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2
Classical linear models

Linear models are ubiquitous due to their utility (even for addressing ele-
ments of nonlinear processes). This chapter briefly addresses foundational
ideas including projections, conditional expectation functions, analysis of
variance (ANOVA), analysis of covariance (ANCOVA), linear regression,
and omitted correlated variables.

2.1 A basic example

Consider a simple example. Suppose we’re looking for a solution to

Y = 

where  is a constant, Y takes the values {Y1 = 4, Y2 = 6, Y3 = 5}, and
order is exchangeable. Clearly, there is no exact solution for . How do we
proceed? One approach is to consider what is unobserved or unknown in
the response or outcome variable Y to be error {1, 2, 3} and to guess the
parameters of interest (in this case, ) in a manner that extracts all that we
know (say, summarized by X)1 and leaves nothing known in the error. In
other words, we’re looking for the conditional expectation function (CEF )

1X represents what we know. In the above equation X is implicitly a vector of ones.
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E [Y | X]. Extraction of all information in X, implies error cancellation or
E [ | X] = 0.2

2.1.1 Data generating process (DGP)

If we believe the errors have common variability, say V ar [i] = 2,3 we
envision the data generating process (DGP) is

Y1 = X1+ 1 = 1+ 1

Y2 = X2+ 2 = 1+ 2

Y3 = X3+ 3 = 1+ 3

or in compact matrix form

Y = X+ 

where

Y =




Y1
Y2
Y3



 , X =




X1
X2
X3



 =




1
1
1



 ,

 =




1
2
3



  N

0,2I


, and E [ | X] = 0

I is an nn identity matrix, n is the sample size or number of observations,
and N (·) refers to the normal distribution with first term equal to the mean
vector and the second term is the variance-covariance matrix.4 Notice,

V ar [] = 2I

is a very compact form and implies

V ar [] = E

( E []) ( E [])T



=




V ar [1] Cov [1, 2] Cov [1, 3]
Cov [1, 2] V ar [2] Cov [2, 2]
Cov [1, 3] Cov [2, 3] V ar [3]





=




2 0 0
0 2 0
0 0 2





2A complete statement of the result, the CEF decomposition theorem, and its proof
can be found in the appendix to chapter 3 of Accounting and Causal Eects: Econometric
Challenges.

3Knowledge of the variance leads to Gaussian or normal probability assignment by
the maximum entropy principle (MEP ). For details, see the discussion in chapter 13 of
Accounting and Causal Eects: Econometric Challenges, or Jaynes [2003].

4 See the appendix for a discussion of linear algebra basics.
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where V ar [·] is variance and Cov [·] is covariance.

2.2 Estimation

We estimate
Y = Xa+ e

where a is an estimate of the unknown  and e =




e1
e2
e3



 estimates the

unknowns . Since we’re searching for a good approximation to the CEF,
e is constructed to be unrelated to X, or as we say, orthogonal, XT e = 0.
That is, every column ofX is constructed to be orthogonal or perpendicular
to the residuals e. Since e = Y Xa, we have

XT e = XT (Y Xa) = 0

this orthogonality condition leads naturally to the normal equations

XTXa = XTY

and multiplication of both sides by the inverse gives the estimator for 


XTX

1
XTXa =


XTX

1
XTY

a =

XTX

1
XTY

For our example above, we have a sample size n = 3,

XTX

1
= 1

n =
1
3 ,

and XTY =
n

i=1 Yi. Hence, a =
1
n

n
i=1 Yi = Y , the sample average as

intuition suggests. For the present example, then a = 5 and V ar [a] = 2

3 .
5

Further, (i) E [a | X] = E [a] =  (estimation is unbiased) and (ii)
variation in the estimator is smallest amongst unbiased estimators with
V ar [a | X] = 2


XTX

1
. To see this, (i)

E [a | X] = E

XTX

1
XTY | X



= E

XTX

1
XT (X+ ) | X



= E

XTX

1
XTX+


XTX

1
XT  | X



= +

XTX

1
XTE [ | X]

= + 0 = 

5Variance of the estimator is discussed below.
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By iterated expectations,6 the unconditional expectation of the estimator,
a, also equals the unknown parameter of interest, 

EX [E [a | X]] = E [a]

EX [E [a | X]] = EX [] = 

E [a] = 

(ii)

V ar [a | X] = E

(a E [a | X]) (a E [a | X])T | X



= E

(a ) (a )T | X



= E


XTX

1
XTY  


XTX

1
XTY  

T
| X


= E


+


XTX

1
XT  


+


XTX

1
XT  

T
| X


= E


XTX

1
XT 


XTX

1
XT 

T
| X


= E

XTX

1
XT TX


XTX

1
| X


=

XTX

1
XTE


T | X


X

XTX

1

Since E

T | X


= 2I, the above simplifies to yield the result as claimed

above.7

V ar [a | X] = 2

XTX

1
XTX


XTX

1

= 2

XTX

1

2.3 Projection matrix

The conditional expectation function is estimated as

Y = Xa

= X

XTX

1
XTY

The leading matrix, X

XTX

1
XT , is so important it warrants special

designation. It is the projection matrix, PX = X

XTX

1
XT . Notice,

6A proof of the law of iterated expectations is presented in the appendix.
7A complete demonstration of the minimum variance property can be found in the

discussion of the Gauss-Markov theorem in chapter 3 of Accounting and Causal Eects:
Econometric Challenges.
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the matrix is symmetric, PX = (PX)
T and it is idempotent. That is, mul-

tiplication by itself leaves it unchanged.

PXPX = PX

X

XTX

1
XTX


XTX

1
XT = X


XTX

1
XT

This property says if a vector resides in the columnspace of X, it is a lin-
ear combination of the columns of X, then projecting the vector onto the
columns of X leaves it unchanged – which matches our intuition. Fur-
ther, the residuals are orthogonal to the columns of X, e = Y  PXY =
(I  PX)Y = MXY , and MXPX = (I  PX)PX = PX  PX = 0. There-
fore, the residuals reside in the orthogonal subspace to the columnspace;
this subspace is called the left nullspace.8

2.4 Dierent means (ANOVA)

We’ve explored estimation of an unknown mean in the example above and
discovered that the best guess, in a minimum mean squared error or least
squares sense, for the conditional expectation function is the sample aver-
age. Now, suppose we have a bit more information. We know that outcome
is treated or not treated. Denote this by D = 1 for treatment and D = 0
for not treated. This suggests we’re interested in 1 = E [Y | D = 1] and
0 = E [Y | D = 0] or we’re interested in  = E [Y | D = 1]E [Y | D = 0].
In other words, we’re interested in two means and, intuitively, we estimate
these via two sample averages or their dierence. This setting is often re-
ferred to as analysis of variance or ANOVA, for short; this is the simplest
case – a single factor, two factor-level ANOVA.
In the former (two mean) case, it’s simplest and most direct to envision

the following DGP

Y = D00 +D1 + 

= X1+ 

where X1 =

D0 D


(an n  2 matrix),  =


0
1


(a two element

parameter vector), and D0 = 1D. While in the latter (mean dierence)

8The fundamental theorem of linear algebra has two parts. The first part says that
every mn (rows by columns) matrix has the same number of linearly independent rows
and columns, call this number r. The second part says the dimension (number of linearly
independent vectors) of the rowspace, r, plus the dimension of its orthogonal subspace,
the nullspace, n  r, spans all n length vectors. Analogously for the columnspace, the
dimension of the columnspace, r, plus the dimension of the left nullspace, m r, spans
all m element vectors. See the appendix for more extensive discussion.
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case, it’s simplest and most direct to envision the DGP as

Y = 0 +D + 

= X2 + 

where X2 =

 D


(an n  2 matrix),  =


0



(a two element

parameter vector), and  is a vector of n ones.
Of course, we can work with either one and derive all results.9 For ex-

ample,  =

1 1


 = 1  0. Therefore,  is estimated via

b =

1 1


a = a1  a0

and

V ar [b | X1] =

1 1


V ar [a | X1]


1
1



= V ar [a0 | X1] + V ar [a1 | X1] 2Cov [a0, a1 | X1]

where a =

a0
a1


, a0 is the estimator for 0, and a1 is the estimator for

1. Also, 1 =

1 1


 = 0+ = 0+10. Hence, 1 is estimated

via

a1 =

1 1


g

=

1 1

  a0
b



= a0 + b

and

V ar [a1 | X2] =

1 1


V ar [g | X2]


1
1



= V ar [a0 | X2] + V ar [b | X2] + 2Cov [a0, b | X2]

The bigger point here is that estimation of the parameters to "best"
approximate the conditional expectation function is achieved in the same
manner as above (via orthogonalization of the residuals and what is known,
X).

a =


a0
a1



=

XT
1 X1

1
XT
1 Y

9The end of chapter section provides a more general demonstration of linear models
equivalence.
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and

V ar [a | X1] =


V ar [a0 | X1] Cov [a0, a1 | X1]
Cov [a0, a1 | X1] V ar [a1 | X1]



= 2

XT
1 X1

1

Also,

g =


a0
b



=

XT
2 X2

1
XT
2 Y

and

V ar [g | X2] =


V ar [a0 | X2] Cov [a0, b | Xb]
Cov [a0, b | X2] V ar [b | X2]



= 2

XT
2 X2

1

2.4.1 ANOVA example 1

Suppose (Y | D = 0) is the same as Y in the previous example, that is,

{Y1 = 4, Y2 = 6, Y3 = 5 | D = 0}

and (Y | D = 1) is

{Y4 = 11, Y5 = 9, Y6 = 10 | D = 1}

with order exchangeable conditional on D. The estimated regression func-
tion is

E [Y | X1] = 5D0 + 10D

with

V ar [a | X1] = 2

3 0
0 3

1
=
2

3
I

or
E [Y | X2] = 5 + 5D

with

V ar [g | X2] = 2

6 3
3 3

1

=
2

9


3 3
3 6



=
2

3


1 1
1 2
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From the first regression, the estimate of  is

b =

1 1


a = 5 + 10 = 5

with

V ar [b | X1] =

1 1


V ar [a]


1
1


=
2

3
2

which, of course, corresponds with the results from the second regression
(the second element of g is b = 5, the coecient on D, and V ar [b | X2] =
2
3

2, the second row and second column element of V ar [g | X2]). Similarly,
the estimate of 1, from the first regression is a1 = 10 with V ar [a1 | X1] =
2

3 , and, from the second regression

a1 =

1 1


g = 5 + 5 = 10

with

V ar [a1 | X2] =

1 1


V ar [g | X2]


1
1



=
2

3
(1 + 2 1 1) =

2

3

Of course, the estimate of 0 is directly available from either regression,
a0 = 5, with V ar [a0 | X1] = V ar [a0 | X2] = 2

3 .

2.4.2 Multi-factor ANOVA and interactions

What if we know of other factors that may, in some way, be related to
outcome? Then, the consistent approach is to include them in the analysis
(to guard against omitted, correlated variables or Simpson’s paradox). For
simplicity, suppose we have another binary factor denoted W = {0, 1}. A
saturated model includesW along with D and their product or interaction,
(D W ). We envision the following DGP.

Y = 0 + D + W +  (D W ) + 
= X + 

where the regression or conditional expectation is

E [Y | X] = 0 + D + W +  (D W )
= X

  N

0,2I


, E [ | X] = 0, X =


 D W (D W )


is an n  4

design matrix, and  =





0






.
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Even though this is a richer DGP, estimation proceeds as before. That
is, the minimum mean square error or least squares estimator for  is g =
XTX

1
XTY , a four element vector, and its variability is summarized

as V ar [g | X] = 2

XTX

1
, a 4 4 matrix, using the (n 4) X matrix

identified above.

ANOVA example 2

Suppose we continue the previous example by appending W .

Y D W
4 0 0
6 0 1
5 0 0
11 1 1
9 1 0
10 1 0

The estimated regression is

E [Y | X] = 4.5 + 5D + 1.5W + 0 (D W )

An intuitive interpretation is D partitions Y into {4, 6, 5} and {11, 9, 10},
as before, but W partitions {6, 11} and {4, 5, 9, 10}, and DW partitions
{11} and {4, 6, 5, 9, 10}. Hence, the coecient on D is the mean dierence
between {9, 10} and {4, 5}, that is, after conditioning onW ,10 leaving 9.5
4.5 = 5. The coecient on W , conditional on D, is the mean dierence
between {4, 5} and {6} , or 64.5 = 1.5, and {9, 10} and {11}, or 119.5 =
1.5. Since (D W ) separates Y = 11 from the rest but that dierence is
already explained by (W | D), the coecient on (D W ) is zero.
Perhaps, some elaboration is instructive.

E [Y | D = 0,W = 1] = 4.5 + 0 + 1.5 = 6

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 6, in the sample). Similarly,

E [Y | D = 1,W = 1] = 4.5 + 5 + 1.5 = 11

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 11, in the sample). On the other hand,

E [Y | D = 0,W = 0] = 4.5 + 0 + 0 = 4.5

10This is a key to understanding regression, each explanatory (RHS) variable con-
tributes toward explaining response conditional on the other variables on the RHS.
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there is some residual associated with these conditions (this combination
of D and W occurs when Y = 4 or 5, and they occur with equal frequency
in the sample). To complete the picture, we have

E [Y | D = 1,W = 0] = 4.5 + 5 + 0 = 9.5

there is some residual associated with these conditions (this combination
of D andW occurs when Y = 9 or 10, and they occur with equal frequency
in the sample).

ANOVA example 3

Now, suppose we perturb the above example slightly by altering W .

Y D W
4 0 0
6 0 0
5 0 1
11 1 1
9 1 0
10 1 0

The estimated regression is

E [Y | X] = 5 + 4.5D + 0W + 1.5 (D W )

Similar arguments to those above provide some intuition.

E [Y | D = 0,W = 1] = 5 + 0 + 0 = 5

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 5, in the sample). Similarly,

E [Y | D = 1,W = 1] = 5 + 4.5 + 1.5 = 11

there is no residual associated with these conditions (this combination of
D and W only occurs when Y = 11, in the sample). On the other hand,

E [Y | D = 0,W = 0] = 5 + 0 + 0 = 5

there is some residual associated with these conditions (this combination
of D and W occurs when Y = 4 or 6, and they occur with equal frequency
in the sample). Finally, we have

E [Y | D = 1,W = 0] = 5 + 4.5 + 0 = 9.5

there is some residual associated with these conditions (this combination
of D andW occurs when Y = 9 or 10, and they occur with equal frequency
in the sample).
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Notice, unlike the first two-factor example, if we don’t include the inter-
action term we estimate

E [Y | X] = 4.75 + 5D + 0.75W

The estimated mean eects are dierent since the data is partitioned in-
completely via the design matrix, X =


D W


, given what we know,


D W (D W )



That is, this design matrix imposes a pooling restriction.11 Consistency
requires such pooling restrictions satisfy the equality of

E [Y | D = 1,W = 0] E [Y | D = 0,W = 0]

and
E [Y | D = 1,W = 1] E [Y | D = 0,W = 1]

as well as
E [Y |W = 1, D = 0] E [Y |W = 0, D = 0]

and
E [Y |W = 1, D = 1] E [Y |W = 0, D = 1]

Therefore, even though E [Y | D = 0,W = 1] is uniquely associated with
Y = 5, the pooling restriction produces a residual

(e | D = 0,W = 1) = 5 5.50 = 0.50

Likewise, while E [Y | D = 1,W = 1] is uniquely associated with Y = 11,
the pooling restriction improperly produces a residual

(e | D = 1,W = 1) = 11 10.50 = 0.50

Also, E [Y | D = 0,W = 0] is associated with Y = {4, 6}, the pooling re-
striction produces residuals

(e | D = 0,W = 0) = 4 4.75 = 0.75

and
6 4.75 = 1.25

Finally, E [Y | D = 1,W = 0] is associated with Y = {9, 10}, the pooling
restriction produces residuals

(e | D = 1,W = 0) = 9 9.75 = 0.75

11Pooling restrictions are attractive as they allow, when appropriate, the data to be
summarized with fewer parameters.
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and
10 9.75 = 0.25

In other words, inecient error cancellation. Of course, by construction
(orthogonality between the vector of ones for the intercept, the first col-
umn of X, and the residuals), the residuals sum to zero. Keeping in mind
that ANOVA is a partitioning exercise crystallizes the implications of in-
appropriate pooling restrictions on the design matrix, X. Or equivalently,
the implications of failing to fully utilize what we know,


D W (D W )



when estimating conditional expectations.

2.5 Omitted, correlated variables

The above example illustrates our greatest concern with conditional ex-
pectations or regression models. If we leave out a regressor (explanatory
variable) it’s eectively absorbed into the error term. While this increases
residual uncertainty, which is unappealing, this is not the greatest concern.
Recall the key condition for regression is E [ | X] = 0. If this is violated,
all inferences are at risk.
To illustrate the implications, return to the ANOVA examples. Let

X =

 D W (D X)



=

X2 x3



where X2 =

 D W


and x3 = (D X). Suppose the DGP is

Y = X +    N

0,2I


E [ | X] = 0

or
Y = X22 + x33 + 

When we estimate
Y = X2b2 + residuals

by orthogonal construction,

b2 =

XT
2 X2

1
XT
2 Y

=

XT
2 X2

1
XT
2 (X + )

=

XT
2 X2

1
XT
2 (X22 + x33 + )

= 2 +

XT
2 X2

1
XT
2 x33 +


XT
2 X2

1
XT
2 
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The last term is no problem as in large samples it tends to zero by E [ | X] =
0. Our concern lies with the second term,


XT
2 X2

1
XT
2 x33. This term is

innocuous if either XT
2 x3 tends to zero in large samples (in other words, x3

is uncorrelated with the other regressors), or 3 = 0 (in other words, the
third term was not a part of the DGP). Notice, this is extremely important,
any correlation between the omitted regressor and the other regressors (for
3 = 0) biases all of the estimates included in the model. The extent of the
bias in b2 is

bias (b2) =

XT
2 X2

1
XT
2 x33

In ANOVA example 3, without x3 we estimate

E [Y | X2] = 4.75 + 5D + 0.75W

The bias in the parameter estimates is

bias (b2) =

XT
2 X2

1
XT
2 x33

=
1

12




5 4 3
4 8 0
3 0 9








1
1
1



 1.5

=




0.25
0.5
0.75





Hence, to recover the parameters of interest (assuming our estimates are
based on a representative sample of the population) subtract the bias from
the above estimates and concatenate the missing parameter, 3,

2 = b2  bias (b2)

=




4.75
5
0.75








0.25
0.5
0.75



 =




5
4.5
0





And, with concatenation of 3 we have

 =


2
3


=





5
4.5
0
1.5





Why doesn’t this problem plague ANOVA example 2? Is it becauseXT
2 x3

tends to zero? No, this is the same as ANOVA example 3. The reason is
that the DGP is an unusual special case that excludes x3 = (D W ) as
3 = 0.
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ANOVA example 4

Once more, suppose we perturb the above example by altering W .

Y D W
4 0 0
6 0 1
5 0 1
11 1 0
9 1 0
10 1 1

The estimated regression is

E [Y | X] = 4 + 6D + 1.5W  1.5 (D W )

Again, intuition follows from conditional expectations.

E [Y | D = 0,W = 1] = 4 + 0 + 1.5 = 5.5

this combination of D and W pools Y = {5, 6}, in the sample. While for

E [Y | D = 1,W = 1] = 4 + 6 + 1.5 1.5 = 10

there is no residual (this combination ofD andW only occurs when Y = 10,
in the sample). Also, for

E [Y | D = 0,W = 0] = 4 + 0 + 0 + 0 = 4

there is no residual (this combination of D andW occurs only when Y = 4,
in the sample). Finally, we have

E [Y | D = 1,W = 0] = 4 + 6 + 0 + 0 = 10

there is some residual associated with these conditions as this combination
of D and W pools Y = 9 or 11, and they occur with equal frequency in the
sample.
Notice, if we don’t include the interaction term we estimate

E [Y | X] = 4.5 + 5.25D + 0.75W

Again, the estimated mean eects are dierent since the design matrix,
X =


D W


, incompletely partitions what we know,


D W (D W )



and pooling restrictions require

E [Y | D = 1,W = 0] E [Y | D = 0,W = 0]
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and
E [Y | D = 1,W = 1] E [Y | D = 0,W = 1]

to be equal as well as

E [Y |W = 1, D = 0] E [Y |W = 0, D = 0]

and
E [Y |W = 1, D = 1] E [Y |W = 0, D = 1]

to be equal.
Therefore, even though E [Y | D = 1,W = 1] is uniquely associated with

Y = 10, the pooling restriction inappropriately produces a residual

(e | D = 1,W = 1) = 10 10.50 = 0.50

Also, while E [Y | D = 0,W = 1] is associated with Y = {5, 6}, the pooling
restriction produces residuals

(e | D = 0,W = 1) = 5 5.25 = 0.25

and
6 5.25 = 0.75

Further, E [Y | D = 0,W = 0] is uniquely associated with Y = 4, and the
pooling restriction produces a residual

(e | D = 0,W = 0) = 4 4.5 = 0.5

Finally, E [Y | D = 1,W = 0] is associated with Y = {9, 11}, and the pool-
ing restriction produces residuals

(e | D = 1,W = 0) = 9 9.75 = 0.75

and
11 9.75 = 1.25

Again, by construction, the residuals sum to zero.
The DGP for ANOVA example 4 involves a dierent design matrix, X,

than examples 2 and 3. Nonetheless the omitted, correlated variable bias
stems from the analogous source. For ANOVA example 4 the bias is

bias (b2) =

XT
2 X2

1
XT
2 x33

=
1

12




8 6 6
6 9 3
6 3 9








1
1
1



 (1.5)

=




0.5
0.75
0.75
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2.6 Linear regression

How do we proceed if we perceive outcome is related to explanatory vari-
ables and these variables are not binary but rather have continuous sup-
port? LetX denote an npmatrix of explanatory variables, sayX1, . . . , Xp1,
plus a vector of ones in the first column for the intercept. Now, we envi-
sion a DGP like E [Y | X] = m (X) + , where m (X) is some function of
X,   N


0,2I


, and E [ | X] = 0. If the functional form of m (X) is

unknown (as is frequently the case), we often approximate m (X) with a
linear function, X, where  is a p-elemen parameter vector. Further, the
minimum mean squared error or least squares solution among linear func-
tions (i.e., linear in the parameters) is the same as that above. That is, 
is estimated via b =


XTX

1
XTY with V ar [b | X] = 2


XTX

1
, and

the estimated regression or estimated conditional expectation function is
Y = Xb = PXY .12

2.6.1 Example

It’s time for an example. Continue with the running example except treat-
ment, D, is initially unobserved.13 Rather, we observe X along with out-
come, Y . Suppose we have the following data.

Y X
4 1
6 1
5 0
11 1
9 1
10 0

We envision the DGP

Y = 0 + 1X + 

where   N

0,2I


and E [ | X] = 0. The estimated regression is

E [Y | X] = 7.5 + 1.0X

12 See the appendix to explore a more general case – generalized least squares (GLS ).
13 In this example, factor W is out of the picture.
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where predicted and residual values are as follows.

predicted

Y


residuals (e)

6.5 2.5
8.5 2.5
7.5 2.5
8.5 2.5
6.5 2.5
7.5 2.5

Again, by construction, the sum of the residuals is zero and the average
predicted value equals the sample average, Y . Within each cluster (the first
three and the last three observations), X perfectly explains the response,
however there is no basis for the regression to distinguish the clusters. If
treatment, D, is observed, then in combination with X we can perfectly
explain observed outcome. Such a model is sometimes labelled analysis of
covariance, or ANCOVA, for short.

2.6.2 Analysis of covariance

The ANCOVA label stems from combining the mean eects associated with
ANOVA and covariates, X, which explain outcome. For the setting above,
we envision the DGP

Y = 0 + 1D + 2X + 

or, in saturated form,

Y = 0 + 1D + 2X + 3 (D X) + 

where   N

0,2I


and E [ | X] = 0. Suppose the data above is aug-

mented by D, we have
Y D X
4 0 1
6 0 1
5 0 0
11 1 1
9 1 1
10 1 0

The estimated ANCOVA regression is

E [Y | D,X] = 5.0 + 5.0D + 1.0X + 0.0 (D X)

As observed outcome is perfectly predicted by D and X in the sample, the
predicted values are equal to observed outcomes and the residuals are all
zero. Further, as suggested above, the relation between outcome, Y , and
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the regressor, X, does not dier in the two treatment clusters; hence, the
coecient on the interaction term is zero. An interpretation of the regres-
sion is, on average, outcome diers between the two treatment clusters by
5 (the coecient on D) with a baseline when D = 0 of 5 (the intercept),
and within a cluster, outcome responds one-to-one (the coecient on X is
1) with X. For instance, when D = 0 and the covariate is low, X = 1,

E [Y | D = 0, X = 1] = 5.0 + 5.0 (0) + 1.0 (1) = 4

On the other hand, when D = 1 and the covariate is high, X = 1,

E [Y | D = 1, X = 1] = 5.0 + 5.0 (1) + 1.0 (1) = 11

and so on.
The omitted, correlated variable bias in the simple regression compared

to ANCOVA is

bias (d1) =

XT
1 X1

1
XT
1 x22

=
1

12


2 0
0 3

 
3
0


5

=


2.5
0



where X1 =

 X


and x2 = D. Omission of D causes no bias in the

coecient on X as D and X are uncorrelated; nonetheless, the intercept is
biased.
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2.7 Linear models equivalence

Earlier in this chapter, we demonstrated via example the equivalence of two
linear models for identifying regressor eects on outcome. In this section,
we’ll generalize the claim and demonstrate equivalence via double residual
regression (FWL).14

First, we can write the linear model (in error form) Y = X +  as

Y = X11 +X22 + Z +  (M1)

or
Y = (X1 +X2) 1 +X22 + Z +  (M2)

where Y is the outcome variable, X1 and X2 are regressors, Z are control
variables, and , for simplicity, are spherical errors (independent with con-
stant variance and E [ | X] = 0).15 The regressors may be continuous or,
as discussed earlier in the chapter, may be indicator variables.16 Clearly,
X1 and X2 must have the same number of columns.
Next, we demonstrate two results regarding the estimators: 1 = 1, the

estimator for the eect of X1 on Y conditional on X2, Z, and the intercept
(if one is included) and 2 = 2  1, the estimator for the dierence
between the eect of X2 on Y and X1 on Y each conditional on the other
variables. Combining the two results implies a third result: 2 = 1+2, the
estimator for the eect of X2 on Y conditional on X1, Z, and the intercept
(if one is included). For notational convenience, let W = X1 + X2. Now,
(M2) can be rewritten as

Y =W1 +X22 + Z +  (M2)

These claims imply (M1) and (M2) are informationally equivalent as the
regressors occupy the same subspace (model errors and residuals are iden-
tical).
By double residual regression (FWL), we have the following least squares

estimators.

1 =

(M2X1)

T
M2X1

1
(M2X1)

T
M2Y

=

XT
1 M2X1

1
XT
1 M2Y

14The equivalence of double residual regression and linear multiple regression is demon-
strated in Schroeder’s [2010, ch. 3] discussion of FWL and tests of restrictions.
15This also represents maximum entropy state of knowledge. If the model includes an

intercept Z includes a column of ones along with the control variables.
16 If the regressors, X1 and X2, are indicator variables that collectively sum to the

number of observations, the model is constructed without an intercept to maintain lin-
early independent columns in the design matrix X.
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2 =

(M1X2)

T
M1X2

1
(M1X2)

T
M1Y

=

XT
2 M1X2

1
XT
2 M1Y

1 =

(M2W )

T
M2W

1
(M2W )

T
M2Y

=

WTM2W

1
WTM2Y

2 =

(MWX2)

T
MWX2

1
(MWX2)

T
MWY

=

XT
2 MWX2

1
XT
2 MWY

whereMj = IPj refers to the projection matrix orthogonal to the column
subspace defined by j, Pj refers to the projection defined by the subspace
j, and j refers to


X1 Z


,

X2 Z


, or


W Z


for j = 1, 2, or W ,

respectively. For example,

PW =

W Z

 
W Z

T 
W Z

1 
W Z

T

=

W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT



and

MW = I 

W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT



so that PW and MW are orthogonal

PWMW =

W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT






I 


W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT



=

W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT





W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT





W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT



=

W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT





W Z

  WTW WTZ
ZTW ZTZ

1 
WT

ZT



= 0
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Hence,MW is orthogonal toW = X1+X2 and Z. By analogous reasoning,
M1 is orthogonal to X1 and Z, and M2 is orthogonal to X2 and Z.
Consider the first claim, 1 = 1. This is almost immediately apparent.

1 =

XT
1 M2X1

1
XT
1 M2Y

1 =

WTM2W

1
WTM2Y

=

(X1 +X2)

T
M2 (X1 +X2)

1
(X1 +X2)

T
M2Y

=

XT
1 M2X1 +X

T
1 M2X2 +X

T
2 M2X1 +X

T
2 M2X2

1



XT
1 M2Y +X

T
2 M2Y



Since M2 annihilates X2, all terms with M2X2 or XT
2 M2 go to zero.

1 =

XT
1 M2X1 + 0 + 0 + 0

1 
XT
1 M2Y + 0



=

XT
1 M2X1

1
XT
1 M2Y

= 1
This completes the demonstration of the first claim.
The second claim, 2 = 2  1, involves a little more manipulation.

2 =

XT
2 MWX2

1
XT
2 MWY

2  1 =

XT
2 M1X2

1
XT
2 M1Y 


XT
1 M2X1

1
XT
1 M2Y

=

XT
2 M1X2

1
XT
2 M1 


XT
1 M2X1

1
XT
1 M2


Y

For 2 = 2  1, the weights applied to the observed outcomes must be
equal

XT
2 MWX2

1
XT
2 MW =


XT
2 M1X2

1
XT
2 M1 


XT
1 M2X1

1
XT
1 M2

Post-multiply both sides by X2. The left hand side becomes

XT
2 MWX2

1
XT
2 MWX2 = I

and the right hand side is

XT
2 M1X2

1
XT
2 M1 


XT
1 M2X1

1
XT
1 M2


X2

=

XT
2 M1X2

1
XT
2 M1X2 


XT
1 M2X1

1
XT
1 M2X2

= I  0 = I

The second term for the right hand side is zero since the projection matrix,
M2, andX2 are orthogonal. This completes the demonstration of the second
claim. Having demonstrated the first two claims, the third claim is satisfied.


