 3 and
6 are the same, we employ a pooled regression with ' (t1), ' (t2), ' (t3),
Dit' (t1), Dit' (t2), Dit' (t3), ' (i14), ' (i25), plus covariates, Xit and
Dit

;
Xit !Xt

<
, with ' (i36) redundant and therefore excluded from the de-

sign matrix. A representative sample produces the following parameters.

variable ' (t1) ' (t2) ' (t3) Dit' (t1) Dit' (t2)
parameter !1 !2 !3 "1 = )1 +X1%1 "2 = )2 +X2%1
value 1 2 1 1

3 4 13

variable Dit' (t3) ' (i14) ' (i25) Xit Dit
;
Xit !Xt

<

parameter "3 = )3 +X3%1 c1,40 c2,50 %0 %1
value 2 13 !2 2 1 2

Estimated conditional average treatment e!ects are

t Xit

estATT (t,X)
= " t+

Dit
;
Xit !Xt

<
%1

estATUT (t,X)
= " t+

(1!Dit)
;
Xit !Xt

<
%1

estATE (t,X)
= " t+;

Xit !Xt

<
%1

1 !3 !5 !5 !5
1 0 1 1 1
1 2 5 5 5
2 !1 1 1 1
2 0 3 3 3
2 3 9 9 9
3 !3 !5 !5 !5
3 0 1 1 1
3 5 11 11 11
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Iterated expectations gives the estimated time-dependent but covariate-unconditional
average treatment e!ects

estATT (t) = EX [estATT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 1

,
%1

= " t +

(
i

Dit' (t)
;
Xit !Xt

<

(
i

Dit' (t)
%1

estATT (t = 1) =
1

3

estATT (t = 2) = 4
1

3

estATT (t = 3) = 2
1

3

estATUT (t) = EX [estATUT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 0

,
%1

= " t +

(
i

(1!Dit)' (t)
;
Xit !Xt

<

(
i

(1!Dit)' (t)
%1

estATUT (t = 1) =
1

3

estATUT (t = 2) = 4
1

3

estATUT (t = 3) = 2
1

3

and

estATE (t) = EX [estATE (t,X)]

= Pr (D = 1 | t)ATT (t) + Pr (D = 0 | t)ATT (t)
= " t

estATE (t = 1) =
1

3

estATE (t = 2) = 4
1

3

estATE (t = 3) = 2
1

3
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Estimated unconditional or static average treatment e!ects are

estATT = Et [estATT (t)]

=
(
t
Pr (t) estATT (t) = 2

1

3

estATUT = Et [estATT (t)]

=
(
t
Pr (t) estATUT (t) = 2

1

3

estATE = Et [estATE (t)]

=
(
t
Pr (t) estATE (t) = 2

1

3

Example 13 (heterogeneous treatment e!ects) Suppose everything re-
mains as in example 12 except treatment adoption, Dit. The DGP is

t i !t Dit Xit ci0 )t Y0it Y1it Yit TEit
1 1 1 1 !3 !2 1 !4 !9 !9 !5
1 2 1 0 0 2 1 3 4 3 1
1 3 1 0 2 0 1 3 8 3 5
1 4 1 0 !3 !2 1 !4 !9 !4 !5
1 5 1 0 0 2 1 3 4 3 1
1 6 1 1 2 0 1 3 8 8 5
2 1 2 0 !1 !2 3 !1 0 !1 1
2 2 2 0 0 2 3 4 7 4 3
2 3 2 0 3 0 3 5 14 5 9
2 4 2 1 !1 !2 3 !1 0 0 1
2 5 2 1 0 2 3 4 7 7 3
2 6 2 1 3 0 3 5 14 14 9
3 1 1 0 !3 !2 1 !4 !9 !4 !5
3 2 1 1 0 2 1 3 4 4 1
3 3 1 1 5 0 1 6 17 17 11
3 4 1 1 !3 !2 1 !4 !9 !9 !5
3 5 1 1 0 2 1 3 4 4 1
3 6 1 0 5 0 1 6 17 6 11

Period 2 involves full common support. However, periods 1 and 3 lack com-
mon support for Xit = 0 so even a fully representative sample leaves treat-
ment e!ects conditional on Xit = 0 unidentified. Of course, this also im-
pacts any average treatment e!ects in which we might be interested. There-
fore, all inferences are limited to local support for t = 1 or 3. Estimation
based on a representative sample of all the data produces the same parame-
ter estimates as in example 12 and the same parameter estimates as drawn
from a representative sample of the common support data (that is, exclud-
ing draws involving Xi1 = Xi3 = 0). Estimated average treatment e!ects
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based on a representative common support sample (full sample) are

estATE (t,Xit) estATT (t,Xit) estATUT (t,Xit) common

t (estATE (t)) (estATT (t)) (estATUT (t)) support

1 0 0 0 Xi1 = !3, 2

1
;
1
3

<
(0)

;
1
2

<

2 4 13 4 13 4 13 full

3 3 3 3 Xi3 = !3, 5

3
;
2 13
<

(2) (3)

estATE (Xit) estATT (Xit) estATUT (Xit)

(estATE) (estATT ) (estATUT )

local average 2 57 2 57 2 57

unconditional
average

;
2 13
< ;

2 13
< ;

2 13
<

Hence, treatment e!ects are not only time-dependent but also heterogeneous
with respect to treatment subpopulation. However, dynamic heterogeneity is
not identified because of lack of common support. Suppressing the time de-
pendence of treatment e!ects, the unconditional or static average treatment
e!ects enjoy full common support as depicted in parentheses of the last row
of the above table.

Example 14 (heterogeneity revisited) Suppose we enrich the above DGP
with two more individuals observed at Xit = 0 one treated and one untreated
in each period then the data enjoy full dynamic common support in each
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period.

t i !t Dit Xit ci0 )t Y0it Y1it Yit TEit
1 1 1 1 !3 !2 1 !4 !9 !9 !5
1 2 1 0 0 2 1 3 4 3 1
1 3 1 0 2 0 1 3 8 3 5
1 4 1 0 !3 !2 1 !4 !9 !4 !5
1 5 1 0 0 2 1 3 4 3 1
1 6 1 1 2 0 1 3 8 8 5
1 7 1 1 0 2 1 3 4 4 1
1 8 1 0 0 2 1 3 4 3 1
2 1 2 0 !1 !2 3 !1 0 !1 1
2 2 2 0 0 2 3 4 7 4 3
2 3 2 0 3 0 3 5 14 5 9
2 4 2 1 !1 !2 3 !1 0 0 1
2 5 2 1 0 2 3 4 7 7 3
2 6 2 1 3 0 3 5 14 14 9
2 7 2 1 0 2 1 4 7 7 3
2 8 2 0 0 2 1 4 7 4 3
3 1 1 0 !3 !2 1 !4 !9 !4 !5
3 2 1 1 0 2 1 3 4 4 1
3 3 1 1 5 0 1 6 17 17 11
3 4 1 1 !3 !2 1 !4 !9 !9 !5
3 5 1 1 0 2 1 3 4 4 1
3 6 1 0 5 0 1 6 17 6 11
3 7 1 1 0 2 1 3 4 4 1
3 8 1 0 0 2 1 3 4 3 1

Average treatment e!ects vary through time and time-dependent treatment
e!ects are heterogeneous across treatment subpopulations.

t ATE (t) ATT (t) ATUT (t)

1 1
2

1
3

3
5

2 4 4 4

3 2 1 45 2 13

unconditional 2 16 2 16 2 16

We again pool parameters as individuals 2, 5, 7, and 8 involve the same
heterogeneity, ci0 = 2. A representative sample produces the following pa-
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rameters.

variable ' (t1) ' (t2) ' (t3) Dit' (t1) Dit' (t2) Dit' (t3)
parameter !1 !2 !3 "1 "2 "3
value 1 2 1 1

2 4 2

variable ' (i14) ' (i2578) Xit Dit
;
Xit !Xt

<

parameter c1,40 c2,50 %0 %1
value !2 2 1 2

Estimated conditional (on time and covariate) average treatment e!ects
are the same as example 12. Iterated expectations gives the estimated time-
dependent but covariate-unconditional average treatment e!ects. These time-
dependent average e!ects are heterogeneous across treatment subpopula-
tions.

estATT (t) = EX [estATT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 1

,
%1

= " t +

(
i

Dit' (t)
;
Xit !Xt

<

(
i

Dit' (t)
%1

estATT (t = 1) =
1

3
estATT (t = 2) = 4

estATT (t = 3) = 1
4

5

estATUT (t) = EX [estATUT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 0

,
%1

= " t +

(
i

(1!Dit)' (t)
;
Xit !Xt

<

(
i

(1!Dit)' (t)
%1

estATUT (t = 1) =
3

5
estATUT (t = 2) = 4

estATUT (t = 3) = 2
1

3
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and

estATE (t) = EX [estATE (t,X)]

= Pr (D = 1 | t)ATT (t) + Pr (D = 0 | t)ATT (t)
= " t

estATE (t = 1) =
1

2
estATE (t = 2) = 4

estATE (t = 3) = 2

Estimated unconditional or static average treatment e!ects are

estATT = Et [estATT (t)]

=
(
t
Pr (t) estATT (t) = 2

1

6

estATUT = Et [estATT (t)]

=
(
t
Pr (t) estATUT (t) = 2

1

6

estATE = Et [estATE (t)]

=
(
t
Pr (t) estATE (t) = 2

1

6

Example 15 (limited common support) Consider the following mod-
ified DGP.

t i !t Dit Xit ci0 )t Y0it Y1it Yit TEit
1 1 1 1 !3 !2 1 !4 !9 !4 !5
1 2 1 0 0 2 1 3 4 3 1
1 3 1 0 8 0 1 9 26 3 17
1 4 1 0 !3 !2 1 !4 !9 !9 !5
1 5 1 0 0 2 1 3 4 4 1
1 6 1 0 2 0 1 3 8 8 5
2 1 2 0 !1 !2 3 !1 0 !1 1
2 2 2 0 0 2 3 4 7 4 3
2 3 2 0 3 0 3 5 14 5 9
2 4 2 1 !1 !2 3 !1 0 0 1
2 5 2 1 0 2 3 4 7 7 3
2 6 2 1 3 0 3 5 14 14 9
3 1 1 0 !3 !2 1 !4 !9 !4 !5
3 2 1 1 0 2 1 3 4 3 1
3 3 1 1 5 0 1 6 17 3 11
3 4 1 1 !3 !2 1 !4 !9 !9 !5
3 5 1 1 0 2 1 3 4 4 1
3 6 1 1 5 0 1 6 17 17 11
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Ignoring common support, a representative sample produces the following
parameter estimates

variable ' (t1) ' (t2) ' (t3) Dit' (t1) Dit' (t2) Dit' (t3)
parameter !1 !2 !3 "1 "2 "3
value 1 2 1 2 13 4 13 2 13

variable ' (i14) ' (i25) Xit Dit
;
Xit !Xt

<

parameter c1,40 c2,5,7,80 %0 %1
value !2 2 1 2

and unidentified (due to lack of support) average treatment e!ects

estATT (t) = EX [estATT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 1

,
%1

= " t +

(
i

Dit' (t)
;
Xit !Xt

<

(
i

Dit' (t)
%1

estATT (t = 1) = !5

estATT (t = 2) = 4
1

3

estATT (t = 3) = 3
4

5

estATUT (t) = EX [estATUT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 0

,
%1

= " t +

(
i

(1!Dit)' (t)
;
Xit !Xt

<

(
i

(1!Dit)' (t)
%1

estATUT (t = 1) = 3
4

5

estATUT (t = 2) = 4
1

3
estATUT (t = 3) = !5

and

estATE (t) = EX [estATE (t,X)]

= Pr (D = 1 | t)ATT (t) + Pr (D = 0 | t)ATT (t)
= " t

estATE (t = 1) = 2
1

3

estATE (t = 2) = 4
1

3

estATE (t = 3) = 2
1

3
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Unidentified (due to lack of common support) estimated unconditional or
static average treatment e!ects are

estATT = Et [estATT (t)]

=
(
t
Pr (t) estATT (t) = 3

estATUT = Et [estATT (t)]

=
(
t
Pr (t) estATUT (t) = 3

estATE = Et [estATE (t)]

=
(
t
Pr (t) estATE (t) = 3

Common support is challenging in this example. X21 = 0, X51 = 0, X23 =
0, and X53 = 0 lack dynamic common support but satisfy static common
support, while X31 = 8, X61 = 2, X33 = 5, and X63 = 5 lack both dynamic
and static common support. Fixed e!ects estimation based on a represen-
tative sample satisfying dynamic common support results in redundancy of
' (i14), consequently it is dropped. The parameter estimates are

variable ' (t1) ' (t2) ' (t3) Dit' (t1) Dit' (t2) Dit' (t3)
parameter !1 !2 !3 "1 "2 "3
value 1

2
1
2

1
2 !5 4 13 !5

variable ' (i25) Xit Dit
;
Xit !Xt

<

parameter c7,80 %0 %1
value 3 12 1 12 2

and average treatment e!ects

estATT (t) = EX [estATT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 1

,
%1

= " t +

(
i

Dit' (t)
;
Xit !Xt

<

(
i

Dit' (t)
%1

estATT (t = 1, Xi1 = !3) = !5

estATT (t = 2) = 4
1

3
estATT (t = 3, Xi3 = !3) = !5
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estATUT (t) = EX [estATUT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 0

,
%1

= " t +

(
i

(1!Dit)' (t)
;
Xit !Xt

<

(
i

(1!Dit)' (t)
%1

estATUT (t = 1, Xi1 = !3) = !5

estATUT (t = 2) = 4
1

3
estATUT (t = 3, Xi3 = !3) = !5

and

estATE (t) = EX [estATE (t,X)]

= Pr (D = 1 | t)ATT (t) + Pr (D = 0 | t)ATT (t)
= " t

estATE (t = 1, Xi1 = !3) = !5

estATE (t = 2) = 4
1

3
estATE (t = 3, Xi3 = !3) = !5

Estimated unconditional or static average treatment e!ects based on the
dynamic common support data are

estATT (Xi1 = !3, Xi2 = !1, Xi2 = 0, Xi2 = 3, Xi3 = !3)
= Et [estATT (t)]

=
(
t
Pr (t) estATT (t) =

3

5

estATUT (Xi1 = !3, Xi2 = !1, Xi2 = 0, Xi2 = 3, Xi3 = !3)
= Et [estATT (t)]

=
(
t
Pr (t) estATUT (t) =

3

5

estATE (Xi1 = !3, Xi2 = !1, Xi2 = 0, Xi2 = 3, Xi3 = !3)
= Et [estATE (t)]

=
(
t
Pr (t) estATE (t) =

3

5

Alternatively, estimated unconditional or static average treatment e!ects
based on the static common support data (that is, employing observations
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involving Xit = 0) are

estATT

&
Xi1 = !3, Xi1 = 0, Xi2 = !1,

Xi2 = 0, Xi2 = 3, Xi3 = !3, Xi3 = 0

'
=

5

7

estATUT

&
Xi1 = !3, Xi1 = 0, Xi2 = !1,

Xi2 = 0, Xi2 = 3, Xi3 = !3, Xi3 = 0

'
=

5

7

estATE

&
Xi1 = !3, Xi1 = 0, Xi2 = !1,

Xi2 = 0, Xi2 = 3, Xi3 = !3, Xi3 = 0

'
=

5

7

where parameter estimates are

variable ' (t1) ' (t2) ' (t3) Dit' (t1) Dit' (t2) Dit' (t3)
parameter !1 !2 !3 "1 "2 "3
value 1 2 1 !2 4 13 !2

variable ' (i14) ' (i25) Xit Dit
;
Xit !Xt

<

parameter c1,40 c2,7,80 %0 %1
value !2 2 1 2

If one were to erroneously (due to lack of dynamic common support) at-
tempt to infer dynamic treatment e!ects from a representative sample the
results are heterogeneous.

estATT (t) = EX [estATT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 1

,
%1

= " t +

(
i

Dit' (t)
;
Xit !Xt

<

(
i

Dit' (t)
%1

estATT (t = 1) = !5

estATT (t = 2) = 4
1

3
estATT (t = 3) = !1

estATUT (t) = EX [estATUT (t,X)]

= " t + E
+
Xit !Xt | t,Dit = 0

,
%1

= " t +

(
i

(1!Dit)' (t)
;
Xit !Xt

<

(
i

(1!Dit)' (t)
%1

estATUT (t = 1) = !1

estATUT (t = 2) = 4
1

3
estATUT (t = 3) = !5
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and

estATE (t) = EX [estATE (t,X)]

= Pr (D = 1 | t)ATT (t) + Pr (D = 0 | t)ATT (t)
= " t

estATE (t = 1) = !2

estATE (t = 2) = 4
1

3
estATE (t = 3) = !2

To summarize, panel data a!ord time-varying or dynamic treatment ef-
fects. The identification strategy discussed above is similar to static ignor-
able treatment strategies except mean conditional independence involves
the entire history of treatment. Inferences regarding dynamic treatment
e!ects impose greater strain on common support as overlapping support
applies to each time period. Otherwise, we’re left with a static interpreta-
tion of treatment e!ects where the common support demands apply to the
entire time frame rather than period-by-period.

3.6.3 Dynamic ignorability identification strategy

Dynamic ignorability is an alternative dynamic treatment e!ect identifi-
cation strategy to the ignorable treatment fixed e!ects with unobservable
heterogeneity strategy outlined above. Identification involves a condition
plausible in many settings.

Pr
;
Dit | Y0it, Y1it, Xt

i

<
= Pr

;
Dit | Xt

i

<

where Xt
i is the history of covariates, observed outcomes, and treatments

up to time t. In some settings, it’s plausible that the past history is so
informative that current potential outcomes are not conditionally informa-
tive of treatment adoption. Matching on p (Xt

i ) or general matching on X
t
i ,

propensity score weighting, or (nonparametric) regression can be utilized
to identify ATE (Xt

i ), ATT (X
t
i ), and ATUT (X

t
i ).

Consider nonparametric identification with dynamic ignorability (akin to
the key identifying condition employed by Rosenbaum and Rubin’s propen-
sity score matching). The di!erence in treated and untreated observable
outcomes is

E
+
Y1it | Xt

i , Dit = 1
,
! E

+
Y0it | Xt

i , Dit = 0
,

By Bayes rule (iterated expectations) this can be rewritten

E [DitY1it | Xt
i ]

Pr (Dit = 1 | Xt
i )
!
E [(1!Dit)Y0it | Xt

i ]

Pr (Dit = 0 | Xt
i )

=
E [Dit | Y1it, Xt

i ]E [Y1it | Xt
i ]

Pr (Dit = 1 | Xt
i )

!
E [(1!Dit) | Y0it, Xt

i ]E [Y0it | Xt
i ]

Pr (Dit = 0 | Xt
i )
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Dynamic ignorability leads to

E [Dit | Xt
i ]E [Y1it | Xt

i ]

Pr (Dit = 1 | Xt
i )

!
E [(1!Dit) | Xt

i ]E [Y0it | Xt
i ]

Pr (Dit = 0 | Xt
i )

= E
+
Y1it ! Y0it | Xt

i

,
= ATE

;
Xt
i

<

By an analogous argument average treatment on the treated and un-
treated are also identified. The counterfactuals are

E
+
Y0it | Xt

i , Dit = 1
,
=

E [Dit | Y0it, Xt
i ]E [Y0it | Xt

i ]

Pr (Dit = 1 | Xt
i )

=
E [Dit | Xt

i ]E [Y0it | Xt
i ]

Pr (Dit = 1 | Xt
i )

= E
+
Y0it | Xt

i

,

and

E
+
Y1it | Xt

i , Dit = 0
,
=

E [(1!Dit) | Y1it, Xt
i ]E [Y1it | Xt

i ]

Pr (Dit = 0 | Xt
i )

=
E [(1!Dit) | Xt

i ]E [Y1it | Xt
i ]

Pr (Dit = 0 | Xt
i )

= E
+
Y1it | Xt

i

,

The above identification strategy applies to nonparametric regression (re-
gression adjustment) and matching approaches. For treatment on treated
and untreated, unconditional expectations are determined by creating matches
(for matching strategies) on the treated and untreated subsamples, respec-
tively, and summing over Xt

i or p (X
t
i ) $ Pr (Dit = 1 | Xt

i ) for propensity
score matching.
Propensity score weighting strategies follow a similar development.

E
+;
Dit ! p

;
Xt
i

<<
Yit | Xt

i

,

= E

9
(Dit ! p (Xt

i ))
& (DitY1it + (1!Dit)Y0it) | Xt

i

:

Expanding gives

E
+;
DitY1it ! p

;
Xt
i

<
DitY1it ! p

;
Xt
i

<
(1!Dit)Y0it

<
| Xt

i

,

where Dit (1!Dit) = 0. Factoring constants, p (Xt
i ), outside the expecta-

tion operation and collecting terms leads to

E
+
DitY1it | Xt

i

,
! p

;
Xt
i

<
E
+
DitY1it | Xt

i

,
! p

;
Xt
i

<
E
+
(1!Dit)Y0it | Xt

i

,

=
;
1! p

;
Xt
i

<<
E
+
DitY1it | Xt

i

,
! p

;
Xt
i

< ;
E
+
Y0it | Xt

i

,
! E

+
DitY0it | Xt

i

,<
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Applying iterated expectations gives

=
;
1! p

;
Xt
i

<<= Pr (Dit = 1 | Xt
i )E [DitY1it | Xt

i , Dit = 1]
+Pr (Dit = 0 | Xt

i )E [DitY1it | Xt
i , Dit = 0]

>

!p
;
Xt
i

<& E [Y0it | Xt
i ]! Pr (Dit = 1 | Xt

i )E [DitY0it | Xt
i , Dit = 1]

!Pr (Dit = 0 | Xt
i )E [DitY0it | Xt

i , Dit = 0]

'

Recognizing Pr (Dit = 1 | Xt
i ) $ p (Xt

i ) and E [DitYkit | Xt
i , Dit = 0] = 0

for k = 0 or 1 leads to

p
;
Xt
i

< ;
1! p

;
Xt
i

<<
E
+
Y1it | Xt

i , Dit = 1
,
!p
;
Xt
i

< ;
1! p

;
Xt
i

<<
E
+
Y0it | Xt

i , Dit = 1
,

Employing mean conditional independence of potential outcomes with and
without treatment yields

p
;
Xt
i

< ;
1! p

;
Xt
i

<<
E
+
Y1it | Xt

i

,
! p

;
Xt
i

< ;
1! p

;
Xt
i

<<
E
+
Y0it | Xt

i

,

= p
;
Xt
i

< ;
1! p

;
Xt
i

<<
E
+
Y1it ! Y0it | Xt

i

,

= p
;
Xt
i

< ;
1! p

;
Xt
i

<<
ATE

;
Xt
i

<

Hence,

ATE
;
Xt
i

<
=
E [(Dit ! p (Xt

i ))Yit | Xt
i ]

p (Xt
i ) (1! p (Xt

i ))

An alternative identification demonstration with multiple combined steps
is below.

E
+;
Dit ! p

;
Xt
i

<<
Yit | Xt

i

,

= E

9
(Dit ! p (Xt

i ))
& (DitY1it + (1!Dit)Y0it)

| Xt
i

:

= Pr
;
Dit = 1 | Xt

i

<
&

E

9
(Dit ! p (Xt

i ))
& (DitY1it + (1!Dit)Y0it)

| Xt
i , Dit = 1

:

+Pr
;
Dit = 0 | Xt

i

<
&

E

9
(Dit ! p (Xt

i ))
& (DitY1it + (1!Dit)Y0it)

| Xt
i , Dit = 0

:

= Pr
;
Dit = 1 | Xt

i

<
&

E

9
(1! p (Xt

i ))
& (1Y1it + (1! 1)Y0it)

| Xt
i , Dit = 1

:

+Pr
;
Dit = 0 | Xt

i

<
&

E

9
(0! p (Xt

i ))
& (0Y1it + (1! 0)Y0it)

| Xt
i , Dit = 0

:

Hence,
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E
+;
Dit ! p

;
Xt
i

<<
Yit | Xt

i

,

= Pr
;
Dit = 1 | Xt

i

< ;
1! p

;
Xt
i

<<
E
+
Y1it | Xt

i , Dit = 1
,

!p
;
Xt
i

<
Pr
;
Dit = 0 | Xt

i

<
E
+
Y0it | Xt

i , Dit = 0
,

= p
;
Xt
i

< ;
1! p

;
Xt
i

<<
E
+
Y1it ! Y0it | Xt

i

,

= p
;
Xt
i

< ;
1! p

;
Xt
i

<<
ATE

;
Xt
i

<

ATE
;
Xt
i

<
=

E [(Dit ! p (Xt
i ))Yit | Xt

i ]

p (Xt
i ) (1! p (Xt

i ))

Dynamic ignorability produces the following treatment-subpopulation es-
timands.

E

9
(Dit ! p (Xt

i ))Yit
1! p (Xt

i )
| Xt

i

:
= p

;
Xt
i

<
E
+
Y1it ! Y0it | Xt

i

,

= Pr
;
Dit = 1 | Xt

i , Y1it
<
E
+
Y1it | Xt

i

,

!Pr
;
Dit = 1 | Xt

i , Y0it
<
E
+
Y0it | Xt

i

,

= E
+
Dit (Y1it ! Y0it) | Xt

i

,

= p
;
Xt
i

<
E
+
Y1it ! Y0it | Xt

i , Dit = 1
,

= p
;
Xt
i

<
ATT

;
Xt
i

<

ATT
;
Xt
i

<
= E

9
(Dit ! p (Xt

i ))Yit
1! p (Xt

i )
| Xt

i

:
/p
;
Xt
i

<

and

E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i )
| Xt

i

:
=

;
1! p

;
Xt
i

<<
E
+
Y1it ! Y0it | Xt

i

,

= Pr
;
Dit = 0 | Xt

i , Y1it
<
E
+
Y1it | Xt

i

,

!Pr
;
Dit = 0 | Xt

i , Y0it
<
E
+
Y0it | Xt

i

,

= E
+
(1!Dit) (Y1it ! Y0it) | Xt

i

,

=
;
1! p

;
Xt
i

<<
E
+
Y1it ! Y0it | Xt

i , Dit = 0
,

=
;
1! p

;
Xt
i

<<
ATUT

;
Xt
i

<

ATUT
;
Xt
i

<
= E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i )
| Xt

i

:
/
;
1! p

;
Xt
i

<<

Iterated expectations leads to unconditional average treatment e!ects.

ATE = EX

9
E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i ) (1! p (Xt
i ))

| Xt
i

::

= E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i ) (1! p (Xt
i ))

:
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EX

9
E

9
(Dit ! p (Xt

i ))Yit
1! p (Xt

i )
| Xt

i

::
= EX

+
p
;
Xt
i

<
ATT

;
Xt
i

<,

= EX
+
DitATT | Xt

i

,

E

9
(Dit ! p (Xt

i ))Yit
1! p (Xt

i )

:
= Pr (Dit = 1)ATT

ATT = E

9
(Dit ! p (Xt

i ))Yit
1! p (Xt

i )

:
/Pr (Dit = 1)

and

EX

9
E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i )
| Xt

i

::
= EX

+;
1! p

;
Xt
i

<<
ATUT

;
Xt
i

<,

= EX
+
(1!Dit)ATUT | Xt

i

,

E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i )

:
= Pr (Dit = 0)ATUT

ATUT = E

9
(Dit ! p (Xt

i ))Yit
p (Xt

i )

:
/Pr (Dit = 0)

However, in settings where once adopted treatment is rarely dropped,
common support is likely to be extremely limited or even nonexistent. This
trade-o! between satisfying ignorability and overlapping support is com-
mon to all treatment e!ect identification strategies (for instance, more re-
gressors eases ignorability but challenges support and vice versa) but seems
especially perplexing with dynamic ignorability.
Next, we explore instrumental variable strategies.

3.7 Local average treatment e!ects

The above example suggests the conditions for ignorable treatment may
severely limit identification and estimation of treatment e!ects. A com-
mon complementary approach to expanding the set of regressors (ignorable
treatment) is to employ instrumental variables. Instrumental variables, Z,
are variables that are associated with treatment choice, D, but unrelated
to the outcomes with and without treatment, Y1 and Y0. The idea is we
can manipulate treatment choice with the instrument but leave outcomes
una!ected. This permits extrapolation from observables to counterfactuals,
E [Y1 | D = 0] and E [Y0 | D = 1].
If outcomes with treatment, Y1, and outcomes without treatment, Y0, are

independent of a binary instrument, Z, then the discrete marginal treat-
ment e!ect or local average treatment e!ect,

LATE = E [Y1 ! Y0 | D1 !D0 = 1]
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where D1 = (D | Z = 1) and D0 = (D | Z = 0) equals

E [Y | Z = 1]! E [Y | Z = 0]
E [D | Z = 1]! E [D | Z = 0]

This quantity (ratio) can be estimated from observables, therefore LATE
is identified. In fact, this quantity (estimand) is estimated by standard
two-stage instrumental variable estimation (2SLS-IV ).

3.7.1 2SLS-IV estimation

Suppose we envision the regression in error form

Y = !+ (D + $

but E [$ | D] "= 0, then OLS provides inconsistent parameter estimates
but instrumental variable estimation can rectify the problem. As the name
suggests, 2SLS-IV estimation involves two stages of projections. The first
stage puts the explanatory variables of interest (here, treatment, D) in the
columns of the instruments, Z. In other words, we construct10

!D = Z
;
ZTZ

<!1
ZT ?D

= PZ ?D

where ?D = D !D is the estimated mean deviation. Then, we estimate

E [Y | D] = a+ b !D

where the estimate of ( is

b =
;
XTX

<!1
XT ?Y

and X = !D and ?Y = Y ! Y . Since
;
XTX

<!1
XT ?Y =

$
?DTPZPZ ?D

%!1 ?DTPZPZ ?Y

=
$
PZ ?D

%!1 $ ?DTPZ

%!1 ?DTPZPZ ?Y

=
$
PZ ?D

%!1
PZ ?Y

=
1
nZ

T ?Y
1
nZ

T ?D
1
nZ

T !Y
1
nZ

T !D
estimates

E[!Y |Z=1]!E[!Y |Z=0]
E[ !D|Z=1]!E[ !D|Z=0]

= E[Y |Z=1]!E[Y |Z=0]
E[D|Z=1]!E[D|Z=0] = LATE. It’s

time for an example.

10To simplify matters, we work with a single variable by utilizing mean deviations
of all variables. We discuss 2SLS-IV estimation more generally in the appendix to this
chapter.
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3.7.2 IV example 1

Suppose the DGP is

Y D Y1 Y0 Z
15 1 15 10 1
15 1 15 10 0
10 1 10 10 1
10 0 10 10 0
10 0 5 10 1
10 0 5 10 0

IV example 1: LATE = 0

If we estimate by OLS we find

E [Y | D] = 10 + 3
1

3
D

suggesting the average treatment e!ect is 3 13 . As treatment is not ignorable,
this is a false conclusion,

ATE = E [Y1 ! Y0] = 10! 10 = 0

Now, if we think of the first two rows as state 1 and successive pairs of
rows similarly where treatment, D, is potentially manipulated via the in-
strument, Z, then we can estimate LATE via 2SLS-IV. With this DGP,
LATE is identified for only state 2 (rows 3 and 4) since D1 ! D0 = 1
(the compliers – individuals induced to select treatment when Z = 1
but not when Z = 0). State 1 represents individuals who always select
treatment and state 3 represents individuals who never select treatment.
Clearly, LATE = E[Y |Z=1]!E[Y |Z=0]

E[D|Z=1]!E[D|Z=0] =
10!10
2/3!1/3 = 0 and 2SLS-IV esti-

mates
1
nZ

T !Y
1
nZ

T !D
= 0, in large samples. Hence, for this DGP and instrument,

LATE = ATE. but we should not expect this, in general, as the next
examples illustrate.

3.7.3 IV example 2

Suppose the DGP is

Y D Y1 Y0 Z
15 1 15 10 1
10 0 15 10 0
10 1 10 10 1
10 1 10 10 0
10 0 5 10 1
10 0 5 10 0

IV example 2: LATE = 5
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OLS estimates
E [Y | D] = 10 + 1

2

3
D

which again fails to identify the average treatment e!ect, ATE = 0. Now,
the compliers are reflected by state 1 alone, and LATE = 5 while ATE

continues to be zero. Also, 2SLS-IV estimates
1
nZ

T !Y
1
nZ

T !D
= 5 in large samples.

3.7.4 IV example 3

The DGP along with the instrument identifies the particular marginal
treatment e!ect. Consider another variation

Y D Y1 Y0 Z
15 1 15 10 1
15 1 15 10 0
10 0 10 10 1
10 0 10 10 0
5 1 5 10 1
10 0 5 10 0

IV example 3: LATE = !5

OLS again supplies an inconsistent estimate of ATE.

E [Y | D] = 10 + 1
2

3
D

As the compliers are individuals in state 3, LATE = !5 and 2SLS-IV
estimates

1
nZ

T !Y
1
nZ

T !D
= !5 in large samples.

3.7.5 IV example 4

Sometimes LATE equals the average treatment e!ect on the treated. If no
one adopts treatment when the instrument value equals zero, then LATE =
ATT . Consider the DGP

Y D Y1 Y0 Z
15 1 15 10 1
10 0 15 10 0
20 0 20 20 1
20 0 20 20 0
10 1 10 10 1
10 0 10 10 0

IV example 4: LATE = ATT

OLS estimates
E [Y | D] = 15! 2.5D
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but ATE = 1 23 (opposite directions, or a Simpson’s paradox result) and
ATUT = 1.25. LATE = 2.5 is defined by states 1 and 3 and since
Pr (D = 1 | Z = 0) = 0, LATE = ATT = E [Y1 ! Y0 | D = 1] = 2.5. And,

2SLS-IV estimates
1
nZ

T !Y
1
nZ

T !D
= 2.5 in large samples.

3.7.6 IV example 5

LATE equals the average treatment e!ect on the untreated if everyone
adopts treatment when the instrument equals unity. Consider the DGP

Y D Y1 Y0 Z
15 1 15 10 1
10 0 15 10 0
20 1 20 10 1
20 1 20 10 0
10 1 10 10 1
10 0 10 10 0

IV example 5: LATE = ATUT

OLS estimates
E [Y | D] = 10 + 6.25D

but ATE = 5 and ATT = 6.25. LATE = 2.5 is defined by states 1 and 3
and since Pr (D = 1 | Z = 1) = 1, LATE = ATUT = E [Y1 ! Y0 | D = 1] =

2.5. And, 2SLS-IV estimates
1
nZ

T !Y
1
nZ

T !D
= 2.5 in large samples.

3.7.7 IV example 6

Unfortunately, if some individuals are induced to accept treatment when
the instrument changes to one but others are induced to move away from
treatment with the same instrumental variable manipulation, then extant
instrumental variable strategies break down. Uniformity is a condition for
IV identification of LATE, any defiers result in treatment e!ect identifi-
cation failure. We illustrate the problem once again with a simple binary
instrument. Consider the DGP

Y D Y1 Y0 Z
10 1 10 5 1
5 0 10 5 0
10 1 10 5 1
10 1 10 5 0
10 1 10 5 1
5 0 10 5 0
!5 0 10 !5 1
10 1 10 !5 0

IV example 6: defiers
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OLS estimates
E [Y | D] = 1

2

3
+ 8

1

3
D

but ATE = 7.5, ATT = 7, and ATUT = 8 13 . LATE = 5 is defined by

states 1 and 3 but state 4 violates uniformity. 2SLS-IV estimates
1
nZ

T !Y
1
nZ

T !D
=

!5 in large samples, a gross misstatement of the treatment e!ect as the
treatment e!ect for every individual is positive!
This illustrates the trouble two-way flows cause in the identification of

treatment e!ects. Extant IV strategies rely on uniformity either toward
treatment or away from treatment by all individuals, not some individu-
als toward and others away from treatment in response to changes in the
instrument. Further, this simple binary instrumental variable strategy iden-
tifies the local average treatment e!ect for an unidentified subpopulation
of compliers. Nonetheless, binary IV identifies marginal treatment e!ects
for this subpopulation, a parameter surely of some interest.

3.7.8 Linear IV with covariates

What treatment e!ect does linear two-stage least squares instrumental vari-
ables (2SLS-IV ) identify when covariates are present? We’ll continue with
a binary instrument, Z, where 2SLS-IV identifies LATE, an average mar-
ginal treatment e!ect, in the absence of covariates. However, in the presence
of covariates 2SLS-IV identifies LATE only for a special case. Let potential
outcomes be

Yj = X(j + Vj , j = 0, 1

We present two examples to illustrate special cases. In the first case,
treatment e!ects are homogeneous and 2SLS-IV as well asOLS identify the
treatment e!ect. In the second case, treatment e!ects are heterogeneous but
E [VjZ | Xk = 1] = 0 and E [Vj | Xk = 1] = 0 for j = 0, 1 and all xk where
X denotes combinations of regressors such that Xk = 1 when combination
k of regressor values is the row in play and zero otherwise (in other words,
the regressors are treated as K mutually exclusive indicator variables and
X is a fixed design matrix). These conditions allow LATE (Xk = 1) to be
identified by 2SLS-IV conditional on Xk = 1 but not by OLS.
A third example illustrates a more general case in which 2SLS-IV does

not identify LATE (Xk = 1) or LATE. 2SLS-IV identifies a weighted av-
erage of e!ects defined by IV estimation conditional on Xk = 1 where

EX [E [VjZ | Xk = 1]] = E [VjZ] = 0

and
EX [E [Vj | Xk = 1]] = E [Vj ] = 0

for j = 0, 1 but
E [VjZ | Xk = 1] "= 0
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for some xk and j = 0 or 1. We’ve written these more general conditions
in iterated expectation form to emphasize example two is a special case.
The treatment e!ect identified via 2SLS-IV is

% =
EX [E [Y · (E [D | X,Z]! E [D | X])] | Xk = 1]
EX [E [D · (E [D | X,Z]! E [D | X])] | Xk = 1]

=
EX [* (Xk = 1) % (Xk = 1)]

EX [* (Xk = 1)]

=
E [Y · (E [D | X,Z]! E [D | X])]
E [D · (E [D | X,Z]! E [D | X])]

where

* (Xk = 1) = E [E [D | X,Z] · (E [D | X,Z]! E [D | X]) | Xk = 1]

are the weights and

% (Xk = 1) =
E [Y · (E [D | X,Z]! E [D | X]) | Xk = 1]
E [D · (E [D | X,Z]! E [D | X]) | Xk = 1]

are the 2SLS-IV e!ects identified at each Xk = 1.11 Hence, the 2SLS-IV
treatment e!ect depends on the instrumental variables and the covariates.

Example 16 (homogeneous treatment e!ect) Suppose we have the fol-
lowing DGP

Y Y1 Y0 X1 X2 X3 D V1 V0 Z
6 6 4 1 0 0 1 1 3 1
4 6 4 1 0 0 0 1 3 0
4 4 !2 1 0 0 1 !1 !3 1
!2 4 !2 1 0 0 0 !1 !3 0
4 4 4 0 1 0 1 !2 2 1
4 4 4 0 1 0 0 !2 2 0
8 8 0 0 1 0 1 2 !2 1
0 8 0 0 1 0 0 2 !2 0
10 10 4 0 0 1 1 3 1 1
4 10 4 0 0 1 0 3 1 0
4 4 2 0 0 1 1 !3 !1 1
2 4 2 0 0 1 0 !3 !1 0

where Y = DY1+(1!D)Y0 and importantly, ignorable treatment is satis-
fied as E [Yj | X,D] = E [Yj | X] for all Xk and j = 0, 1 so that OLS identi-
fies the homogeneous average treatment e!ect as well as E [VjZ | Xk = 1] =

11 See Angrist and Imbens [1995] for an even more general treatment.
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0 and E [Vj | Xk = 1] = 0 for j = 0, 1 and all Xk is satisfied so that 2SLS-
IV identifies the same homogeneous treatment e!ect. Various conditional
and unconditional average treatment e!ects are as follows.

conditional
TE X1 = 1 X2 = 1 X3 = 1 unconditional
OLS 4 4 4 4
LATE 4 4 4 4

2SLS ! IV 4 4 4 4
* (Xk = 1) 0.25 0.25 0.25
ATT 4 4 4 4
ATUT 4 4 4 4
ATE 4 4 4 4

Average treatment e!ects are all equal including e!ects identified by 2SLS!
IV , LATE, and OLS.

Example 17 (2SLS-IV e!ect = LATE) Suppose we have the follow-
ing DGP

Y Y1 Y0 X1 X2 X3 D V1 V0 Z
6 6 4 1 0 0 1 1 3 1
4 6 4 1 0 0 0 1 3 0
4 4 !2 1 0 0 1 !1 !3 1
4 4 !2 1 0 0 1 !1 !3 0
8 8 4 0 1 0 1 2 2 1
4 8 4 0 1 0 0 2 2 0
0 4 0 0 1 0 0 !2 !2 1
0 4 0 0 1 0 0 !2 !2 0
10 10 4 0 0 1 1 3 1 1
4 10 4 0 0 1 0 3 1 0
2 4 2 0 0 1 0 !3 !1 1
2 4 2 0 0 1 0 !3 !1 0

where E [VjZ | Xk = 1] = 0 and E [Vj | Xk = 1] = 0 for j = 0, 1 and all Xk
is satisfied so that 2SLS-IV identifies the same average treatment e!ect as
LATE(Xk = 1) and LATE. Various conditional and unconditional average
treatment e!ects are as follows.

conditional
TE X1 = 1 X2 = 1 X3 = 1 unconditional
OLS 0.6667 6.6667 7.3333 4.1143
LATE 2 4 6 4

2SLS ! IV 2 4 6 4
* (Xk = 1) 0.0625 0.0625 0.0625
ATT 4.6667 4 6 4.8
ATUT 2 4 3.3333 3.4286
ATE 4 4 4 4
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Average treatment e!ects identified by 2SLS ! IV equal LATE but OLS
fails to identify any (standard) average treatment e!ect.

Example 18 (2SLS-IV e!ect "= LATE) Suppose we have the follow-
ing DGP

Y Y1 Y0 X1 X2 X3 D V1 V0 Z
6 6 4 1 0 0 1 1 3 1
4 6 4 1 0 0 0 1 3 0
8 8 0 1 0 0 1 3 !1 0
8 8 0 1 0 0 1 3 !1 0
8 8 4 0 1 0 1 2 2 1
4 8 4 0 1 0 0 2 2 0
!1 6 !1 0 1 0 0 0 !3 1
!1 6 !1 0 1 0 0 0 !3 1
4 4 4 0 0 1 1 !3 1 1
4 4 4 0 0 1 0 !3 1 0
1 4 1 0 0 1 0 !3 !2 0
1 4 1 0 0 1 0 !3 !2 0

where E [VjZ | Xk = 1] "= 0 and E [Vj | Xk = 1] "= 0 but E [VjZ] = 0 and
E [Vj ] = 0 for j = 0, 1 is satisfied so that 2SLS-IV identifies a di!erent av-
erage treatment e!ect from LATE(Xk = 1) and LATE. Various conditional
and unconditional average treatment e!ects are as follows.

conditional
TE X1 = 1 X2 = 1 X3 = 1 unconditional
OLS 3.3333 7.3333 2 5.0857
LATE 2 4 0 2

2SLS ! IV !2 !6 2 0.9091
* (Xk = 1) 0.02083 0.02083 0.1875
ATT 6 4 0 4.4
ATUT 2 6 2 3.7143
ATE 5 5.5 1.5 4

Average treatment e!ects identified by 2SLS ! IV are unequal to LATE
or any other (standard) average treatment e!ect.

3.8 Treatment e!ects and control functions

Another approach that may be e!ective for identifying treatment e!ects uti-
lizes control functions. That is, functions which directly control the source
of selection bias. Consider a simple data generating process (to keep the
discussion compact, there are no regressors).

Yj = µj + Vj , j = 0, 1
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where µj is the mean of outcome and Vj is the unobserved (not residual)
portion of outcome for treatment j.

Y D Y1 Y0 V1 V0
15 1 15 9 3 !1
14 1 14 10 2 !2
13 1 13 11 1 !3
13 0 11 13 !1 3
14 0 10 14 !2 2
15 0 9 15 !3 1

If we attempt to estimate average treatment e!ects via an exogenous
dummy variable regression12

E [Y | D] = µ0 + (µ1 ! µ0)D

we find that OLS estimates

E [Y | D] = 14 + 0D

Suggesting all average treatment e!ects are zero. While it is the case, the
unconditional average treatment e!ect is zero

E [Y1 ! Y0] = 12! 12 = 0

the means for outcome with treatment and with no treatment are not
identified as OLS suggests the mean of each is 14 while the DGP clearly
indicates the mean of each is 12. Further, we may have more interest in
the average treatment e!ect on the treated and untreated but OLS does
not identify either of these quantities. The fundamental problem is that the
basic condition for a well-posed regression, E [Vj | X] = 0, is not satisfied.
Rather,

E [V1 | D = 1] =
1

3
(3 + 2 + 1) = 2

E [V1 | D = 0] =
1

3
(!3! 2! 1) = !2

E [V0 | D = 1] =
1

3
(!3! 2! 1) = !2

and
E [V0 | D = 0] =

1

3
(3 + 2 + 1) = 2

Nonetheless, the average treatment e!ects on the treated (ATT ) and
untreated (ATUT ) are well-defined.

ATT = E [Y1 | D = 1]! E [Y0 | D = 1]

= 12 + 2! (12! 2)
= 4

12This is in the same spirit as a single factor ANOVA with binary factor levels.



3.8 Treatment e!ects and control functions 49

and

ATUT = E [Y1 | D = 0]! E [Y0 | D = 0]

= (12! 2)! (12 + 2)
= !4

Also, these quantities readily connect to the average treatment e!ect.

ATE = Pr (D = 1)ATT + (1! Pr (D = 1))ATUT

=
1

2
(4) +

1

2
(!4) = 0

The key is to determine a path from observable data to these quantities. The
control function approach attempts to include functions in the regression
that control for the source of selection bias, E [Vj | D]. Then, the means
can be properly identified and estimation from observable data is feasible.
The most popular control function approach was developed by Nobel

laureate, James Heckman. Briefly, the idea is treatment selection by an
individual reflects expected utility maximizing behavior. The data analyst
(manager, social scientist, etc.) observes some factors influencing this choice
but other factors are unobserved (by the analyst). These unobserved com-
ponents lead to a stochastic process description of individual choice behav-
ior. The key to this stochastic description is the probability assignment to
the unobservable component. Heckman argues when the probability assign-
ment is Gaussian or normal, then we can treat the problem as a truncated
regression exercise. And, when common support conditions for the regres-
sors are satisfied, in principle, average treatment e!ects on the treated,
untreated, and the unconditional average are identified. Otherwise, when
common support conditions are limited, local average treatment e!ects
only are identified. We sketch the ideas below and relate them to the above
example.13

3.8.1 Inverse Mills control function strategy

Consider the DGP where choice is represented by a latent variable char-
acterizing the di!erence in expected utility associated with treatment or
no treatment, observed choice, and outcome equations with treatment and
without treatment.
latent choice equation:

D# =W+ + VD

observed choice:

D =
1 if D# > 0 VD > !W+
0 otherwise

13This subsection is heavily laden with notation – bear with us.
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outcome equations:

Y1 = µ1 +X(1 + V1

Y0 = µ0 +X(0 + V0

Heckman’s two-stage estimation procedure is as follows. First, estimate
+ via a probit regression of D onW = {,, X, Z} where Z is an instrumental
variable and identify observations with common support (that is, observa-
tions for which the regressors, X, for the treated overlap with regressors
for the untreated). Second, regress Y onto

=
,, D,X,D (X ! E [X]) , D

&
!
-

!

'
, (1!D)

-

1! !

>

for the overlapping subsample. With full support, the coe"cient on D is a
consistent estimator of ATE ; with less than full common support, we have
a local average treatment e!ect.14

Wooldridge suggests identification of

ATE = µ1 ! µ0 + E [X] ((1 ! (0)

via ! in the regression

E [Y | X,Z] = µ0 + !D +X(0 +D (X ! E [X]) ((1 ! (0)

!D.1VD/1
- (W+)

! (W+)
+ (1!D) .0VD/0

- (W+)

1! ! (W+)

This follows from the observable response

Y = D (Y1 | D = 1) + (1!D) (Y0 | D = 0)

= (Y0 | D = 0) +D [(Y1 | D = 1)! (Y0 | D = 0)]

and applying conditional expectations

E [Y1 | X,D = 1] = µ1 +X(1 ! .1VD/1
- (W+)

! (W+)

E [Y0 | X,D = 0] = µ0 +X(0 + .0VD/0
- (W+)

1! ! (W+)

14We should point out here that second stage OLS does not provide valid estimates
of standard errors. As Heckman points out there are two additional concerns: the errors
are heteroskedastic (so an adjustment such as White suggested is needed) and ! has to
be estimated (so we must account for this added variation). Heckman identifies a valid
variance estimator for this two-stage procedure.



3.8 Treatment e!ects and control functions 51

Simplification produces Wooldridge’s result.

E [Y | X,Z] = E [(Y0 | D = 0) +D {(Y1 | D = 1)! (Y0 | D = 0)} | X,Z]

= µ0 +X(0 + .0VD/0
- (W+)

1! ! (W+)

+D

&
µ1 +X(1 ! .1VD/1

- (W+)

! (W+)

'

!D
&
µ0 +X(0 + .0VD/0

- (W+)

1! ! (W+)

'

now rearrange terms

µ0 +D {µ1 ! µ0 + E [X] ((1 ! (0)}+X(0 +D (X ! E [X]) ((1 ! (0)

!D.1VD/1
- (W+)

! (W+)
+ (1!D) .0VD/0

- (W+)

1! ! (W+)

The coe"cient on D, {µ1 ! µ0 + E [X] ((1 ! (0)}, is ATE.
The key ideas behind treatment e!ect identification via control functions

can be illustrated by reference to this case.

E [Yj | X,D = j] = µj +X(j + E [Vj | D = j]

Given the conditions, E [Vj | D = j] "= 0 unless Corr (Vj , VD) = .jVD = 0.
For .jVD "= 0,

E [V1 | D = 1] = .1VD/1E [VD | VD > !W+]

E [V0 | D = 1] = .0VD/0E [VD | VD > !W+]

E [V1 | D = 0] = .1VD/1E [VD | VD ( !W+]

and
E [V0 | D = 0] = .0VD/0E [VD | VD ( !W+]

The final term in each expression is the expected value of a truncated
standard normal random variate where

h1 $ E [VD | VD > !W+] = E [VD | VD < W+] = !
- (W+)

! (W+)

and

h0 $ E [VD | VD ( !Z+] = E [VD | VD % Z+] =
- (W+)

1! ! (W+)

Putting this together, we have

E [Y1 | X,D = 1] = µ1 +X(1 ! .1VD/1
- (W+)

! (W+)
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E [Y0 | X,D = 0] = µ0 +X(0 + .0VD/0
- (W+)

1! ! (W+)
and counterfactuals

E [Y0 | X,D = 1] = µ0 +X(0 ! .0VD/0
- (W+)

! (W+)

and

E [Y1 | X,D = 0] = µ1 +X(1 + .1VD/1
- (W+)

1! ! (W+)
The appeal of Heckman’s inverse Mills ratio strategy can be seen in its

estimation simplicity and the ease with which treatment e!ects are then
identified. Of course, this doesn’t justify the identification conditions –
only our understanding of the data can do that. The conditional average
treatment e!ect on the treated is

ATT (X,Z) = µ1 ! µ0 +X ((1 ! (0)!
;
.1VD/1 ! .0VD/0

< - (W+)
! (W+)

and by iterated expectations (with full support), we have the unconditional
average treatment e!ect on the treated

ATT = µ1 ! µ0 + E [X] ((1 ! (0)!
;
.1VD/1 ! .0VD/0

<
E

9
- (W+)

! (W+)

:

Also, the conditional average treatment e!ect on the untreated is

ATUT (X,Z) = µ1 ! µ0 +X ((1 ! (0) +
;
.1VD/1 ! .0VD/0

< - (W+)

1! ! (W+)

and by iterated expectations, we have the unconditional average treatment
e!ect on the untreated

ATUT = µ1 ! µ0 +E [X] ((1 ! (0) +
;
.1VD/1 ! .0VD/0

<
E

9
- (W+)

1! ! (W+)

:

Since

ATE (X,Z) = Pr (D = 1 | X,Z)ATT (X,Z)
+Pr (D = 0 | X,Z)ATUT (X,Z)

= ! (W+)ATT (X,Z) + (1! ! (W+))ATUT (X,Z)

we have the conditional average treatment e!ect is

ATE (X,Z) = µ1 ! µ0 +X ((1 ! (0)
+
;
.1V /1 ! .0VD/0

<
- (W+)!

;
.1V /1 ! .0VD/0

<
- (W+)

= µ1 ! µ0 +X ((1 ! (0)

and by iterated expectations, we have the unconditional average treatment
e!ect is

ATE = µ1 ! µ0 + E [X] ((1 ! (0)
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3.8.2 Back to the example

Now, we return to the example and illustrate this control function strat-
egy. Suppose the first stage probit regression produces the following scaled
hazard rates (inverse Mills ratios) where h = D ) h1 + (1!D)h0, h1 =
!*1

$(W%)
!(W%) h0 = *0

$(W%)
1!!(W%) , and *1 = *0 = 2.843.

15

Y D Y1 Y0 V1 V0 h
15 1 15 9 3 !3 !3
14 1 14 10 2 !2 !2
13 1 13 11 1 !1 !1
13 0 11 13 !1 1 1
14 0 10 14 !2 2 2
15 0 9 15 !3 3 3

The large sample second stage regression is

E [Y | D,h] = 12 + 0D ! 1.0 (D & h1) + 1.0 ((1!D)& h0)

Estimated average treatment e!ects consistently identify (again, a large
sample result) the average treatment e!ects as follows. The average treat-
ment e!ect is estimated via the coe"cient on D

estATE = 0

15Clearly, we’ve omitted details associated with the first stage. Su"ce to say we have
regressors (instruments) related to selection, D, but that are uninformative about out-
comes, Y1 and Y0 (otherwise we would include them in the output regressions). The
instruments, Z =

%
Z1 Z2 Z3 Z4

&
(no intercept; tabulated below) employed are

orthogonal to Y1 and Y0.

Z1 Z2 Z3 Z4
5 4 3 1
"6 "5 "4 "2
0 0 0 1
0 0 1 0

0 1 0 0
1 0 0 0

In fact, they form a basis for the nullspace to
%
Y1 Y0

&
. When we return to this setting

to explore Bayesian analysis, we’ll be more explicit about this first stage estimation but
we bypass this stage for now.
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Other estimated averages of interest are

estE [Y1 | D = 1] = 12 + 0! 1.0
&
!3! 2! 1

3

'

= 14

estE [Y1 | D = 0] = 12! 1.0
&
3 + 2 + 1

3

'

= 10

estE [Y0 | D = 1] = 12 + 0 + 1.0

&
!3! 2! 1

3

'

= 10

estE [Y0 | D = 0] = 12 + 1.0

&
3 + 2 + 1

3

'

= 14

Hence, the estimated average treatment e!ect on the treated is

estATT = estE [Y1 | D = 1]! estE [Y0 | D = 1]

= 14! 10 = 4

and the estimated average treatment e!ect on the untreated is

estATUT = estE [Y1 | D = 0]! estE [Y0 | D = 0]

= 10! 14 = !4

We see the control function strategy has e!ectively addressed selection bias
and allowed us to identify some average treatment e!ects of interest even
though the DGP poses serious challenges.

3.9 Pursuit of higher explanatory power

A word of caution. Frequently, we utilize explanatory power to help gauge
model adequacy. This is a poor strategy in the analysis of treatment e!ects.
Higher explanatory power in either the selection equation or the outcome
equations does not ensure identification of average treatment e!ects. We
present two examples below in which higher explanatory power models
completely undermine identification of treatment e!ects.

3.9.1 Outcomes model example

It might be tempting to employ the instrument Z5 =
+
1 0 !1 !1 0 1

,T

as a regressor as it perfectly explains observed outcome Y . Estimates are

E [Y | Z5, D, h] = 14 + 1.0Z5 + 0D + 0 (D & h1) + 0 ((1!D)& h0)
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However, recall our objective is to estimate treatment e!ects and they
draw from outcomes, Y1 and Y0, which are only partially observed and
Z5 is independent of these outcomes.16 This regression produces severe
selection bias, disguises endogeneity, suggests homogeneous outcome when
it is heterogeneous, and masks self-selection. In other words, it could hardly
be more misleading even though it has higher explanatory power.

3.9.2 Selection model example

Suppose we add the regressor,

X =
+
1 0 1 !1 0 !1

,T

to the instruments in the selection equation so that the regressors in the
probit model are17

W =
+
X Z1 Z2 Z3 Z4

,

=

3

4444445

1 5 4 3 1
0 !6 !5 !4 !2
1 0 0 0 1
!1 0 0 1 0
0 0 1 0 0
!1 1 0 0 0

6

7777778

Again, we suppress probit estimation details. The estimated outcomes model
conditional on the "control functions" is

E [Y | X,D, h] = 14 + 0D + 0 (D & h1) + 0 ((1!D)& h0)

As in the higher explanatory power outcomes model, this treatment e!ect
identification strategy is a complete bust. Here, it is because the regres-
sor, X, dominates the instruments in explaining treatment choice and it’s
the instruments that allow manipulation of choice without a!ecting out-
come – the key to identifying properties of the counterfactuals. Hence,
the regression is plagued by severe selection bias, disguises endogeneity and
heterogeneity of outcomes, and hides self-selection inherent to the setting.

16 Identification of instruments is extremely delicate because we don’t observe a portion
of the outcome distributions.
17Employment of a perfect predictor, say

X2 =
%
1 1 1 "1 "1 "1

&T

is well known to create estimation problems. In this case any positive weight on X2 sup-
plies an equally good fit and makes any other regressors superfluous in the selection equa-
tion. Results for the perfect regressor case parallel that presented, except with the perfect
predictor, x2, the coe"cients on the control functions, (D ! h1) and ((1"D)! h0), are
actually indeterminant since they are a linear combination of the intercept and D.
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To summarize, high explanatory power of either the selection equation or
outcome equations does not indicate a well-specified model. As the above
examples suggest, higher explanatory power can undermine our treatment
e!ect identification strategy. When addressing counterfactuals and treat-
ment e!ects, we have no choice but to rely on what we know prior to
examining the evidence (namely, theory) in specifying the model.18

The foregoing discussion focuses on discrete treatment e!ects. Prior to
segueing to Bayesian analysis, we briefly discuss continuous treatment ef-
fects.

3.10 Continuous treatment e!ects

Suppose we’re interested in identifying the average marginal e!ect of infor-
mation precision on some response variable, say product market share.19

The idea is firm managers engage in costly information search to improve
firm productivity and competitive advantage. More precise information is
beneficial but also more costly. Specifically, benefits are weakly concave
while costs are convex. Then, the optimal precision level associated with
information discovery is when expected marginal benefits equal expected
marginal costs of information precision. Of course, both expected bene-
fits and expected costs depend on the resident circumstance for each firm.
Therefore, we must accommodate heterogeneity. If the first order condition
(foc) is linear in precision

bi ! k1" i ! (mci + k2" i) = 0

to yield optimal information precision

" i =
bi !mci

k

where k = k1+k2 then the structural model is quadratic in the endogenous
variable, on integrating with respect to information precision.20

Yi = ai + bi" i !
1

2
k1"

2

18We don’t mean to imply that diagnostic checking based on the evidence is to be
shunned. To the contrary, but we must exercise caution and bear in mind how we’re
exploiting observables to infer unobservables (e.g., counterfactuals).
19 Interpretation depends on the response variable (see the discussion below).
20This setup is very similar to Card’s [2001] classic, hedonic partial equilibrium years of

schooling model. Numerous accounting variations arise from the simple setting including
equilibrium reporting strategies. We’ll stay with the current setting to keep it simple and
highlight econometric challenges. Notice, like in the discrete choice setting, there is a
latent choice model and an outcomes model for benefits of choice that is the focus of
our data analysis.
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where Yi is response or outcome, ai is the firm-specific constant of integra-
tion, bi is firm i’s marginal e!ect of information precision on outcome (when
k1 = 0 as below), and " i is firm i’s information precision choice. To accom-
modate heterogeneity, both the intercept and slope (or marginal e!ect of
precision) are allowed to vary by firm. This leads to a random coe"cients
design. As with the years of schooling setting, unobservable heterogeneity
(discussed shortly) leads to a correlated random coe"cients design.
To simplify discussion of the correlated random coe"cients design, we

set k1 equal to zero (this mirrors Heckman and Vytlacil [1998], Wooldridge
[2003], and others). With instrumental variables, Z, the model in error form
(and with k1 = 0) is

Yi = ai + bi" i + ei, E [ei | Xi, Zi] = 0

Now, let the intercepts and slopes depend on observables (covariates) Xi

ai = %0 +Xi% + ci, E [ci | Xi, Zi] = 0

and
bi = ( + (Xi ! E [X]) # + 0i, E [0i | Xi, Zi] = 0

where
E [Y | a, b, " , X, Z] = E [Y | a, b, " ] ,

and exclusion restrictions

E [a | X,Z] = E [a | X] = %0 +X%,

E [b | X,Z] = E [b | X] = ( + (X ! E [X]) #.

Combining yields

Yi = %0 +Xi% + [( + (Xi ! E [X]) #] " i + ci + 0i" i + ei
= %0 +Xi% + " i( + (Xi ! E [X]) #" i + ci + 0i" i + ei

The challenge resides with interaction of the unobservable and information
precision choice, 0i" i. As Heckman and Vytlacil [1998] and Wooldridge
[2003] emphasize we don’t require E [0i" i | Xi, Zi] = 0, rather instrumental
variable (IV ) identification of average marginal treatment e!ects is satisfied
if E [0i" i | Xi, Zi] = !, a constant that doesn’t depend on Xi and Zi.
Interpretation depends on the response variable. For example, if prod-

uct market share is the response variable then we’re looking at benefits
excluding costs as in the years of schooling setting.21 The average treat-
ment e!ect E [b] = ( (ATE ) for a random draw from the population

21On the other hand, if the response variable is income then we’re looking at benefits
net of costs. If income is accounting income we have an approximation, a subset of
benefits net of a subset of costs, as accounting recognition comes into play.
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is the average marginal increase in product market share when informa-
tion precision is increased. The average treatment e!ect on the treated
E [bi | " i] = E [bi | bi = mci + k" i] = ( + (Xi ! E [X]) # (ATT ) indicates
the average marginal increase in market share from increasing information
precision at " i = (bi !mci) /k, or in other words, at bi = mci + k" i. As
discussed by Heckman and Vytlacil [1998], this is straightforward whenmci
is stochastically independent of (ai, bi).
Next, we explore some simple data generating processes (DGP) to il-

lustrate when OLS and (so-called) forbidden regressions are consistent or
otherwise and compare them with two instrumental variables strategies. For
purposes of illustration, we consider a firm to be identified by a particular
value of report precision, " .
The first IV strategy employs instruments created out of polynomi-

als in X and Z. We’re interested in E [" | X,Z] and E [Y | X,Z] which
are closely approximated with linear projections in polynomials of X and
Z. In our simple examples we employ instruments

@
,, X, Z,X2

A
where ,

is a vector of ones (if the rank condition is satisfied we might add XZ
as well as higher order terms).22 Hence, the first-stage regresses " i and;
Xi !X

<
" i and the identified instruments and their predicted values, !" i

and !;
Xi !X

<
" i, are employed in the second-stage regression of Yi onB

,, Xi, !" i, !;
Xi !X

<
" i

C
.

The second IV strategy, employs instruments created from a regres-
sion of information precision " on X and Z, !" = L [" | X,Z] where L [·]
refers to a linear projection of the leading vector on the trailing column
space. That is, instruments are {,, X,!" ,!"X} and the first-stage regressions
project " and

;
X !X

<
" onto these instruments to create predicted val-

ues ?" and ";
X !X

<
" . Then, the second-stage involves regressing Yi onto=

,, Xi, ?" i, ";
Xi !X

<
" i

>
.

Contrast these IV strategies with a forbidden regression. A forbidden
regression employs plug-in regressors, not instruments,

@
,, X,!" ,!"

;
X !X

<A

where !" is created as in the say the first-stage of the second IV strategy.
To emphasize the distinction, recall IV is a two-stage approach. A for-
bidden regression plugs-in !"

;
X !X

<
in place of "

;
X !X

<
then regresses

outcome on the resultant plug-in regressors. On the other hand, the sec-
ond IV strategy employs !" as a plug-in for " then employs two-stage (not
single-stage as utilized by a forbidden regression) IV estimation with the
plug-in instruments. Nonlinearity in the endogenous variable may result in
inconsistent forbidden regression estimators in settings where IV is con-
sistent. The examples demonstrate this is particularly troublesome for the

22 In our examples the rank condition is satisifed (and identification results are the
same) with either X2 or XZ but not both as Z is binary.
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current setting when E [XZ] "= E [XZ | Z]. Of course, there are settings
where neither IV nor forbidden regression is consistent.

3.10.1 Case 1: all identification strategies are e!ective

Let ( = % = E [b] = 1, # = 0.5, and %0 = c = e = 0. For case 1,
E [0i" i | Xi, Zi] = 0 for all firms, OLS identifies the average marginal
treatment e!ect E [b] = 1 (ATE ) as well as the average marginal treat-
ment e!ect for the treated E [bi | " i] = ( + (Xi ! E [X]) # (ATT ). Also,
since E [0i" i | Xi, Zi] is constant and E [XZ] = E [XZ | Z], the forbidden
regression also identifies both average e!ects. Not surprisingly, both IV
strategies identify both average treatment e!ects. The DGP for case 1 is

Y a b X Z " 0 0"
0 !2 2 !2 !1 1 2 2
!4 !2 !2 !2 !1 1 !2 !2
6 1 2.5 1 !1 2 1 2
2 1 0.5 1 !1 2 !1 !2
2.5 !1 7

6 !1 1 3 2
3 2

!1.5 !1 ! 1
6 !1 1 3 ! 2

3 !2
12 2 2.5 2 1 4 1

2 2
8 2 1.5 2 1 4 ! 1

2 !2
Case 1 DGP : OLS, FR & IV identify treatment e!ects

The table below reports parameters associated with the DGP along with
results for various identification strategies: OLS, FR (forbidden regression),
IVX2 (the polynomial IV strategy), and IV "! (the plug-in IV strategy).

parameter DGP OLS FR IVX2 IV "!
%0 0 0 0 0 0
% 1 1 1 1 1

( = E [b] = ATE 1 1 1 1 1
# 0.5 0.5 0.5 0.5 0.5

E [b | " = 1] = ATT (" = 1) 0 0 0 0 0
E [b | " = 2] = ATT (" = 2) 1.5 1.5 1.5 1.5 1.5
E [b | " = 3] = ATT (" = 3) 0.5 0.5 0.5 0.5 0.5
E [b | " = 4] = ATT (" = 4) 2 2 2 2 2

Case 1 results: OLS, FR & IV identify treatment e!ects

3.10.2 Case 2: forbidden regression (FR) fails

For case 2, E [0i" i | Xi, Zi] = 0 for all firms but E [XZ] depends on Z
(E [XZ] "= E [XZ | Z]), hence OLS identifies E [b] = 1 (ATE ) as well as
E [bi | " i] = ( + (Xi ! E [X]) # (ATT ) but FR fails. Not surprisingly, the
IV strategies also identify both average treatment e!ects. The DGP for
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case 2 is

Y a b X Z " 0 0"
23.125 !2 25.125 !2 !1 1 25 25
!26.875 !2 !24.875 !2 !1 1 !25 !25
50.25 !1 25.625 !1 !1 2 25 50
!49.75 !1 !24.375 !1 !1 2 !25 !50
78.375 0 26.125 0 1 3 25 75
!71.625 0 !23.875 0 1 3 !25 !75
110.5 2 27.125 2 1 4 25 100
!89.5 2 !22.875 2 1 4 !25 !100

Case 2 DGP : OLS & IV identify treatment e!ects but FR fails

The table below reports parameters associated with the DGP along with
results for various identification strategies: OLS, FR (forbidden regression),
IVX2 (the polynomial IV strategy), and IV "! (the plug-in IV strategy).

parameter DGP OLS FR IVX2 IV "!
%0 0 0 0.4336 0 0
% 1 1 1.2700 1 1

( = E [b] = ATE 1 1 1.0143 1 1
# 0.5 0.5 0.4107 0.5 0.5

E [b | " = 1] = ATT (" = 1) 0.125 0.125 0.2955 0.125 0.125
E [b | " = 2] = ATT (" = 2) 0.625 0.625 0.7063 0.625 0.625
E [b | " = 3] = ATT (" = 3) 1.125 1.125 1.1170 1.125 1.125
E [b | " = 4] = ATT (" = 4) 2.125 2.125 1.9384 2.125 2.125
Case 2 results: OLS & IV identify treatment e!ects but FR fails

3.10.3 Case 3: OLS fails

For case 3, E [0i" i | Xi, Zi] "= 0 but constant for all firms and E [XZ]
does not depend on Z, hence FR identifies E [b] = 1 (ATE ) as well as
E [bi | " i] = (+(Xi ! E [X]) # (ATT ) but OLS fails. Not surprisingly, the
IV strategies also identify both average treatment e!ects. The DGP for
case 3 is

Y a b X Z " 0 0"
23 !2 25 !2 !1 1 25 25
!52 !2 !25 !2 !1 2 !25 !50
80.5 1 26.5 1 !1 3 25 75
!93 1 !23.5 1 !1 4 !25 !100
126.5 !1 25.5 !1 1 5 25 125
!148 !1 !24.5 !1 1 6 !25 !150
191 2 27 2 1 7 25 175
!182 2 !23 2 1 8 !25 !200

Case 3 DGP : FR & IV identify treatment e!ects but OLS fails
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The table below reports parameters associated with the DGP along with
results for various identification strategies: OLS, FR (forbidden regression),
IVX2 (the polynomial IV strategy), and IV "! (the plug-in IV strategy).

parameter DGP OLS FR IVX2 IV "!
%0 !12.5 85.6134 !12.5 !12.5 !12.5
% 1 32.3769 1 1 1

( = E [b] = ATE 1 !19.4545 1 1 1
# 0.5 !1.9272 0.5 0.5 0.5

E [b | " = 1] = ATT (" = 1) 0 !15.6002 0 0 0
E [b | " = 2] = ATT (" = 2) 0 !15.6002 0 0 0
E [b | " = 3] = ATT (" = 3) 1.5 !21.3817 1.5 1.5 1.5
E [b | " = 4] = ATT (" = 4) 1.5 !21.3817 1.5 1.5 1.5
E [b | " = 5] = ATT (" = 5) 0.5 !17.5274 0.5 0.5 0.5
E [b | " = 6] = ATT (" = 6) 0.5 !17.5274 0.5 0.5 0.5
E [b | " = 7] = ATT (" = 7) 2 !23.3089 2 2 2
E [b | " = 8] = ATT (" = 8) 2 !23.3089 2 2 2

Case 3 results: FR & IV identify treatment e!ects but OLS fails

3.10.4 Case 4: OLS and FR fail

For case 4, E [0i" i | Xi, Zi] "= 0 but constant for all firms and E [XZ]
depends on Z, hence IV identifies E [b] = 1 (ATE ) as well as E [bi | " i] =
( + (Xi ! E [X]) # (ATT ) but OLS and FR fail. The DGP for case 4 is

Y a b X Z " 0 0"
22.625 !2 24.625 !2 !1 1 25 25
!52 !2 !25.375 !2 !1 2 !25 !50
80.5 !1 25.125 !1 !1 3 25 75
!93 !1 !24.875 !1 !1 4 !25 !100
126.5 2 26.625 2 1 5 25 125
!148 2 !23.375 2 1 6 !25 !150
191 4 27.625 4 1 7 25 175
!182 4 !22.375 4 1 8 !25 !200

Case 4 DGP : IV identifies treatment e!ects but OLS & FR fail

The table below reports parameters associated with the DGP along with
results for various identification strategies: OLS, FR (forbidden regression),
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IVX2 (the polynomial IV strategy), and IV "! (the plug-in IV strategy).

parameter DGP OLS FR IVX2 IV "!
%0 !12.5 620.8 !9.635 !12.5 !12.5
% 1 208.1 1.761 1 1

( = E [b] = ATE 1 !160.1 !0.072 1 1
# 0.5 !11.582 0.465 0.5 0.5

E [b | " = 1] = ATT (" = 1) !0.375 !15.600 !1.352 !0.375 !0.375
E [b | " = 2] = ATT (" = 2) !0.375 !15.600 !1.352 !0.375 !0.375
E [b | " = 3] = ATT (" = 3) 0.125 !21.382 !0.887 0.125 0.125
E [b | " = 4] = ATT (" = 4) 0.125 !21.382 !0.887 0.125 0.125
E [b | " = 5] = ATT (" = 5) 1.625 !17.527 0.510 1.625 1.625
E [b | " = 6] = ATT (" = 6) 1.625 !17.527 0.510 1.625 1.625
E [b | " = 7] = ATT (" = 7) 2.625 !23.309 1.440 2.625 2.625
E [b | " = 8] = ATT (" = 8) 2.625 !23.309 1.440 2.625 2.625

Case 4 results: IV identifies treatment e!ects but OLS & FR fail

3.10.5 Case 5: all identification strategies fail

For case 5, E [0i" i | Xi, Zi] "= 0 as well as nonconstant and E [XZ] depends
on Z, hence neither IV, OLS or FR identify E [b] = 1 (ATE ) or E [bi | " i] =
( + (Xi ! E [X]) # (ATT ). The DGP for case 5 is

Y a b X Z " 0 0"
38 !2 40 !2 !1 1 40 40
!82 !2 !40 !2 !1 2 !40 !80
120.5 !1 40.5 !1 !1 3 40 120
!159 !1 !39.5 !1 !1 4 !40 !160
130 0 26 0 1 5 25 125
!144 0 !24 0 1 6 !25 !150
195.5 3 27.5 3 1 7 25 175
!177 3 !22.5 3 1 8 !25 !200

Case 5 DGP : IV, OLS & FR fail

The table below reports parameters associated with the DGP along with
results for various identification strategies: OLS, FR (forbidden regression),
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IVX2 (the polynomial IV strategy), and IV "! (the plug-in IV strategy).

parameter DGP OLS FR IVX2 IV "!
%0 !16.25 1215 !36.3 !74.375 !74.375
% 1 524.1 !2.21 !20.563 !20.563

( = E [b] = ATE 1 !231.3 5.521 12.25 12.25
# 0.5 !46.05 0.417 2.375 2.375

E [b | " = 1] = ATT (" = 1) 0 !139.2 4.688 7.5 7.5
E [b | " = 2] = ATT (" = 2) 0 !139.2 4.688 7.5 7.5
E [b | " = 3] = ATT (" = 3) 0.5 !185.3 5.104 9.875 9.875
E [b | " = 4] = ATT (" = 4) 0.5 !185.3 5.104 9.875 9.875
E [b | " = 5] = ATT (" = 5) 1 !231.3 5.521 12.25 12.25
E [b | " = 6] = ATT (" = 6) 1 !231.3 5.521 12.25 12.25
E [b | " = 7] = ATT (" = 7) 2.5 !369.5 6.771 19.375 19.375
E [b | " = 8] = ATT (" = 8) 2.5 !369.5 6.771 19.375 19.375

Case 5 results: IV, OLS & FR fail

3.11 Bayesian analysis with control function
principles

In spite of the apparent success of the classical strategy above, experience
suggests Bayesian analysis employing control function principles is more
robust than is the classical strategy. Perhaps, this reflects hazard rate (or
inverse Mills ratio) sensitivity to estimation error. On the other hand, a
Bayesian approach employs least squares estimation on augmented, "com-
plete" data (pseudo-random draws from a truncated normal distribution).
That is, instead of extrapolating into the tails via the hazard rate "cor-
rection," the Bayesian strategy utilizes data augmentation to "recover"
missing counterfactual data.23

However, we suspect that it is at least as important that Bayesian analy-
sis helps us or even forces to pay attention to what we know about the set-
ting.24 Also, Bayesian data augmentation allows the distribution of treat-
ment e!ects as well as marginal treatment e!ects to be explored (our dis-
cussion above, limits inferences to treatment e!ect means).25

We next turn our attention to Bayesian analysis and consistent reason-
ing. First, we explore the importance of loss functions, maximum entropy
probability assignment, conjugate families, and Bayesian analysis of some

23Bayesian analysis is data intensive. Its application to treatment e!ects is discussed
in some detail in Accounting and Causal E!ects: Econometric Challenges, ch. 12.
24 Jaynes, 2003, Probability Theory: The Logic of Science gives a riveting account of

these ideas.
25Heckman and others propose classical, factor analytic strategies to explore treatment

e!ect distributions and marginal treatment e!ects.
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primitive data analytic problems. Then, we revisit treatment e!ects and
discuss Bayesian analysis.


