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11
Partial identification and missing
data

Identification refers to a description of parameters that can, in principle, be
uncovered from arbitrarily large samples.1 Hence, if parameters are uniden-
tified it is fruitless to engage in estimation and inference. On the other
hand, when parameters are identified then it’s meaningful to engage in es-
timation and inference strategies. Much of the extant discussion focuses
on point identification but bounds or partial identification can illuminate,
say, what conclusions can be drawn from the data alone and how depen-
dent point identification is on conditions that may be of suspect credibility.
Point and partial identification are defined by the identification region or
feasible values the quantity of interest can take given the sampling process
and distributional conditions maintained. A quantity is point identified
if the identification region is a single value and partially identified if the
identification region involves multiple values but less than the maximum
region. Partial identification is described by a region when there is full sup-
port within its bounds and is bounded when support is incomplete as with
discrete random variables. Our objective is to explore (partial) identifica-
tion as it relates to the selection problem. To this end, we begin with a
foundational building block – missing outcome data.

1This chapter draws heavily from Manski, 2007, Identification for Prediction and De-
cision, Harvard University Press, and Manski, 2003, Partial Identification of Probability
Distributions, Springer-Verlag..
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11.1 Missing outcomes

Suppose each individual in a population is described by the triple (x, y, z)
where y is outcome, x is covariates, and z = 1 if data are observable and z =
0 otherwise. The analyst wishes to describe the unknown distribution for
outcome given (random) sample evidence so the analyst poses the question
regarding the likelihood y belongs to a subpopulation B. By the law of
total probability

Pr (y  B | x) = Pr (y  B | x, z = 1)Pr (z = 1 | x)
+Pr (y  B | x, z = 0)Pr (z = 0 | x)

The sampling process is informative for Pr (y  B | x, z = 1) and Pr (z | x)
but not Pr (y  B | x, z = 0). However, Pr (y  B | x, z = 0) is bounded be-
tween 0 and 1. Hence, the identification region is

Pr (y  B | x, z = 1)Pr (z = 1 | x)
 Pr (y  B | x) 

Pr (y  B | x, z = 1)Pr (z = 1 | x) + Pr (z = 0 | x)

The lower bound is the value of Pr (y  B | x) if missing values never fall in
B, and the upper bound is the value of Pr (y  B | x) if all missing values
fall in B. In other words, empirical evidence is informative unless y is always
missing.

11.1.1 Examples

Example 1 (identification from the data only) Suppose we’re inter-
ested in the likelihood assets are valued between 90 and 110 (i.e., B 
[90, 110]) conditional on covariates x. The value of assets is observed when
traded z = 1. However, untraded asset values are unobserved z = 0. A rep-
resentative sample of 190 assets satisfying the covariate conditions involves
100 trades with 96 out of 100 in the interval [90, 110]. Hence, taking the
sample evidence as representative the identification region is

96

100

100

190
 Pr (y  B | x) 

96

190
+
90

190
96

190
 Pr (y  B | x) 

186

190
0.5053  Pr (y  B | x)  0.9789

Here, we’ve treated the sample evidence as "perfectly" representative
of the population – sampling variation (sample variation from the pop-
ulation) is ignored. Even though the interval is wide, it is substantially
narrower than the uninformed interval [0, 1].
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It may be possible, albeit challenging and perhaps controversial, to tighten
the identification region via background knowledge of the market structure.
For instance, untraded assets may involve lower bids than the (observed)
traded prices, that is, (y | x, z = 1) > (y | x, z = 0). Alternatively, the re-
tention value to the seller (asking price) may be greater than the value of
(observed) traded assets, (y | x, z = 1) < (y | x, z = 0). If trades of compa-
rable assets are observed,2 the prevailing condition could be exploited to
narrow the identification region. For traded values below the lower bound
of B, the (y | x, z = 1) > (y | x, z = 0) condition makes it less likely miss-
ing values are in B. Similarly, traded values above the upper bound of
B, the (y | x, z = 1) < (y | x, z = 0) condition makes it less likely miss-
ing values are in B. In other words, background knowledge may indicate
Pr (y  B | x, z = 0) < 1 narrowing the identification region. To solidify the
point, consider so-called point identification. Stronger background knowl-
edge allowing assignment of the probability distribution may completely
define the objective, Pr (y  B | x).

Example 2 (additional background knowledge) Continuing with the
example 1 setting, suppose the analyst knows y given x is uniformly dis-
tributed between 85 and 110. Then, the objective is point-identified.

Pr (y  B | x, U) = Pr (90  y  110 | x, U) =
20

25
= 0.8

which, of course, is contained in the region identified by the data alone.

There are numerous consistent conditional distributions. For example,

f (y | z = 0, x) =
17
225 85  y  95
11
675 95 < y  110

2This supposes that assets with the same state-for-state payos can be identified such
as employed for valuation of redundant securities. However, if the result of this thought
experiment is known, we might question the utility of data experiments.
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f (y | z = 0, x)

and

f (y | z = 1, x) =
1
125 85  y  95
23
375 95 < y  110

f (y | z = 1, x)

Then,

f (y | x) =
90
190

17
225 +

100
190

1
125 =

1
25 85  y  95

90
190

11
675 +

100
190

23
375 =

1
25 95 < y  110
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with Pr (85  y  90 | z = 1, x) = 0.04.
However, if one or both of the uniform bounds are unknown, then the

analyst faces an inference problem in which the evidence is informative of
the bounds. We return to this example in section 11.1.14 where we discuss
Bayesian inference of a probability region based on an assigned uniform
likelihood with unknown bounds.

11.1.2 Quantiles

The bounds on the identification region

Pr (y  t | x, z = 1)Pr (z = 1 | x)
 Pr (y  t | x) 

Pr (y  t | x, z = 1)Pr (z = 1 | x) + Pr (z = 0 | x)

translate into -quantile, Q (y | x) , bounds under some mild regulatory
conditions. If the observable probability, Pr (y  t | x, z = 1), is continuous
and monotone in t, and Pr (z = 0 | x) <  then solving the upper bound
for t identifies the least sharp bound for Pr (y | x, z = 1).

Pr (y  t | x, z = 1)Pr (z = 1 | x) + Pr (z = 0 | x) = 

In other words, the -quantile for Pr (y  t | x) is the Pr(z=0|x)
Pr(z=1|x) -quantile

of Pr (y | x, z = 1). If Pr (z = 0 | x) < 1  , solving the lower bound for
t identifies the maximum feasible bound for Pr (y | x, z = 1), that is, the


Pr(z=1|x)quantile for Pr (y | x, z = 1). Hence, the -quantile identification
region is

 Pr (z = 0 | x)
Pr (z = 1 | x)

-quantile of Pr (y | x, z = 1)

 Q (y | x) 


Pr (z = 1 | x)
-quantile of Pr (y | x, z = 1)

More generally, there may be discontinuities and/or flat spots in the
observed distribution Pr (y | x, z = 1), Manski [1994] shows that the -
quantile bounds are

r (, x)

 Q (y | x) 
s (, x)

where

r (, x) = Pr(z=0|x)
Pr(z=1|x) -quantile of Pr (y | x, z = 1) if Pr (z = 0 | x) < 

min (y) otherwise
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and

s (, x) = 
Pr(z=1|x) -quantile of Pr (y | x, z = 1) if Pr (z = 0 | x) < 1 

max (y) otherwise

11.1.3 Examples

Example 3 (median – data informative) Suppose we’re interested in
the median ( = 0.5) and Pr (z = 0 | x) = 0.2. Then, the  = 0.5-quantile
bounds are 0.50.2

0.8 -quantile and 0.5
0.8 -quantile of Pr (y | x, z = 1).

3

8
-quantile of Pr (y | x, z = 1)

 Q0.5 (y | x) 
5

8
-quantile of Pr (y | x, z = 1)

Further, suppose the observable distribution is uniform (0, 10). Then,

3.75  Q0.5 (y | x)  6.25

The data are informative of the median.

Example 4 (median – data uninformative) Again, suppose we’re in-
terested in the median ( = 0.5) but Pr (z = 0 | x) = 0.6. Then, the  =
0.5-quantile bounds are the logical extremes, min (y) and max (y).

0-quantile of Pr (y | x)
 Q0.5 (y | x) 

1-quantile of Pr (y | x)

Or, in the case where support for the distribution is [0, 10]. Then,

0  Q0.5 (y | x)  10

The data are uninformative of the median.

11.1.4 Expected values

Now, we explore identification from the data alone of the expected value
of a function E [g (y) | x] in the face of missing data. By the law of iterated
expectations,

E [g (y) | x] = E [g (y) | x, z = 1]Pr (z = 1 | x)
+E [g (y) | x, z = 0]Pr (z = 0 | x)



11.1 Missing outcomes 7

From the data alone, the identification region for the mean is

E [g (y) | x, z = 1]Pr (z = 1 | x) + g0 Pr (z = 0 | x)
 E [g (y) | x] 

E [g (y) | x, z = 1]Pr (z = 1 | x) + g1 Pr (z = 0 | x)

where g0 = min g (y) and g1 = max g (y). Whenever Pr (z = 0 | x) < 1 and
g (y) is bounded, the data are informative. The width of the identification
region is (g1  g0) Pr (z = 0 | x). However, if either extreme is unbounded,
g0 =  or g1 = , the identification has region has infinite width. The
data remain informative for the mean so long as g (y) has at least one finite
bound.
Next, we explore some examples. First, we illustrate some standard point-

identification strategies for addressing means with missing outcome data.
Then, we return to partial identification strategies for means with missing
outcome data.

11.1.5 Point identification of means

We briefly illustrate two missing at random (MAR) strategies: inverse prob-
ability weighting (IPW ) and imputation. And, a non-MAR strategy: Heck-
man’s control function.

11.1.6 Examples

Example 5 (IPW ) Suppose the DGP is

y x z
3 2 1
5 2 1
4 2 0
1 1 1
0 1 0
2 1 0

From the DGP, E [y | x = 2] = 4, E [y | x = 1] = 1, E [y] = 5
2 , nx=2 = 3,

nx=1 = 3, Pr (z = 1 | x = 2) = E [z | x = 2] = 2
3 , and E [z | x = 1] =

1
3 .
3

As the name suggests, IPW utilizes the observed data scaled by the inverse
of the propensity score to identify the unknown mean for outcome.

E [y | x] =
1

nx

 y · 1 (z = 1 | x)
Pr (z = 1 | x)

3To conserve space, we refrain from writing all permutations for the DGP. For com-
pleteness, the DGP has nine values for each level of x with outcomes equally likely and
all outcome values are equally likely to be missing given x.
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where 1 (·) is an indicator function equal to one when the condition inside
is satisfied and zero otherwise. In other words,

E [y | x = 2] =
1

3


3
2
3

+
5
2
3


= 4

and

E [y | x = 1] =
1

3


1
1
3


= 1

By iterated expectations, the unconditional outcome mean is

E [y] = Pr (x = 2)E [y | x = 2] + Pr (x = 1)E [y | x = 1]

=
1

2
(4) +

1

2
(1) =

5

2

where Pr (x = i) = ni
n2+n1

, i = 1, 2.

Example 6 (imputation) Suppose the DGP is the same as example 5.
Some perhaps flexible model is employed to fit the conditional means based
on the observed data yielding

m (x = 2) = 4

m (x = 1) = 1

Imputation identifies conditional outcome means as

E [y | x] =
1

nx


{y · 1 (z = 1 | x) +m (x) · 1 (z = 0 | x)}

That is,

E [y | x = 2] =
1

3
{3 + 5 + (4)} = 4

and
E [y | x = 1] =

1

3
{1 + (1 + 1)} = 1

where imputed missing values are in parentheses. Unconditional outcome
expectations are again

E [y] = Pr (x = 2)E [y | x = 2] + Pr (x = 1)E [y | x = 1]

=
1

2
(4) +

1

2
(1) =

5

2

When data are missing by choice rather than missing at random the
identification challenge is considerably more daunting. Heckman’s strategy
employs strong identifying conditions: namely, normality of unobservable
utility underlying the choice model and exclusion restrictions for the instru-
ments w. Then, by properties of the truncated normal the analyst extrapo-
lates into the truncated tail region to identify expected values for both the
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observed (by choice) and the missing outcome data. The mean (without
covariates)4 for the observable data is identified by

E [y | z = 1] = µ+  (z = 1)

while the mean for missing data is identified by

E [y | z = 0] = µ+  (z = 0)

where  (z = 1) = (w)
(w) and  (z = 0) = 

(w)
1(w) . The estimation strat-

egy is in two-steps. First, regress z onto w via probit. Then, regress observed
outcome (y | z = 1) onto an intercept and estimated  (z = 1) based on re-
sults from the first stage probit. Then, plug-in the estimates for µ, , and
 (z) in the above expressions to get the estimated values for E [y | z = 1]
and E [y | z = 0]. The example below is discrete rather than continuous but
(hopefully) compactly illustrates the ideas.

Example 7 (Heckman’s control function strategy) Suppose the DGP
is

y y  µ z w  (z)
15 3 1 2.5 3
14 2 1 1 2
13 1 1 5.5 1
11 1 0 5.5 1
10 2 0 1 2
9 3 0 2.5 3

where E

wT (y  µ)


= 0. The expected value for the observed (by choice)

outcomes is

E [y | z = 1] =
1

3
{(12 + 3) + (12 + 2) + (12 + 1)} = 14

while the expected value for missing outcomes is

E [y | z = 0] =
1

3
{(12 1) + (12 2) + (12 3)} = 10

and by iterated expectations the unconditional expectation is

E [y] = Pr (z = 1)E [y | z = 1] + Pr (z = 0)E [y | z = 0]

=
1

2
(14) +

1

2
(10) = 12

4 If there are covariates, then simply include their relation with outcome, say
E [y | x, z] = µ+ g (x) +  (z).
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11.1.7 Partial identification of means

Next, we illustrate partial identification of expected values of functions
of random variables. First, we consider the expected value of a random
variable with bounded support. Then, we illustrate how the data are infor-
mative for the variance.

11.1.8 Examples

Example 8 (mean) Suppose we’re interested in the mean of y where the
evidence indicates E [y | x, z = 1] = 3, Pr (z = 0 | x) = 0.4, and known
support for y is [10, 10]. Then, the identification region for the mean is

3 (0.6) 10 (0.4)  E [y | x]  3 (0.6) + 10 (0.4)
2.2  E [y | x]  5.8

Example 9 (variance) Suppose we’re interested in the variance of y where
the evidence indicates E [g (y) | x, z = 1] = E


(y  E [y])2 | x, z = 1


=

100, Pr (z = 0 | x) = 0.4, and support for g (y) is unbounded above (0,).
Then, the identification region for the variance is

100 (0.6) + 0 (0.4)  V ar [y | x]  100 (0.6) + (0.4)

60  V ar [y | x] <

The data are informative as the interval is narrower than the maximum,
0  V ar [y | x] <.

11.1.9 Inference

We briefly discuss inference for a partially-identified unknown mean, ,
from a random sample of size n. Suppose outcome is known to have [0, 1]
support where E [y | z = 1] = µ1  [0, 1], E [y | z = 0] = µ0  [0, 1],
V ar [y | z = 1] = 2, n1 =

n
i=1 zi, y =


i yizi
i zi

, and, to keep matters

simple, propensity score5 E [z | x] = p is known.6 Bounds on the mean are

pE [y | z = 1]  E [y] =   pE [y | z = 1] + (1 p)

Replacing parameters with sample analogs gives

py    py + (1 p)

5Conditioning on covariates, x, is made explicit to emphasize the propensity score
but otherwise suppressed to simplify notation.

6 Imbens and Manski [2004] show, in the general case when  and p are unknown, 2

can be replaced by 2 =
n
i=1 zi(yiy)

2

n11
and p can be replaced by p =

n
i=1 zi
n

.



11.1 Missing outcomes 11

Asymptotic normality of the sample average produces a 95% confidence
interval for the lower bound


p


y  1.96



n1


, p


y + 1.96



n1



and for the upper bound

p


y  1.96



n1


+ (1 p) , p


y + 1.96



n1


+ (1 p)



A valid, conservative confidence interval for the mean utilizes the lower
confidence limit from the lower bound and upper confidence limit from the
upper bound.


p


y  1.96



n1


, p


y + 1.96



n1


+ (1 p)



Imbens and Manski (Econometrica [2004]) suggest a confidence interval
that supplies uniform, say  = 95%, coverage for all p.


p


y  Cn



n1


, p


y + Cn



n1


+ (1 p)



where Cn solves

 = 


Cn +


np1 p

p


  (Cn)

for  (·) the standard normal CDF and p =
n

i=1 zi
n . For p = 1 (the mean is

point-identified) and  = .95, Cn = 1.96 and as indicated by the examples
below for p < 1, Cn decreases towards 1.645.
To see this, recognize (y, p) are a pair of sucient statistics for  and

(y | p)  N

µ1,

2

pn


or, at least,


n (y  µ1 | p)

d N

0, 

2

p


.7 Symmetric

intervals for partially-identified  are of the form

l D,u +D



or
Pr

l D    u +D | p



Substituting upper and lower bounds gives

Pr (py D  pµ1 + (1 p)µ0  py + (1 p) +D | p)

7 If the observed outcome distribution is unknown or unassigned, the sample average
converges asymptotically to a normal distribution via the central limit theorem.
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Collecting terms involving observable data produces

Pr (D  (1 p)µ0  p (µ1  y)  (1 µ0) (1 p) +D | p)

Now, rescale by the standard deviation of (y | p) and divide by p.

Pr



D  (1 p)µ0
p 

pn


p (µ1  y)
p 

pn


(1 µ0) (1 p) +D

p 
pn

| p





The probability is the same at either endpoint µ0 = 0, 1 and a global
minimum at the extremes as the second derivative is negative for all µ0 

[0, 1]. Let Cn = D


np
p and set the probability coverage equal to , then

we have

 = Pr



Cn 
(µ1  y)


pn

 Cn +

np1 p

p
| p





as claimed above. Both the conservative interval and Imbens-Manski uni-
form interval converge to the identification region asymptotically.

11.1.10 Examples

Example 10 (confidence intervals for a partially-identified mean)
Suppose the DGP and sample size for various instances of missing outcomes
are

Pr y z1 z2 z3 z4
0.035 0 1 1 1 1
0.05 1

9 1 1 0 1
0.09 2

9 1 1 1 0
0.15 3

9 1 1 1 1
0.175 4

9 1 1 1 0
0.175 5

9 1 1 1 1
0.15 6

9 1 1 1 1
0.09 7

9 1 1 1 0
0.05 8

9 1 1 0 1
0.035 1 1 0 1 1
µ1 0.5 0.5 0.482 0.5 0.515
 0.2365 0.2365 0.2204 0.2129 0.2532
p 1 0.9 0.8 0.7
n1 100 90 80 70

Suppose the sample information is representative of the population (y = µ1
and p = p). The conservative and Imbens-Manski 95% confidence intervals
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are

conservative 95% confidence intervals
case lower limit upper limit

z1
1

0.5 1.96 0.2365

100



= 0.454

1

0.5 + 1.96 0.2365

100


+ 0

= 0.546

z2
0.9

0.482 1.96 0.2204

90



= 0.393

0.9

0.482 + 1.96 0.2204

90


+ 0.1

= 0.575

z3
0.8

0.5 1.96 0.2129

80



= 0.363

0.8

0.5 + 1.96 0.2129

80


+ 0.2

= 0.637

z4
0.7

0.515 1.96 0.2532

70



= 0.319

0.7

0.515 + 1.96 0.2532

70


+ 0.3

= 0.702

Imbens-Manski 95% confidence intervals
case lower limit upper limit

z1
1

0.5 1.96 0.2365

100



= 0.454

1

0.5 + 1.96 0.2365

100


+ 0

= 0.546

z2
0.9

0.482 1.645 0.2204

90



= 0.399

0.9

0.482 + 1.645 0.2204

90


+ 0.1

= 0.568

z3
0.8

0.5 1.645 0.2129

80



= 0.369

0.8

0.5 + 1.645 0.2129

80


+ 0.2

= 0.631

z4
0.7

0.515 1.645 0.2532

70



= 0.326

0.7

0.515 + 1.645 0.2532

70


+ 0.3

= 0.695

Example 11 (Imbens-Manski confidence intervals) Suppose the DGP
is one of the four cases below and again the sample information is repre-
sentative of the population (y = µ1 and p = p)..

case 1 case 2 case 3 case 4
µ1 0.5 0.5 0.482 0.482
 0.2365 0.2365 0.2204 0.2204
p 0.99 0.95 0.99 0.95
n1 99 95 99 95
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The following table depicts the variation in the critical value, Cn, to illus-
trate dependence of the critical value on  as well as p.

Imbens-Manski 95% confidence intervals
case lower limit upper limit

1
0.99


0.5 1.791 0.2365

99



= 0.453

0.99

0.5 + 1.791 0.2365

99


+ 0.01

= 0.547

2
0.95


0.482 1.6455 0.2365

95



= 0.434

0.95

0.482 + 1.6455 0.2365

95


+ 0.05

= 0.566

3
0.99


0.482 1.782 0.2204

99



= 0.438

0.99

0.482 + 1.782 0.2204

99


+ 0.01

= 0.526

4
0.95


0.482 1.6452 0.2204

95



= 0.419

0.95

0.482 + 1.6452 0.2204

95


+ 0.05

= 0.546

11.1.11 Respecting stochastic dominance

Parameters that respect stochastic dominance often enable relaxed or more
credible identifying conditions such as some form of monotonicity (dis-
cussed later). Distribution Q stochastically dominates distribution Q if
Q (y  t)  Q


(y  t) for all t. A parameter D (·) is said to respect sto-

chastic dominance ifD (Q)  D

Q



wheneverQ stochastically dominates

Q. Sharp bounds are straightforwardly defined for parameters that respect
stochastic dominance. For lower bounds, missing values are replaced by g0,
and for upper bounds, missing values are replaced by g1. Quantiles and
means of increasing functions of y respect stochastic dominance but spread
parameters such as variance and interquartile range do not (see Blundell
et al (BGIM) [2007]).8

11.1.12 Examples

Example 12 (mean respects stochastic dominance) Suppose the data
are distributed as in the table below where Q (y) stochastically dominates
Q


(y).

y Q

(y) Q (y)

0 2
6 0

1 3
6

3
6

2 5
6

4
6

3 1 1

8 See the appendix for a brief discussion of BGIM’s bounds for spread parameters.
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The mean respects stochastic dominance: EQ [y] = 11
6 > EQ [y] = 8

6 .

Example 13 (variance doesn’t respect stochastic dominance) The
data continue to be distributed as in example 12. Variance does not respect
stochastic dominance: V arQ [y] = 29

36 < V arQ [y] = 11
9 . Q stochastically

dominates Q, the mean for Q is larger than the mean for Q, but the vari-
ance of Q is smaller than the variance for Q.

11.1.13 Distributional assumptions

Identification of unbounded random variables requires distributional as-
sumptions. Though some analysts shy away from the idea, maximum en-
tropy probability assignment can be an illuminating strategy. Maximum
entropy (Jaynes [2004]) suggests that the analyst assign probabilities based
on background knowledge of the setting but no more – hence, maximum
entropy (uncertainty or disorder) subject to what one knows (typically ex-
pressed in terms of moment conditions; see chapter 4).
Briefly, probabilities are assigned by solving the Lagrangian for entropy.

max
pi0


n

i=1 pi log pi  0 (
n

i=1 pi  1)

1 (moment condition1) . . .
n (moment conditionn)

This problem can be framed as assigning a kernel, ki, and then normalizing
the kernel to identify a proper distribution.9

ki = exp


1

 (moment condition1)
pi

 . . . n
 (moment conditionn)

pi



Let Z be a normalizing or partition function10

Z =
n

i=1

ki

then probabilities are assigned as

pi =
ki
Z , for all i = 1, . . . , n

11.1.14 Probability assignment and Bayesian inference

Now, we revisit example 1 involving missing asset value outcomes and dis-
cuss Bayesian inference when distribution bounds are unknown.

9For continuous rather than discrete support, a probability mass, pi, is replaced with
a density function, f (xi), and summation is replaced with integration which eectively
replaces entropy with dierential entropy.
10Notice 0 and its associated constraint is absorbed in the partition function.
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Example 14 (uniform with unknown upper bound) Suppose the miss-
ing data in example 1 are believed to have the same support as the observed
and the market structure indicates asset value is bounded below at 85 but
the upper bound is unknown. Also, the analyst deems it credible to assign a
uniform distribution with unknown upper bound, u, and lower bound 85 for
outcome.11 In other words, the analyst is only confident of the lower bound.
Further, suppose the analyst believes the distribution for the unknown up-
per bound is no smaller than 100, and the distribution is relatively flat such
that the expected value of its natural logarithm is very large, say 1002.71.
Then, the maximum entropy prior for the upper bound u is conjugate prior
to uniform data, a Pareto distribution with hyperparameters a = 0.001 and
b = 100.

p (u) =
a (b 85)a

(u 85)a+1
=

0.00100271

(u 85)1.001

The likelihood is

 (u | y1, x) 
1

(u 85)n
=

1

(u 85)100

where y1 refers to observed outcomes. Hence, the posterior distribution for
the upper bound is also a Pareto distribution with hyperparameters a+n =
100.001 and max [b, yu] = 108.

p (u | y1, x) =
(a+n)(max[b,yu]85)a+n

(u85)a+n+1 , max [b, yu]  u  

or
p (u | y1, x) = 1.4933110138

(u85)101.001 , 108  u  

where yu = 108 is the maximum y in the sample. The posterior distribution
for u is concentrated between 108 and 110

Pr (108  u  110 | y1, x) = 0.999761

and
E [u | y1, x] = 108.232

Then, on average, Pr (y  B | y1, x) equals

E [Pr (90  y  110 | y1, x)]  E


min (110, u) 90

u 85
| y1, x



= 0.784759

11As discussed earlier, this does not imply outcome conditional on missing or ob-
servable have the same uniform distribution. For example, each conditional distribution
could be a mixture of distributions.
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If the analyst regards u > 115 as an inconsequential likelihood then inference
based on this probability assignment in conjunction with the data is almost
surely

2

3
 Pr (y  B | y1, x) 

4

5

These bounds are quite conservative when compared with 1000 posterior
simulation draws of the hyperparameter u and Pr (90  y  110 | y1, x) =
min(110,u)90

u85 .

statistic u Pr (90  y  110 | y1, x)
mean 108.227 0.7847

standard deviation 0.239 0.0022
minimum 108.000 0.7826
0.01-quantile 108.002 0.7826
0.05-quantile 108.010 0.7827
0.10-quantile 108.020 0.7828
0.25-quantile 108.062 0.7832
0.50-quantile 108.145 0.7840
0.75-quantile 108.315 0.7855
0.90-quantile 108.530 0.7875
0.95-quantile 108.684 0.7889
0.99-quantile 109.117 0.7847
maximum 109.638 0.7971
Bayesian inference with unknown upper bound

This inference region aorded by an assigned likelihood in combination with
an assigned prior over the unknown upper bound addresses sampling vari-
ation and is considerably narrower than the identification region based on
the data alone where we’ve ignored sampling variation. This arms the
considerable identifying power of probability distribution assignment.

Example 15 (uniform with both bounds unknown) Again, suppose
the missing data are believed to have the same support as the observed and
both the lower and upper bounds are unknown. Also, the analyst deems it
credible only to assign a uniform distribution with unknown upper bound,
u, and lower bound, l for outcome. Further, suppose the analyst believes
the distribution for the unknown lower bound is no larger than 99, for
the unknown upper bound is no smaller than 100, and the distribution is
relatively flat such that the expected value of its natural logarithm is very
large, 1001. Then, the maximum entropy prior for the bounds l and u is
conjugate prior to uniform data, a bilateral, bivariate Pareto distribution
with hyperparameters a = 0.001, r1 = 99, and r2 = 100.

p (u, l) =
a (a+ 1) (r2  r1)

a

(u l)a+2
=

0.001001

(u l)2.001
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The likelihood is

 (l.u | y1, x) 
1

(u l)n
=

1

(u l)100

Hence, the posterior distribution for the upper bound is also a bivariate
Pareto distribution with hyperparameters min


r1, y

l

= 85, max [r2, yu] =

108, and a+ n = 100.001.

p (l, u | y1, x)

=
(a+n)(a+n+1)(max[r2,yu]min[r1,yl])

a+n

(ul)a+n+2 ,
  l  min


r1, y

l

,

max [r2, y
u]  u  

or

p (l, u | y1, x) = 1.5082610140

(ul)102.001 ,
  l  85,
108  u  

where yl = 85 is the minimum y and yu = 108 is the maximum y in the
sample. The posterior distribution for l is concentrated between 83 and 85
and for u is concentrated between 108 and 110.

Pr (83  l  85, 108  u  110 | y1, x) = 0.999522

and

E [u l | y1, x] = 108.2323 84.7677 = 23.4646

such that there is negligible probability that l is below 80 and u exceeds

115. The expected Pr (y  B | x) equals E

min(110,u)max(90,l)

ul | y1, x

=

0.777065. If the analyst regards l < 80 and u > 115 as an inconsequential
likelihood then inference based on this probability assignment in conjunction
with the data is almost surely

4

7
 Pr (y  B | y1, x) 

4

5
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Again, this interval is conservative compared with 1000 posterior simulation
draws.

statistic u l Pr (90  y  110 | y1, x)
mean 108.344 84.885 0.7819

standard deviation 0.251 0.118 0.0058
minimum 108.005 84.095 0.7530
0.01-quantile 108.025 84.474 0.7653
0.05-quantile 108.058 84.653 0.7715
0.10-quantile 108.088 84.734 0.7745
0.25-quantile 108.167 84.847 0.7790
0.50-quantile 108.289 84.922 0.7827
0.75-quantile 108.457 84.965 0.7857
0.90-quantile 108.659 84.985 0.7882
0.95-quantile 108.822 84.993 0.7899
0.99-quantile 109.267 84.999 0.7939
maximum 109.683 84.9998 0.7974
Bayesian inference with unknown upper and lower bounds

As expected, this inference region is wider than the previous case when
the lower bound is known. However, this inference region aorded by an
assigned likelihood in combination with an assigned prior over the unknown
bounds of support is considerably narrower than the identification region
based on the data alone which ignores sampling variation.

11.1.15 Refutability

An important tool sometimes at our disposal is refutability of identifying
conditions. Refutability logically derives from the evidence while credibil-
ity is a matter of judgment. Any conditions restricting the distribution of
missing data are nonrefutable – the data cannot test their veracity. On
the other hand, some distributional restrictions are refutable. For example,
if the identification region based on the data alone is inconsistent with the
restriction on the distribution (i.e., their intersection is empty), then the
distributional restriction is refuted.

11.1.16 Example

Example 16 (mean example revisited) Suppose the analyst assigns a
conditional outcome distribution that yields a mean in the region [7,3].
Recall the identification region for the mean based on the data in example
8 is

2.2  E [y | 2]  5.8

As the intervals do not intersect, the condition on the mean of the distrib-
ution is refuted by the data.
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The preceding discussion treats the data as "perfectly" representative of
the "observed" population. Of course, typically the analyst employs sam-
ple evidence (in the form of the sample analog) to infer the identification
region based on the data. Refutable tests then rest on this sample-based
identification region lying suciently far from the region defined by the
distributional condition.

11.1.17 Missing covariates and outcomes

The above discussion focuses on missing outcomes, sometimes both out-
comes and covariates are missing. Now, we consider the case where out-
comes and covariates are jointly missing. We denote this as z = 1 when
outcomes and covariates and jointly observed and z = 0 when both are
missing. Again, by the law of total probability

Pr (y | x = x0) = Pr (y | x = x0, z = 1)Pr (z = 1 | x = x0)
+Pr (y | x = x0, z = 0)Pr (z = 0 | x = x0)

As before, the sampling process reveals Pr (y | x = x0, z = 1) but nothing
about Pr (y | x = x0, z = 0). However, in this case the sampling process
only partially reveals Pr (z | x = x0).
From Bayes theorem, we have for i = 0 or 1

Pr (z = i | x = x0)

=
Pr (x = x0 | z = i) Pr (z = i)

Pr (x = x0 | z = 1)Pr (z = 1) + Pr (x = x0 | z = 0)Pr (z = 0)

Substituting this into the expression for Pr (y | x = x0) yields

Pr (y | x = x0)

=
Pr (y | x = x0, z = 1)Pr (x = x0 | z = 1)Pr (z = 1)

Pr (x = x0 | z = 1)Pr (z = 1) + Pr (x = x0 | z = 0)Pr (z = 0)

+
Pr (y | x = x0, z = 0)Pr (x = x0 | z = 0)Pr (z = 0)

Pr (x = x0 | z = 1)Pr (z = 1) + Pr (x = x0 | z = 0)Pr (z = 0)

The sampling process reveals Pr (x = x0 | z = 1), Pr (y | x = x0, z = 1), and
Pr (z) but oers no evidence on Pr (x = x0 | z = 0) or Pr (y | x = x0, z = 0).

Pr (y | x = x0) =
Pr (y | x = x0, z = 1)Pr (x = x0 | z = 1)Pr (z = 1)

Pr (x = x0 | z = 1)Pr (z = 1) + pPr (z = 0)

+
Pr (y | x = x0, z = 0) pPr (z = 0)

Pr (x = x0 | z = 1)Pr (z = 1) + pPr (z = 0)
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Recognizing p  Pr (x = x0 | z = 0)  [0, 1] and the region is largest for
p = 1 leads to an identification region based on the data alone equal to

Pr (y | x = x0, z = 1)Pr (x = x0 | z = 1)Pr (z = 1)
Pr (x = x0 | z = 1)Pr (z = 1) + Pr (z = 0)

 Pr (y | x = x0) 
Pr (y | x = x0, z = 1)Pr (x = x0 | z = 1)Pr (z = 1)

Pr (x = x0 | z = 1)Pr (z = 1) + Pr (z = 0)

+
Pr (z = 0)

Pr (x = x0 | z = 1)Pr (z = 1) + Pr (z = 0)
= Pr (y | x = x0, z = 1)  + (1 )

where  = Pr(x=x0|z=1)Pr(z=1)
Pr(x=x0|z=1)Pr(z=1)+Pr(z=0)

. The data are informative so long as
Pr (y | x = x0, z = 1) > 0. When Pr (y | x = x0, z = 1) = 0 the lower bound
is zero; hence, the data are uninformative. This suggests the identification
region based on the data is narrower when only the outcomes are missing
than when outcomes and covariates are missing.

11.1.18 Examples

Example 17 (jointly missing outcomes and covariates) Return to ex-
ample 1 and compare the cases involving outcomes missing with outcomes
and covariates jointly missing. For simplicity, suppose the sampling process
satisfies Pr (z)=Pr (x = x0 | z = 1) = 100

190 , Pr (y  B | x = x0, z = 1) =
96
100 ,

and x = x0. The identification region based on the data when outcomes and
covariates are jointly missing is

96

100

100
190

100
190

100
190

100
190 +

90
190

 Pr (y  B | x = x0) 
96

100

100
190

100
190

100
190

100
190 +

90
190

+
90
190

100
190

100
190 +

90
190

96

271
= 0.3542  Pr (y  B | x = x0)  0.9852 =

267

271

Compare this with the identification region when only outcomes are missing.

96

190
= 0.5053  Pr (y  B | x = x0)  0.9789 =

186

190

Clearly, the latter identification region is narrower than the former.

Example 18 (uninformative evidence) Suppose the sampling process
is altered so that Pr (y  B | x = x0, z = 1) is unobserved also Pr (z)= 100

190
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and Pr (x = x0 | z = 1) = 0. The identification region based on the data
when outcomes and covariates are jointly missing is

0 100190

0 100190 +
90
190

 Pr (y  B | x = x0) 
0 100190

0 100190 +
90
190

+
90
190

0 100190 +
90
190

0  Pr (y  B | x = x0)  1

The sampling process is uninformative for Pr (y  B | x = x0).

11.1.19 Missing at random versus missing by choice

Missing at random is a common, yet controversial, identifying condition.
Missing at random makes the analysis straightforward as the observed data
are interpreted to be informative of y | x. Hence,

Pr (y | x, z = 0) = Pr (y | x, z = 1)

This invariance condition is often questioned, especially when potential
outcomes are missing by choice.
Much of the controversy regarding missing at random stems from argu-

ments that data are missing by choice. For example, in the study of wages,
it is common to invoke reservation wage homogeneity. Wage outcomes are
missing for individuals out of the workforce since their wage opportuni-
ties are below the reservation wage while those employed earn wages above
the reservation wage – hence, outcomes are missing by choice. Reservation
wage homogeneity, or more generally, missing by choice is inconsistent with
missing at random but these assertions are nonrefutable.

11.1.20 Stochastic dominance and treatment eects

If credible, stochastic dominance may help the analyst identify treatment
eects amidst missing potential outcomes by choice. We next briefly con-
sider two cases: homogeneous treatment eects and heterogeneous treat-
ment eects. Then, we review various instrumental variable strategies for
partially identifying missing outcomes in the selection problem.

11.1.21 Examples

Example 19 (stoch. dominance and treatment eect homogeneity)
Suppose binary treatment selection (D = 1 treated and D = 0 untreated) re-
spects uniformity (that is, the propensity to adopt treatment is monotonic
in the covariates) such that everyone below some threshold x0 adopts no
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treatment and everyone above the threshold adopts treatment.

homogeneous treatment eect

The treatment eect is the dierence between potential outcomes with treat-
ment , Y1, and potential outcomes without treatment, Y0.

TE = Y1  Y0

But, an individual’s treatment eect is never observed as an individual
either adopts treatment or not, so the analyst looks to population level pa-
rameters (typically, means and quantiles). If Y1 first order stochastically
dominates Y0 (or the reverse), then treatment eect homogeneity may be
supported. If so, parameters respecting stochastic dominance (means and
quantiles) involve the same treatment eect. For instance, ATE (x) =
ATT (x) = ATUT (x) =MedTE (x) where

ATE (x) = E [Y1  Y0 | x]
ATT (x) = E [Y1  Y0 | x,D = 1]

ATUT (x) = E [Y1  Y0 | x,D = 0]

MedTE (x) = Median [Y1 | x]Median [Y0 | x]
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This is a form of missing by choice. The counterfactuals, (Y1 | x,D = 0) =
(Y1 | x, z = 0) and (Y0 | x,D = 1) = (Y0 | x, z = 0), are missing potential
outcome data. Homogeneity entails, say,

ATT (x) = E [Y1  Y0 | x,D = 1] > 0

E [Y1 | x, z = 1] > E [Y0 | x, z = 0]

as well as

ATUT (x) = E [Y1  Y0 | x,D = 0] > 0

E [Y1 | x, z = 0] > E [Y0 | x, z = 1]

Therefore, missing potential outcomes stochastically dominate observed out-
comes to the left of x0 and observed outcomes stochastically dominate miss-
ing potential outcomes to the right of the threshold x0.

Example 20 (stochastic dominance and self-selection) Suppose treat-
ment adoption respects uniformity (as in example 19) and observed out-
comes stochastically dominate missing potential outcomes.

heterogeneous treatment eect
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That is,

(Y1 | x, z = 1) = (Y1 | x,D = 1)

> (Y0 | x, z = 0) = (Y0 | x,D = 1)

and

(Y0 | x, z = 1) = (Y0 | x,D = 0)

> (Y1 | x, z = 0) = (Y1 | x,D = 0)

Outcomes are clearly heterogeneous and, in fact, support a strong form of
missing by choice – individual’s self-select according to the most beneficial
choice (such as described by the Roy model).

ATT (x) = E [Y1  Y0 | x,D = 1] > 0

E [Y1 | x, z = 1] > E [Y0 | x, z = 0]

and

ATUT (x) = E [Y1  Y0 | x,D = 0] < 0

E [Y1 | x, z = 0] < E [Y0 | x, z = 1]

Thus, the implications of this form of stochastic dominance are quite dif-
ferent from example 19.

Next, we discuss the selection problem in more detail along with a variety
of weaker stochastic dominance or monotonicity identifying conditions.

11.2 Selection problem

The foregoing discussions of missing outcome data apply to the selection
problem as indicated in the treatment eect examples 19 and 20. A key
characteristic of the selection problem is there may be a link between out-
comes across treatments. That is, observed outcomes may help identify
counterfactual potential outcomes. Also, the analyst may have reservations
regarding noncompliance or partial compliance when treatment is assigned.
In accounting, earnings management as an equilibrium reporting strategy
suggests partial compliance (compliance only within auditor-vetted para-
meters) is common place.
Suppose we’re interested in the impact of (perhaps, assigned) treatment

on the entire population. Due to the counterfactual nature of the question,
this cannot be addressed from the data alone at the individual level. How-
ever, various complementary conditions yield point or partial identification
strategies for population-level parameters, D. The treatment eect is TE =
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y (t)y (s) where t  s. Accordingly, treatment eect parameters (that re-
spect stochastic dominance) may be defined as either D [y (t)] D [y (s)],
which summarizes outcome associated with each treatment level, or focus
on the incremental impact of treatment, D [y (t) y (s)]. The latter is more
common in the extant literature but either may be the quantity of interest
to the analyst. When the focus is on expectations the two treatment ef-
fect parameters are the same E [y (t)]E [y (s)] = E [y (t) y (s)], but not
necessarily for quantiles, Q [y (t)]Q [y (s)] = Q [y (t) y (s)].12 Unless
otherwise noted, we focus on expectations and next remind ourselves of the
impact of missing outcome data on the mean.
Suppose outcomes are bounded, y  [y0, y1], covariates are denoted x,

potential treatment is denoted t, treatment selected is denoted z, and in-
struments are denoted , then y (t) is potential outcome with treatment
t and y is observed outcome. The counterfactual nature of the selection
problem combined with the law of iterated expectations gives

E [y (t) | x = x] = E [y | x = x, z = t] Pr (z = t | x = x)
+E [y (t) | x = x, z = t] Pr (z = t | x = x)

The evidence is informative about E [y (t) | x = x, z = t] and Pr (z | x = x)
but uninformative of E [y (t) | x = x, z = t]. Hence, the identification region
based on the data alone is

E [y | x = x, z = t] Pr (z = t | x = x) + y0 Pr (z = t | x = x)
 E [y (t) | x = x] 

E [y | x = x, z = t] Pr (z = t | x = x) + y1 Pr (z = t | x = x)

Then, the identification region for the conditional average treatment ef-
fect is

E [y | x = x, z = t2] Pr (z = t2 | x = x) + y0 Pr (z = t2 | x = x)
 {E [y | x = x, z = t1] Pr (z = t1 | x = x) + y1 Pr (z = t1 | x = x)}

 E [y (t2) y (t1) | x = x] 
E [y | x = x, z = t2] Pr (z = t2 | x = x) + y1 Pr (z = t2 | x = x)
 {E [y | x = x, z = t1] Pr (z = t1 | x = x) + y0 Pr (z = t1 | x = x)}

That is, the lower bound for the average treatment eect involves the min-
imum value of y (t2) less the maximum value of y (t1). Similarly, the upper
bound for the average treatment eect involves the maximum value of y (t2)
less the minimum value of y (t1).

12When we introduce monotone treatment response (MTR) in section 11.3.6, we dis-
cuss MTR-identification regions for the two treatment eect parameters.
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11.2.1 Partial compliance with random assignment

To address partial compliance, we define assignment by  and continue to
denote treatment adopted by z with other details as immediately above.
First, consider full compliance with random assignment which leads to point
identification of E [y (t) | x]. Random assignment

Pr (y (t) | x, ) = Pr (y (t) | x)

combined with full compliance gives

E [y (t) | x] = E [y (t) | x,  = t]

Iterated expectations produces

E [y (t) | x,  = t] = E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)
+E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)

but Pr (z = t | x,  = t) = 0 so

E [y (t) | x,  = t] = E [y (t) | x,  = t, z = t]

and observability of y (t) leads to point identification of all treatments t.

E [y | x,  = t] = E [y (t) | x,  = t] = E [y (t) | x]

Now, consider partial identification. First, we consider partial identifica-
tion of Pr (y (t) | x) where Pr (y (t) | x, ) = Pr (y (t) | x), then we consider
partial identification of E [y (t) | x]. By the law of total probability for any
t


Pr

y (t) | x,  = t




= Pr

y (t) | x,  = t


, z = t


Pr

z = t | x,  = t




+Pr

y (t) | x,  = t


, z = t


Pr

z = t | x,  = t




Then, observability gives the identification region for Pr

y (t) | x,  = t




Pr

y (t) | x,  = t


, z = t


Pr

z = t | x,  = t




+0Pr

z = t | x,  = t




 Pr

y (t) | x,  = t





Pr

y (t) | x,  = t


, z = t


Pr

z = t | x,  = t




+1Pr

z = t | x,  = t




or

Pr

y (t) | x,  = t


, z = t


Pr

z = t | x,  = t



+ t Pr


z = t | x,  = t
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where t is any feasible value of Pr

y (t) | x,  = t


, z = t


. Randomization

says Pr (y (t) | x, ) = Pr (y (t) | x), in other words, any distribution that
lies within the t


regions is a feasible distribution for Pr (y (t) | x). Hence,

the identification region for Pr (y (t) | x) is the intersection of the t

regions.

t





Pr

y (t) | x,  = t


, z = t


Pr

z = t | x,  = t




+t Pr

z = t | x,  = t









Similarly, partial compliance leads to partial identification of E [y (t) | x]
based on random assignment. Random assignment implies

E [y (t) | x] = E [y (t) | x, ]

Iterated expectations produces

E [y (t) | x]
= Pr ( = t | x) {E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)

+E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)}
+Pr ( = t | x) {E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)
+E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)}

Observability leads to

E [y (t) | x,  = t]
= Pr ( = t | x) {E [y | x,  = t, z = t] Pr (z = t | x,  = t)

+E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)}
+Pr ( = t | x) {E [y | x,  = t, z = t] Pr (z = t | x,  = t)
+E [y (t) | x,  = t, z = t] Pr (z = t | x,  = t)}

Random assignment Pr (y (t) | x, ) = Pr (y (t) | x) leads to

E [y (t) | x,  = t] = E [y (t) | x,  = t]
E [y (t) | x,  = t, z = t]
Pr (z = t | x,  = t)

+E [y (t) | x,  = t, z = t]
Pr (z = t | x,  = t)

=

E [y (t) | x,  = t, z = t]
Pr (z = t | x,  = t)

+E [y (t) | x,  = t, z = t]
Pr (z = t | x,  = t)

Since E [y (t) | x, , z = t] for all  and Pr (z | x, ) are provided by the em-
pirical evidence but E [y (t) | x, , z = t] for all  are not, the identification
region for any assignment  = t


is

E

y | x,  = t


, z = t


Pr

z = t | x,  = t



+ y0 Pr


z = t | x,  = t




 E

y (t) | x,  = t





E

y | x,  = t


, z = t


Pr

z = t | x,  = t



+ y1 Pr


z = t | x,  = t
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Hence, the identification region for E [y (t) | x] is the intersection of all
assignments as their expectations are equal given random assignment.

t{[E

y | x,  = t


, z = t


Pr

z = t | x,  = t




+y0 Pr

z = t | x,  = t



,

E

y | x,  = t


, z = t


Pr

z = t | x,  = t




+y1 Pr

z = t | x,  = t



]}

11.2.2 Example

Example 21 (compliance and random assignment) Suppose the DGP
is

y (1) y (0) TE = y (1) y (0) yfc zfc ypc zpc 
0 0 0 0 1 0 0 1
0.25 0.25 0.5 0.25 1 0.25 1 1
0.5 0.5 1 0.5 1 0.5 1 1
0.75 0.75 1.5 0.75 1 0.75 1 1
1 1 2 1 1 1 0 1
0 0 0 0 0 0 0 0
0.25 0.25 0.5 0.25 0 0.25 0 0
0.5 0.5 1 0.5 0 0.5 0 0
0.75 0.75 1.5 0.75 0 0.75 0 0
1 1 2 1 0 1 1 0

where yfc and zfc are outcome and treatment adopted with full compliance
and ypc and zpc are outcome and treatment adopted with partial compliance.
Identification bounds for outcome and treatment eect means given full
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compliance and partial compliance with random assignment  are

lower bound parameter upper bound
0.5 E [yfc (1)] 0.5
0.5 E [yfc (0)] 0.5
1.0 E [yfc (1) yfc (0)] 1.0

(a) full compliance with random assignment

lower bound parameter upper bound
0.1 E [ypc (1) |  = 1] 0.7
0.6 E [ypc (1) |  = 0] 1.0
0.8 E [ypc (0) |  = 1] 0.4
0.5 E [ypc (0) |  = 0] 0.1
0.1 E [ypc (1)] 0.7
0.5 E [ypc (0)] 0.1
0.0 E [ypc (1) ypc (0)] 1.2

(b) partial compliance with random assignment

11.2.3 Partial compliance with nonrandom assignment

Now, consider nonrandom assignment. First, full compliance with nonran-
dom assignment (or based on the data alone) involves

E [y (t) | x]
= Pr ( = t | x)E [y (t) | x,  = t]

+Pr ( = t | x)E [y (t) | x,  = t]
= Pr ( = t | x) {Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]

+Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]}
+Pr ( = t | x) {Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]
+Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]}

Full compliance implies Pr (z = t | x,  = t) = Pr (z = t | x,  = t) = 0 thus
the above expression simplifies to

E [y (t) | x]
= Pr ( = t | x) Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]

+Pr ( = t | x) Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]

Since everything in this expression but E [y (t) | x,  = t, z = t] is observ-
able from the empirical evidence, the identification region for nonrandom
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assignment of any treatment t with full compliance is

Pr ( = t | x) Pr (z = t | x,  = t)E [y | x,  = t, z = t]
+Pr ( = t | x) Pr (z = t | x,  = t) y0

 E [y (t) | x] 
Pr ( = t | x) Pr (z = t | x,  = t)E [y | x,  = t, z = t]
+Pr ( = t | x) Pr (z = t | x,  = t) y1

Next, we consider partial compliance with nonrandom assignment. Par-
tial compliance with nonrandom assignment leads to

E [y (t) | x]
= Pr ( = t | x) {Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]

+Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]}
+Pr ( = t | x) {Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]
+Pr (z = t | x,  = t)E [y (t) | x,  = t, z = t]}

Everything but E [y (t) | x,  = t, z = t] and E [y (t) | x,  = t, z = t] is ob-
servable from the empirical evidence, the identification region for nonran-
dom assignment (in other words, the data alone) of any treatment t with
partial compliance is

Pr ( = t | x) {Pr (z = t | x,  = t)E [y | x,  = t, z = t]
+Pr (z = t | x,  = t) y0}
+Pr ( = t | x) {Pr (z = t | x,  = t)E [y | x,  = t, z = t]
+Pr (z = t | x,  = t) y0}

 E [y (t) | x] 
Pr ( = t | x) {Pr (z = t | x,  = t)E [y | x,  = t, z = t]
+Pr (z = t | x,  = t) y1}
+Pr ( = t | x) {Pr (z = t | x,  = t)E [y | x,  = t, z = t]
+Pr (z = t | x,  = t) y1}
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11.2.4 Example

Example 22 (compliance and nonrandom assignment) Suppose the
DGP is a nonrandom assignment variation of example 21

y (1) y (0) TE = y (1) y (0) yfc zfc ypc zpc 
0 0 0 0 0 0 0 0
0.25 0.25 0.5 0.25 0 0.25 1 0
0.5 0.5 1 0.5 1 0.5 1 1
0.75 0.75 1.5 0.75 1 0.75 1 1
1 1 2 1 1 1 0 1
0 0 0 0 0 0 0 0
0.25 0.25 0.5 0.25 0 0.25 0 0
0.5 0.5 1 0.5 0 0.5 0 0
0.75 0.75 1.5 0.75 1 0.75 0 1
1 1 2 1 1 1 1 1

Identification bounds for outcome and treatment eect means given full
compliance and partial compliance with nonrandom assignment  are

lower bound parameter upper bound
0.1 E [yfc (1)] 0.9
0.6 E [yfc (0)] 0.4

0.5 E [yfc (1) yfc (0)] 1.5
(a) full compliance with nonrandom assignment

lower bound parameter upper bound
0.05 E [ypc (1) |  = 1] 0.85
0.75 E [ypc (1) |  = 0] 0.85
0.95 E [ypc (0) |  = 1] 0.25
0.35 E [ypc (0) |  = 0] 0.05
0.35 E [ypc (1)] 0.85
0.65 E [ypc (0)] 0.15
0.5 E [ypc (1) ypc (0)] 1.5

(b) partial compliance with nonrandom assignment

Not surprisingly, these bounds are wider than those based on random as-
signment as random assignment involves the intersection of the assign-
ment bounds while nonrandom involves their probability-weighted average.
In other words, random assignment has identifying power.

11.2.5 Various instrumental variable strategies

A variety of instrumental variable definitions have been proposed in the
literature. Below we review some common definitions and their implications
for the selection problem.
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11.2.6 Outcomes missing-at-random (MAR)

Outcomes missing at random (MAR) imply

Pr (y (t) | x = x, ) = Pr (y (t) | x = x, , z = t) = Pr (y (t) | x = x, , z = t)

Combining the law of total probability with MAR, Pr (y (t) | x = x) is
point-identified.

Pr (y (t) | x = x) =


v

Pr (y (t) | x = x,  = v) Pr ( = v | x = x)

=


v

Pr (y | x = x,  = v, z = t) Pr ( = v | x = x)

=


v

Pr (y (t) | x = x,  = v, z = t) Pr ( = v | x = x)

Hence, MAR point identifies average and quantile treatment eects.

D [y (t2) | x]D [y (t1) | x]

11.2.7 Statistical independence of outcomes and instruments
(SI)

Statistical independence of outcomes and instruments (SI ) implies

Pr (y (t) | x = x, ) = Pr (y (t) | x = x)

Combining the law of total probability with SI, the identification region for
Pr (y (t) | x = x) is the narrowest or intersection region for v  V

vV {[Pr (y | x = x,  = v, z = t) Pr (z = t | x = x,  = v) ,
Pr (y | x = x,  = v, z = t) Pr (z = t | x = x,  = v)
+Pr (z = t | x = x,  = v)]}

Notice the similarity to the earlier discussion of partial compliance with
random assignment. In that setting, assignment  serves as an instrument.
This identification region is a bit abstract, another example helps clarify
the identifying power of SI is a product of variation in the instrument .
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11.2.8 Examples

Example 23 (SI identifying power through variation in ) Suppose
the DGP is as follows

y y (1) y (0) TE = y (1) y (0) x z v
2 2 1 1 1 1 0
4 4 2 2 2 1 0
6 6 3 3 3 1 1
8 8 4 4 4 1 1
1 2 1 1 1 0 0
2 4 2 2 2 0 0
3 6 3 3 3 0 0
4 8 4 4 4 0 1

The identification bounds based on the data alone are

Pr (y | x = x,  = v, z = t) Pr (z = t | x = x,  = v)
 Pr (y (t) | x) 

Pr (y | x = x,  = v, z = t) Pr (z = t | x = x,  = v)
+Pr (z = t | x = x,  = v)

In other words,

1
2  Pr (y (1) = 2 | x = 1)  1 0  Pr (y (1) = 2 | x = 1)  1

2
1
2  Pr (y (1) = 4 | x = 2)  1 0  Pr (y (1) = 4 | x = 2)  1

2
1
2  Pr (y (1) = 6 | x = 3)  1 0  Pr (y (1) = 6 | x = 3)  1

2
1
2  Pr (y (1) = 8 | x = 4)  1 0  Pr (y (1) = 8 | x = 4)  1

2

and

1
2  Pr (y (0) = 1 | x = 1)  1 0  Pr (y (0) = 1 | x = 1)  1

2
1
2  Pr (y (0) = 2 | x = 2)  1 0  Pr (y (0) = 2 | x = 2)  1

2
1
2  Pr (y (0) = 3 | x = 3)  1 0  Pr (y (0) = 3 | x = 3)  1

2
1
2  Pr (y (0) = 4 | x = 4)  1 0  Pr (y (0) = 4 | x = 4)  1

2

On the other hand, SI bounds are

vV {Pr (y | x = x,  = v, z = t) Pr (z = t | x = x,  = v)
 Pr (y (t) | x = x,  = v) = Pr (y (t) | x = x) 

Pr (y | x = x,  = v, z = t) Pr (z = t | x = x,  = v)
+Pr (z = t | x = x,  = v)}

These are the same as those based on the data except when x = 3. In
this latter case, variation in the instrument can be exploited to narrow the
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interval. In fact, Pr (y (1) = 6 | x = 3) = 1 and Pr (y (0) = 3 | x = 3) = 1;
in other words, it is point-identified. To see this, recognize

Pr (y (t) | x) = Pr (y (t) | x, )
Pr (y (t) | x,  = 1) = Pr (y (t) | x,  = 0)

implies

Pr (y (t) | x,  = 1, z = t) Pr (z = t | x,  = 1)
+Pr (y (t) | x,  = 1, z = t) Pr (z = t | x,  = 1)

= Pr (y (t) | x,  = 0, z = t) Pr (z = t | x,  = 0)
+Pr (y (t) | x,  = 0, z = t) Pr (z = t | x,  = 0)

The terms involving (y (t) | z = t) are counterfactual or missing potential
outcome data.

Pr (y (1) = 6 | x = 3,  = 1, z = 1)Pr (z = 1 | x = 3,  = 1) = 1

implies the counterfactual

Pr (y (1) = 6 | x = 3,  = 1, z = 0)Pr (z = 0 | x = 3,  = 1) = 0

and Pr (y (1) = 6 | x = 3,  = 1) = 1. But, SI indicates

Pr (y (1) = 6 | x = 3,  = 0) = Pr (y (1) = 6 | x = 3,  = 1) = 1

This along with the potentially observable but unobserved

Pr (y (1) = 6 | x = 3,  = 0, z = 1)Pr (z = 1 | x = 3,  = 0) = 0

implies the counterfactual must be

Pr (y (1) = 6 | x = 3,  = 0, z = 0)Pr (z = 0 | x = 3,  = 0) = 1.

Similarly,

Pr (y (0) = 3 | x = 3,  = 0, z = 0)Pr (z = 0 | x = 3,  = 0) = 1

implies the counterfactual

Pr (y (0) = 3 | x = 3,  = 0, z = 1)Pr (z = 1 | x = 3,  = 0) = 0

and Pr (y (0) = 3 | x = 3,  = 0) = 1. But, SI indicates

Pr (y (0) = 3 | x = 3,  = 0) = Pr (y (0) = 3 | x = 3,  = 1) = 1

This along with the potentially observable but unobserved

Pr (y (0) = 3, z = 0 | x = 3,  = 1)Pr (z = 0 | x = 3,  = 1) = 0
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implies the counterfactual must be

Pr (y (0) = 3, z = 1 | x = 3,  = 1)Pr (z = 1 | x = 3,  = 1) = 1.

That is, the intersection of the probability regions [0, 1] and [1, 1] are the
points

Pr (y (1) = 6 | x = 3) = 1
and

Pr (y (0) = 3 | x = 3) = 1.
Hence, the conditional treatment eect [y (1) y (0) | x = 3] = 6 3 = 3 is
identified by SI.

Thus, combining SI with other conditions can point-identify an average
treatment eect. Another example of SI point-identification involves the
local average treatment eect (LATE ) which we briefly revisit next.

11.2.9 SI point-identification of LATE

As discussed in chapter 3, a local average treatment eect for an uniden-
tified subpopulation of compliers is point-identified via SI in combination
with uniform treatment adoption for all individuals as a function of a binary
instrument.

LATE = E [y (t1) y (t0) | 1 (z = t1) 0 (z = t0) = 1]

where i (z = tj) is treatment adopted z = t0, t1 when the value of the
instrument is i = 0, 1. Compliers adopt treatment when the instrument
value is unity and no treatment otherwise.

11.2.10 Means missing-at-random (MMAR)

Means missing-at-random (MMAR) implies

E [y (t) | x = x, ] = E [y (t) | x = x, , z = t] = E [y (t) | x = x, , z = t]

MMAR serves the mean analogous to the manner MAR serves probabil-
ity assignment. Combining the law of iterated expectations with MMAR,
E [y (t) | x = x] is point-identified.

E [y (t) | x = x] =


v

E [y (t) | x = x,  = v] Pr ( = v | x = x)

=


v

E [y | x = x,  = v, z = t] Pr ( = v | x = x)

=


v

E [y (t) | x = x,  = v, z = t] Pr ( = v | x = x)

Accordingly, MMAR point identifies the conditional average treatment ef-
fect, E [y (t2) y (t1) | x = x].
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11.2.11 Mean independence of outcomes and instruments
(MI)

Mean independence of outcomes and instruments (MI ) leads to

E [y (t) | x = x, ] = E [y (t) | x = x]

Analogous to SI, the MI identification region for E [y (t) | x = x] is the
narrowest interval for v  V

max
vV

E [y · 1 (z = t) + y0 · 1 (z = t) | x = x,  = v]

 E [y (t) | x = x,  = v] = E [y (t) | x = x] 
min
vV

E [y · 1 (z = t) + y1 · 1 (z = t) | x = x,  = v]

where 1 (·) is an indicator function equal to one when the condition in
parentheses is satisfied and otherwise equals zero.

11.2.12 Example

Example 24 (MI identifying power through variation in ) Return
to the setup in example 23 and apply the MI condition. The identification
region for expectations E [y (t) | x = x] based on the data alone is

1.5  E [y (1) | x = 1]  5
2.5  E [y (1) | x = 2]  6
3.5  E [y (1) | x = 3]  7
4.5  E [y (1) | x = 4]  8

and

1  E [y (0) | x = 1]  4.5
1.5  E [y (0) | x = 2]  5
2  E [y (0) | x = 3]  5.5

2.5  E [y (0) | x = 4]  6

Hence, the identification regions for the conditional average treatment eect
identified by the data alone are

3  E [y (1) y (0) | x = 1]  4
2.5  E [y (1) y (0) | x = 2]  4.5
2  E [y (1) y (0) | x = 3]  5

1.5  E [y (1) y (0) | x = 4]  5.5

When the analyst adds the MI condition the bounds remain the same except
for x = 3 (when there is variation in the instrument ). Then, expectations
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are point-identified as the missing data have equal expectation to the ob-
served.

6  E [y (1) | x = 3,  = 1] = E [y (1) | x = 3,  = 0]  6

and
3  E [y (0) | x = 3,  = 0] = E [y (0) | x = 3,  = 1]  3

Thus, the conditional average treatment eect identified via MI when x = 3
is point identified

3  E [y (1) y (0) | x = 3]  3

while other conditional average treatment eects (x = 1, 2, 4) identified via
MI are the same as those identified by the data as there is no meaningful
variation in  under these conditions.

11.2.13 MI point identification

When the value of the instrument is selected treatment,  = z,MI becomes
MMAR – a stronger point-identifying condition.

E [y (t) | x = x,  = z] = E [y (t) | x = x]

Observability combined with MI implies

E [y (t) | x = x] = E [y | x = x,  = t]

and

E [y (t2) y (t1) | x = x] = E [y | x = x,  = t2] E [y | x = x,  = t1]

This case is also referred to as ignorable treatment, selection on observables,
exogenous treatment selection (ETS ), or unconfounded assignment.

11.2.14 Examples

Example 25 (MI is MMAR when  = z point identification) Suppose
the DGP is

y (1) y (0) TE = y (1) y (0) y  = z
5 2 3 5 1
3 2 1 3 1
4 3 1 3 0
4 1 3 1 0

The average treatment eect is identified by MMAR.

E [y | x = x,  = t2] E [y | x = x,  = t1] = 4 2 = 2
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MI and outcomes linear in treatment

In addition, if the analyst combines MI with outcomes linear in treatment,
Pr [y (t)] is point-identified. Suppose the DGP is

yj (t) = t+ uj

where uj = yjzj is the individual-specific "intercept" and the unknown
slope  is common to all individuals. Mean independence13

E [u |  = v0] = E [u |  = v1]

along with meaningful variation in the instrument

E [z |  = v0] = E [z |  = v1]

implies

E [y  z |  = v0] = E [y  z |  = v1]
E [y |  = v0] E [z |  = v0] = E [y |  = v1] E [z |  = v1]

 =
E [y |  = v0] E [y |  = v1]
E [z |  = v0] E [z |  = v1]

Since the data Pr (y, z, ) identifies E [y | ] and E [z | ], , the average
treatment eect, is point-identified.

Example 26 (MI and outcomes linear in treatment) Suppose the DGP
is

yj (t) = t+ uj

where  = ATE = 1 and

y (t) z = t u 
1 1 0 1
2 2 0 1
5 3 2 1
6 4 2 1
1 3 2 1
8 4 4 1
1 1 0 0
3 2 1 0
3 3 0 0
7 4 3 0

 = E[y|=v0]E[y|=v1]
E[z|=v0]E[z|=v1]

=
3 123

5
6

2 122
5
6

= 1, the average treatment eect, is iden-
tified via the data when combined with MI and outcomes linear in treatment.

13 See ch. 3 for an alternative DGP associated with continuous treatment where both
the intercept and slope are individual specific. A point identified correlated random
coecients strategy for identifying average treatment eects is discussed.
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11.3 Monotone instrumental variable strategies

Monotone instrumental variable strategies involve a weakening of the fore-
going instrumental variable strategies in pursuit of increased credibility.
This weakening typically takes the form of replacing equalities with weak
inequalities.

11.3.1 Mean monotonicity (MM)

Mean monotonicity (MM ) is a relaxation of MI where a weak inequality
replaces equality. For ordered set V

v2  v1  E [y (t) | x = x,  = v2]  E [y (t) | x = x,  = v1]

The identification region given MM and the data is



vV

Pr ( = v)


max
vv

E

y (t) · 1 (z = t) + y0 · 1 (z = t) |  = v




 E [y (t)] 


vV

Pr ( = v)


min
vv

E

y (t) · 1 (z = t) + y1 · 1 (z = t) |  = v




Notice if the identification region is empty then not only is MM refuted
but also MI is refuted.

11.3.2 Examples

Example 27 (MM and variation in ) Suppose the DGP is

y y (1) y (0) TE = y (1) y (0)  z
4 4 2 2 2 1
6 6 3 3 3 1
1 2 1 1 1 0
4 8 4 4 4 0

where y0 = 1 and y1 = 8. The identification bounds based on the data are

3  E [y (1)]  6.5

1.75  E [y (0)]  5.25

and
2.25  E [y (1) y (0)]  4.75

while the identification bounds based on MM are considerably narrower.

4.25  E [y (1)]  5.5
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1.75  E [y (0)]  3.25

and
1  E [y (1) y (0)]  3.75

The DGP clearly violates MI and the MI-identification regions are empty

6  E [y (1)]  4

and
4  E [y (0)]  1

Also, the bounds for the average treatment eect refute an MI identification
strategy

5  E [y (1)]  0

Hence, the MI strategy is refuted by the MI partial identification bounds.

Example 28 (MM refuted) Suppose the DGP is slightly altered so that
MM is violated.

y y (1) y (0) TE = y (1) y (0)  z
4 4 2 2 2 1
1.5 1.5 3 1.5 3 1
1 2 1 1 1 0
4 8 4 4 4 0

where y0 = 1, y1 = 8, E [y (1)] = 3.875, and E [y (0)] = 2.5. The identifica-
tion bounds based on the data are

1.875  E [y (1)]  5.375

1.75  E [y (0)]  5.25

and
3.375  E [y (1) y (0)]  3.625

The identification region based on MM is empty for E [y (1)], refuting the
MM condition.

3.25  E [y (1)]  3.125

1.75  E [y (0)]  3.25

but bounds for the average treatment eect are not empty

0  E [y (1) y (0)]  1.375

The MI-identification regions are empty indicating refutation of MI as well.

4  E [y (1)]  1.5

4  E [y (0)]  1

and
3  E [y (1) y (0)]  2.5
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Example 29 (MM violated but not refuted) Suppose the DGP is once
again slightly altered so that MM is violated but the violation occurs in the
missing data.

y y (1) y (0) TE = y (1) y (0)  z
4 4 2 2 2 1
6 6 3 3 3 1
1 2 1 1 1 0
4 2 4 2 4 0

where y0 = 1, y1 = 6, E [y (1)] = 3.5, and E [y (0)] = 2.5. The identification
bounds based on the data are

3  E [y (1)]  5.5

1.75  E [y (0)]  4.25
and

1.25  E [y (1) y (0)]  3.75
The MM-identification bounds are

4.25  E [y (1)]  5

1.75  E [y (0)]  3.25
and

1  E [y (1) y (0)]  3.25
Even though the MM-identification region for E [y (1)] doesn’t contain the
mean value, the MM-identification region is not empty and consequently
does not refute the MM condition. This is not surprising as the violation oc-
curs in the missing data. As before, the MI-identification regions are empty
indicating refutation of MI.

6  E [y (1)]  4

4  E [y (0)]  1
and

5  E [y (1) y (0)]  0

11.3.3 Exogenous treatment selection (ETS)

To repeat some of the foregoing discussion, exogenous treatment selection
(ETS) is the most commonly employed point-identifying condition. For
each treatment t

E [y (t) | x = x, z = t2] = E [y (t) | x = x, z = t1]
 E [y (t) | x = x] = E [y | x = x, z]

so that

E [y (t2) y (t1) | x = x] = E [y | x = x, z = t2] E [y | x = x, z = t1]

However, ETS doesn’t enjoy much credibility by economic analysts.
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11.3.4 Monotone treatment selection (MTS)

We earlier discussed means missing monotonically (MMM ), in the context
of prediction with missing outcome data. In the context of the selection
problem, monotone treatment selection (MTS ) is more descriptive. When
the value of the instrument is selected treatment,  = z, MM becomes
MTS – a stronger identifying condition. MTS is a relaxation of ETS by
replacing equality with inequality.

t2  t1  E [y (t) | x = x, z = t2]  E [y (t) | x = x, z = t1]

The identification region based on the data and MTS is

Pr (z < t) y0 + Pr (z  t)E [y | z = t]
 E [y (t)] 

Pr (z > t) y1 + Pr (z  t)E [y | z = t]

MTS oers no identifying power over the data for binary treatment as
the identifying power resides with the interior treatment levels.14 However,
MTS is refutable as illustrated below.

11.3.5 Example

Example 30 (MTS) Suppose the DGP is

y y (3) y (2) y (1) y (0) z
0 3 2 1 0 0
2 4 3 2 1 1
4 5 4 3 2 2
6 6 5 4 3 3

where E [y (2) y (1)] = 1. The identification bounds based on the data
alone are

0  E [y (0)]  4.5
0.5  E [y (1)]  5
1  E [y (2)]  5.5

1.5  E [y (3)]  6
4  E [y (2) y (1)]  5

The MTS identification bounds are the same as those based on the data
alone for extreme levels of treatment z = 0 and 3 but considerably narrower

14 In the binary treatment case, one can always changes the treatment labels to satisfy
MTS.
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for the other treatments.

1.5  E [y (1)]  4
2  E [y (2)]  4.5

2  E [y (2) y (1)]  3

Example 31 (MTS refuted) Suppose the above DGP is slightly altered

y y (3) y (2) y (1) y (0) z
0 3 2 1 0 0
5 4 3 5 1 1
2 5 2 3 2 2
6 6 5 4 3 3

where E [y (2) y (1)] = 0.25 which is inconsistent with MTS. The iden-
tification bounds based on the data alone are

0  E [y (0)]  4.5
1.25  E [y (1)]  5.75
0.5  E [y (2)]  5
1.5  E [y (3)]  6

5.25  E [y (2) y (1)]  3.75

The MTS identification bounds refute the MTS strategy in two ways. The
bounds for E [y (1)] lie above those for E [y (2)] and the bounds for the av-
erage treatment eect, E [y (2) y (1)], are negative (further, the treatment
eect bounds don’t contain the estimand).

3.75  E [y (1)]  5.5
1  E [y (2)]  3

4.5  E [y (2) y (1)]  0.75

11.3.6 Monotone treatment response (MTR)

Monotone treatment response (MTR) argues

t2  t1  yj (t2)  yj (t1)

for all individuals j and all treatment pairs (t1, t2). MTR and MTS dier
– both may apply, either may apply or neither apply.
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Example 32 (Comparison of MTR-MTS conditions) Suppose the var-
ious DGP are as exhibited in panels (a), (b), and (c).

y (1) y (0) TE = y (1) y (0) z
2 1 1 1
1 0 1 0
(a) both MTR & MTS satisfied

y (1) y (0) TE = y (1) y (0) z
2 1 1 1
1 0 1 0
2 1 1 1
1 0 1 0
1 2 1 1
0 1 1 0
(b) MTS satisfied but not MTR

y (1) y (0) TE = y (1) y (0) z
2 1 1 1
3 2 1 0
(c) MTR satisfied but not MTS

In panel (a), MTR is satisfied as y1 (1) > y1 (0) and y2 (1) > y2 (0) and
MTS is satisfied as E [y (1) | z = 1] > E [y (1) | z = 0] and E [y (0) | z = 1] >
E [y (0) | z = 0]. For panel (b), MTS is satisfied as E [y (1) | z = 1] = 5

3 >
E [y (1) | z = 0] = 2

3 as well as E [y (0) | z = 1] =
4
3 > E [y (0) | z = 0] =

1
3 .

However, MTR is not satisfied since y5 (1) < y5 (0) and y6 (1) < y6 (0).
Finally, panel (c) shows MTR is satisfied as y1 (1) > y1 (0) and y2 (1) >
y2 (0) but MTS is not satisfied as E [y (1) | z = 1] < E [y (1) | z = 0] and
E [y (0) | z = 1] < E [y (0) | z = 0].

The identification region for MTR and the data is

E [y · 1 (t  z) + y0 · 1 (t < z) |  = v]
 E [y (t) |  = v] 

E [y · 1 (t  z) + y1 · 1 (t > z) |  = v]

Further, the identification regions for the two treatment eect parameters
introduced earlier are

0  D [y (t2)]D [y (t1)]  D [y1 (t2)]D [y0 (t1)]

and
D (0)  D [y (t2) y (t1)]  D [y1 (t2) y0 (t1)]

where

y0j (t) =
yj if t  zj
y0 otherwise
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and

y1j (t) =
yj if t  zj
y1 otherwise

MTR determines the lower bounds while MTR and the data determine the
upper bounds. MTR bounds are typically informative even if no individual
in the population under study receives treatment t. Hence,MTR accommo-
dates partial prediction of outcomes associated with proposed treatments
never experienced in practice.

11.3.7 Examples

Example 33 (MTR) Suppose the DGP is the same as MTS example 30.

y y (3) y (2) y (1) y (0) z = 
0 3 2 1 0 0
2 4 3 2 1 1
4 5 4 3 2 2
6 6 5 4 3 3

The identification bounds based on the data alone are, of course, the same
as before with bounds on average treatment eects

4  E [y (1) y (0)]  5
4  E [y (2) y (1)]  5
4  E [y (3) y (2)]  5

and the MTR-identification bounds are all narrower

0  E [y (0)]  3
0.5  E [y (1)]  4.5
1.5  E [y (2)]  5.5
3  E [y (3)]  6

2.5  E [y (1) y (0)]  4.5
3  E [y (2) y (1)]  5

2.5  E [y (3) y (2)]  4.5

Some of the bounds, E [y (0)] and E [y (3)], are narrower for MTR than for
MTS while E [y (1)] and E [y (2)] are narrower for MTS than for MTR. Re-
call, for MTS the average treatment eect bound is 2  E [y (2) y (1)] 
3.
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11.3.8 MTR and means of increasing functions of outcome

MTR has identifying power for means of (weakly) increasing functions of
the outcome. Let f (·) be such a function. E [f (y (t))] respects stochastic
dominance and its MTR-identification region is

f (y0) Pr (z > t) + E [f (y) | z  t] Pr (z  t)
 E [f (y (t))] 

f (y1) Pr (z < t) + E [f (y) | z  t] Pr (z  t)

whereas the identification region based on the data alone is

f (y0) Pr (z = t) + E [f (y) | z = t] Pr (z = t)
 E [f (y (t))] 

f (y1) Pr (z = t) + E [f (y) | z = t] Pr (z = t)

Example 34 (MTR sometimes point identifies) Suppose the DGP is
a variant on the one above where t = 0, 4, y0 = 0, and y1 = 8 are feasible but
never observed (z  {1, 2, 3}) and we’re interested in the E [1 (y (t)  2)] =
Pr (y (t)  2) .

y y (4) y (3) y (2) y (1) y (0) z = 
2 5 4 3 2 1 1
4 6 5 4 3 2 2
6 7 6 5 4 3 3

The identification bounds, including out of sample treatments, based on the
data alone are

0  E [1 (y (0)  2)] = Pr (y (0)  2)  1
1

3
 E [1 (y (1)  2)] = Pr (y (1)  2)  1

1

3
 E [1 (y (2)  2)] = Pr (y (2)  2)  1

1

3
 E [1 (y (3)  2)] = Pr (y (3)  2)  1

0  E [1 (y (4)  2)] = Pr (y (4)  2)  1

while the MTR-identification bounds can be written

Pr (z  t  y  2)  Pr (y (t)  2)  Pr (z < t  y  2)
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and are (weakly) narrower than those based on the data alone

0  E [1 (y (0)  2)] = Pr (y (0)  2)  1
1

3
 E [1 (y (1)  2)] = Pr (y (1)  2)  1

2

3
 E [1 (y (2)  2)] = Pr (y (2)  2)  1

1  E [1 (y (3)  2)] = Pr (y (3)  2)  1
1  E [1 (y (4)  2)] = Pr (y (4)  2)  1

Two observations are notable. First, the upper tail probability is point iden-
tified for t = 3, 4. Second, treatment t = 4 is identified via MTR even though
the population under study oers no direct evidence.

11.3.9 Mean monotonicity and mean treatment response
(MM-MTR)

Combining MM and MTR yields the following identification region



vV

Pr ( = v)


max
vv

E

y · 1 (t  z) + y0 · 1 (t < z) |  = v




 E [y (t)] 


vV

Pr ( = v)


min
vv

E

y · 1 (t  z) + y1 · 1 (t > z) |  = v




11.3.10 Examples

Example 35 (MM-MTR where  = z) Suppose the DGP is the same
as example 33. Since  = z, MM is the same as MTS and the identification
bounds are the same as the MTR-MTS identification bounds (see 11.3.11
and example 38).

0  E [y (0)]  3
1.5  E [y (1)]  3.5
2.5  E [y (2)]  4.5
3  E [y (3)]  6

1.5  E [y (1) y (0)]  3.5
1  E [y (2) y (1)]  3

1.5  E [y (3) y (2)]  3.5
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Example 36 (MM-MTR where  = z) Suppose the DGP is

y y (0) y (1) y (2) z 
0 0 1 2 0 0
1 0 1 2 1 0
2 0 1 2 2 0
1 1 2 3 0 1
2 1 2 3 1 1
3 1 2 3 2 1
2 2 3 4 0 2
3 2 3 4 1 2
4 2 3 4 2 2

where y0 = 0 and y1 = 4. The identification bounds for the means based on
the data are the same as those based on MM.

1

3
 E [y (0)]  3

2

3
 E [y (1)]  3

1

3

1  E [y (2)]  3
2

3

2
1

3
 E [y (1) y (0)]  3

2
1

3
 E [y (2) y (1)]  3

Similarly, the symmetry in the DGP leads to the same identification bounds
for MTR and MM-MTR which are narrower than those based on the data
or MM.

1

3
 E [y (0)]  2

1
1

3
 E [y (1)]  2

5

9

3  E [y (2)]  3
2

3


2

3
 E [y (1) y (0)]  2

2

9
4

9
 E [y (2) y (1)]  2

1

3
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Example 37 (MM-MTR with more variation in ) Suppose the DGP
above is perturbed slightly such that only the next to last row is modified.

y y (0) y (1) y (2) z 
0 0 1 2 0 0
1 0 1 2 1 0
2 0 1 2 2 0
1 1 2 3 0 1
2 1 2 3 1 1
3 1 2 3 2 1
2 2 3 4 0 2
4 3 4 4 1 3
4 2 3 4 2 2

where y0 = 0 and y1 = 4. The identification bounds for the means based on
the data are

1

3
 E [y (0)]  3

7

9
 E [y (1)]  3

4

9

1  E [y (2)]  3
2

3

2
2

9
 E [y (1) y (0)]  3

1

9

2
4

9
 E [y (2) y (1)]  2

8

9

while the identification bounds based on MM dier.

4

9
 E [y (0)]  3

25

27
 E [y (1)]  3

4

9

1
2

9
 E [y (2)]  3

2

3

2
2

27
 E [y (1) y (0)]  3

2
2

9
 E [y (2) y (1)]  2

20

27
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The identification bounds for the means based on MTR dier from those
above

1

3
 E [y (0)]  2

1

9

1
1

3
 E [y (1)]  2

2

3

2
5

9
 E [y (2)]  3

2

3


7

9
 E [y (1) y (0)]  2

1

3


1

9
 E [y (2) y (1)]  2

1

3

and dier from those based on MM-MTR which are the narrowest bounds.

4

9
 E [y (0)]  2

1

9

1
11

27
 E [y (1)]  2

2

3

3  E [y (2)]  3
2

3


19

27
 E [y (1) y (0)]  2

2

9
1

3
 E [y (2) y (1)]  2

7

27

As with the above monotone instrument strategies, if outcome is un-
bounded so is the identification region for the expected value of outcome.
On the other hand,MTR andMTS combined produce a bounded identifica-
tion region for the mean even if outcome is unbounded. Hence, MTR-MTS
has considerable identifying power.

11.3.11 Mean treatment response and mean treatment
selection (MTR-MTS)

Combining MTR and MTS yields the following identification region


s<t

E [y | z = s] Pr (z = s) + E [y | z = t] Pr (z  t)

 E [y (t)] 


s>t

E [y | z = s] Pr (z = s) + E [y | z = t] Pr (z  t)
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11.3.12 Example

Example 38 (MTR-MTS) Suppose the DGP is an unbounded variation
of example 33.

y y (3) y (2) y (1) y (0) z = 
0 3 2 1 0 0
2 4 3 2  1
4  4 3 2 2
6 6 5 4 3 3

Even though outcome is unbounded and identification bounds for the mean
are unbounded based on the data, MTR, or MTS alone, the identification
bounds for MTR-MTS are the same as example 35.

0  E [y (0)]  3
1.5  E [y (1)]  3.5
2.5  E [y (2)]  4.5
3  E [y (3)]  6

1.5  E [y (1) y (0)]  3.5
1  E [y (2) y (1)]  3

1.5  E [y (3) y (2)]  3.5

Next, we visit quantile treatment eect (point and partial) identification
strategies.

11.4 Quantile treatment eects

Quantile treatment eects (QTE ) are point identified very similarly to
LATE, local average treatment eects, when a binary instrument exists
(see Abadie et al [1998]). In addition to standard identification conditions
for LATE (potential outcomes are independent of instruments , treatment
z is meaningfully related to the instruments, and treatment adoption is
uniformly increasing in the instruments; see chapter 3), QTE () uniqueness
can only be assured if the -quantiles for Y (0) and Y (1) conditional on
z1  z0 = 1 (defined below) are unique. Some explanation is in order.
Quantiles are typically defined by the distribution function,

F (y) =

yu

i=yl

Pr (yi)
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where yl is the lower bound of support for y and yu is the upper bound of
support for y. However, if we define another function, say

G (y) =

yl

i=yu

Pr (yi) ,

the quantile is unambiguous or unique if F1 () = G1 (1 ). This state-
ment is always true for continuous random variables but may fail for ran-
dom variables with discrete support. An example helps clarify.
Suppose the data generating process is uniform{1, 2, 3, 4}. Then,

y F (y) G (y)
1 0.25 1.0
2 0.50 0.75
3 0.75 0.50
4 1.0 0.25

First, second, and third quartiles are ambiguous but immediate surrounding
quantiles are not.

 F1 () G1 (1 )
0.24 1 1
0.25 1 2
0.26 2 2
0.49 2 2
0.5 2 3
0.51 3 3
0.74 3 3
0.75 3 4
0.76 4 4

Point identification of QTE () may fail if the quantile for Y (0) or
Y (1) conditional on z1z0 = 1 is ambiguous. When -quantiles for Y (0) or
Y (1) conditional on z1z0 = 1 are unambiguous, the quantile treatment
eect conditional on X is

QTE ( | X = x, z1  z0 = 1)  Q (Y (1) | X = x, z1  z0 = 1)
Q (Y (0) | X = x, z1  z0 = 1)

= 

where Q (·) refers to quantile of the random variable,  is the condi-
tional quantile treatment eect from a quantile regression with treatment
z = 0, 1 and covariates X,

Y  zY (1) + (1 z)Y (0) = z +X + 

x is the quantile for Y (0) conditional on X = xi, z1 is treatment when
the instrument  = 1 and z0 is treatment when  = 0. Hence, z1  z0 = 1
refers to the target subpopulation of compliers. That is, those individuals
who adopt treatment when the instrument is manipulated from zero to one.
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11.4.1 Identification

Given the conditions above,

argmin
a,b

E

 
1 (1)z

Pr(=0|X) 
(1z)

Pr(=1|X)



· (Y  az Xb) · (  1 {Y  az Xb < 0})



equals ,. Hence, the conditional quantile treatment eect, , is point
identified for the (unidentified) subpopulation of compliers.
Think of this as E [] where conventional quantile regression is identi-

fied by
argmin

b
E []

that is, where the leading term in the expectation equals one.

argmin
b

E [(Y Xb) · (  1 {Y Xb < 0})]

The intuition for quantile regression is that Y = Xb is chosen to minimize
the expected linear loss where the loss function is

C

Y , Y | X


=

c1

Y  Y
 Y  Y

c2

Y  Y
 Y > Y

and  = c1
c1+c2

.

Now, let’s explore the  =

1 (1)z

Pr(=0|X) 
(1z)

Pr(=1|X)


term. Recall,

we’re interested in the quantile treatment eect for the subpopulation of
compliers. In other words, the quantile treatment eect, , conditional on
z1 > z0,

argmin
a,b

E [ | z1 > z0]

equals ,. E [ | X] can be written

E [ | X] = Pr (z1 > z0 | X)E [ | X, z1 > z0]
+Pr (z1 = z0 = 1 | X)E [ | X, z1 = z0 = 1]
+Pr (z1 = z0 = 0 | X)E [ | X, z1 = z0 = 0]

where uniformity implies Pr (z1 < z0 | X) = 0. Rearrange to isolate the
quantity of interest.

E [ | X, z1 > z0]

=
1

Pr (z1 > z0 | X)

·

E [ | X] Pr (z1 = z0 = 1 | X)E [ | X, z1 = z0 = 1]

Pr (z1 = z0 = 0 | X)E [ | X, z1 = z0 = 0]





11.4 Quantile treatment eects 55

Consider the subpopulation of always adopters, z1 = z0 = 1. Uniformity,
Pr (z1 < z0 | X) = 0, implies z0 = 1 occurs only for always adopters. Hence,

E [ | X, z1 = z0 = 1] = E [ | X, z = 1,  = 0]

= E


z (1 )

Pr ( = 0 | X) Pr (z = 1 | X,  = 0)
| X


and Pr (z = 1 | X,  = 0) = Pr (z1 = z0 = 1 | X) since the leading term
only occurs for the subpopulation of always adopters.
Similar, reasoning applies to the subpopulation of never adopters, z1 =

z0 = 0. Uniformity, Pr (z1 < z0 | X) = 0, implies z1 = 0 occurs only for
never adopters. Hence,

E [ | X, z1 = z0 = 0] = E [ | X, z = 0,  = 1]

= E


 (1 z)

Pr ( = 1 | X) Pr (z = 0 | X,  = 1)
| X


and Pr (z = 0 | X,  = 1) = Pr (z1 = z0 = 0 | X) since the leading term
only occurs for the subpopulation of never adopters.
On substitution, we have

E [ | X, z1 > z0]

=
1

Pr (z1 > z0 | X)
E


1

z (1 )
Pr ( = 0 | X)


 (1 z)

Pr ( = 1 | X)


 | X



=
1

Pr (z1 > z0 | X)
E [ | X]

Finally, as 1
Pr(z1>z0|X)

does not involve a or b, this term can be ignored
when solving for the arguments to minimize the expectation. Integrating
over X gives the identification condition.15

11.4.2 Estimation

Conventional quantile regression has a linear programming (LP) formula-
tion.

min
0

cT 

s.t. A = Y

15The E [k] development is based on lemma 2 from Abadie et al [1998] and is
quite general. That is, for any statistic for which a unique moment conditional on
the subpopulation of complier exists, the moment can be identified via this -strategy.

For instance, LATE =  is the solution µ, = argmin
m,a

E

 (Y m az)2


where

µ = E [Y0 | z1 > z0] and  = E [Y1  Y0 | z1 > z0].
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where c = (o, o,  · , (1 ) · )T ,  = (a+, b+, a, b, u+, u)T , u = Y 
zaXb, A = [z,X,z,X, I,I] , o is an h+ 1 element vector of zeroes,
 is and n element vector of ones, X is an n  h matrix of covariates, I is
an n  n identity matrix, b has h elements, e+ denotes the positive part
and e denotes the negative part of real number e.
Estimation of QTE () involves a variation on the above where c is re-

defined as (o, o,  ·K, (1 ) ·K)T and K = 1, . . . ,n, an n element vec-

tor composed of the sample analog of

1 (1)z

Pr(=0|X) 
(1z)

Pr(=1|X)


. How-

ever, when i is negative (for instance,  = 1 and z = 0) the LP is un-
bounded. This necessitates further modification. Two additional constraints
and one additional parameter, si, are added for each instance where i is
negative.

u+i  Msi

ui  M (1 si)

where M is a large (nonbinding) constant, and si  {0, 1}, an integer. In
other words, we now have a mixed integer linear program (MILP) formu-
lation for QTE estimation. It’s time for some examples.

11.4.3 Examples

The first example illustrates unconfounded quantile treatment eects as
outcomes are independent of treatment. In other words, treatment serves
as an instrument and the entire population is composed of compliers. As
there are no covariates X = .

Example 39 (unconfounded QTE) Suppose the DGP is

Y Y (1) Y (0) TE = Y (1) Y (0) z 
0 2 0 2 0 0
2 2 0 2 1 1
2 4 2 2 0 0
4 4 2 2 1 1
3 5 3 2 0 0
5 5 3 2 1 1
4 6 4 2 0 0
6 6 4 2 1 1
6 8 6 2 0 0
8 8 6 2 1 1

All quantile treatment eects except  = 0.2, 0.4, 0.6, 0.8 (where Q [Y (0)]
and Q [Y (1)] are not unique) are point identified. Some quantile treatment
eects, , along with quantiles for Y (0), , are tabulated below. Partially
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identified (non-unique) quantities are indicated by intervals within which
the objective function value is constant and minimized.

  = Q [Y (1)]Q [Y (0)]  = Q [Y (0)] Q [Y (1)]
0.1 2 0 2
0.2 (0, 4) (0, 2) (2, 4)
0.3 2 2 4
0.4 (1, 3) (2, 3) (4, 5)
0.5 2 3 5
0.6 (1, 3) (3, 4) (5, 6)
0.7 2 4 6
0.8 (0, 4) (4, 6) (6, 8)
0.9 2 6 8

Outcomes are homogeneous and since Pr (z0 = 1) = 0, QTE () for the
compliers equals QTT (), the quantile treatment eect for the treated. Like-
wise, as Pr (z1 = 1) = 1, QTE () for the compliers equals QTUT (), the
quantile treatment eect for the untreated. This is a case of unconfounded
treatment as treatment adopted serves the role of an instrument.

Example 40 (QTE for subsample of compliers) Suppose the DGP is
a slight variation of example 39.

Y Y (1) Y (0) TE = Y (1) Y (0) z 
0 2 0 2 0 0
0 2 0 2 0 1
2 4 2 2 0 0
4 4 2 2 1 1
3 5 3 2 0 0
5 5 3 2 1 1
4 6 4 2 0 0
6 6 4 2 1 1
6 8 6 2 0 0
8 8 6 2 1 1

Compliers are represented by rows 3 through 10. All quantile treatment
eects except  = 0.25, 0.5, 0.75 (where Q [Y (0)] and Q [Y (1)] are not
unique) are point identified. Some quantile treatment eects, , along with
quantiles for Y (0), , are tabulated below. Partially identified (non-unique)
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quantities are indicated by intervals.

  = Q [Y (1)]Q [Y (0)]  = Q [Y (0)] Q [Y (1)]
0.1 2 2 4
0.2 2 2 4
0.25 (1, 3) (2, 3) (4, 5)
0.4 2 3 5
0.5 (1, 3) (3, 4) (5, 6)
0.6 2 4 6
0.75 (0, 4) (4, 6) (6, 8)
0.8 2 6 8
0.9 2 6 8

Outcomes are again homogeneous and since Pr (z0 = 1) = 0, QTE () for
the compliers equals QTT (), the quantile treatment eect for the treated.
Notice, even though quartiles are uniquely defined for the population that
is not the case for the subpopulation of compliers.

Example 41 (more variation in QTE) Suppose the DGP involves more
variation than example 40.

Y Y (1) Y (0) TE = Y (1) Y (0) z 
0 2 0 2 0 0
0 2 0 2 0 1
2 4 2 2 0 0
4 4 2 2 1 1
5 5 5 0 0 0
5 5 5 0 1 1
5 6 5 1 0 0
6 6 5 1 1 1
6 8 6 2 0 0
8 8 6 2 1 1

Compliers are represented by rows 3 through 10. Again, all quantile treat-
ment eects except  = 0.25, 0.5, 0.75 (where Q [Y (0)] and Q [Y (1)] are
not unique) are point identified. Some quantile treatment eects, , along
with quantiles for Y (0), , are tabulated below. Partially identified (non-
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unique) quantities are indicated by intervals.

  = Q [Y (1)]Q [Y (0)]  = Q [Y (0)] Q [Y (1)]
0.1 2 2 4
0.2 2 2 4
0.25 (1, 3) (2, 5) (4, 5)
0.4 0 5 5
0.5 (0, 1) 5 (5, 6)
0.6 1 5 6
0.75 (0, 3) (5, 6) (6, 8)
0.8 2 6 8
0.9 2 6 8

Outcomes are heterogeneous but since Pr (z0 = 1) = 0, QTE () for the
compliers equals QTT (), the quantile treatment eect for the treated.

Next, we revisit monotone treatment response (MTR) and explore partial
identification of QTE.

11.4.4 MTR and partial identification of QTE

MTR says if treatment t > s, then yj (t) > yj (s) for all individuals j. MTR
bounds for outcome quantity D that respects stochastic dominance are

D [y0 (t)]  D [y (t)]  D [y1 (t)]

where

y0j (t) 
yj t  zj
y0 otherwise

y1j (t) 
yj t  zj
y1 otherwise

and zj is individual j’s adopted treatment.
Partial identification bounds for MTR quantiles are

0 <   Pr (t < z)  y0  Q [y (t)]  Q1 (y | t  z)

Pr (t < z) <   Pr (t  z)  Q0 (y | t  z)  Q [y (t)]  Q1 (y | t  z)

Pr (t  z) <  < 1  Q0 (y | t  z)  Q [y (t)]  y1

where

1 


Pr (t  z)

0 
  Pr (t < z)
Pr (t  z)
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In the binary treatment setting, t = 0, 1, the MTR quantile bounds are

0 <   Pr (t < z)
t = 0

 y0  Q [y (0)]  Q (y)

Pr (t < z) <   Pr (t  z)
t = 0
t = 1




Q (y | z = 0)  Q [y (0)]  Q (y)
Q (y)  Q [y (1)]  Q (y | z = 1)

Pr (t  z) <  < 1
t = 1

 Q (y)  Q [y (1)]  y1

Then, the MTR treatment eect for any quantity D that respects sto-
chastic dominance (e.g.,. means or quantiles) has bounds

0  D [y (t)]D [y (s)]  D [y1 (t)]D [y0 (s)]

To appreciate this result consider the bounds on the following exhaustive
monotone treatment response cases.

s < t < zj  y0  yj (s)  yj (t)  yj (1)

s < t = zj  y0  yj (s)  yj (t) = yj (2)

s < zj < t  y0  yj (s)  yj  yj (t)  y1 (3)

s = zj < t  yj = yj (s)  yj (t)  y1 (4)

zj < s < t  yj  yj (s)  yj (t)  y1 (5)

For simplicity, consider the implications for quantile treatment eect
bounds with binary treatment, s = 0 and t = 1. Only cases (2) and (4)
apply.
Case (2) identifies quantile bounds as

0 <   Pr (t < z)  y0  Q [y (0)]  Q (y)

and

0 = Pr (t < z) <   Pr (t  z)  Q (y)  Q [y (1)]  Q (y | z = 1)

Hence, the case (2) quantile treatment eect

QTE () = Q [y (1)]Q [y (0)]

has bounds

0 = Q (y)Q (y)  QTE ()  Q (y | z = 1) y0

Case (4) identifies quantile bounds as

Pr (t < z) <   Pr (t  z)  Q (y | z = 0)  Q [y (0)]  Q (y)
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and
Pr (t  z) <  < 1  Q (y)  Q [y (1)]  y1

Hence, the quantile treatment eect for case (4)

QTE () = Q [y (1)]Q [y (0)]

has bounds

0 = Q (y)Q (y)  QTE ()  y1 Q (y | z = 0)

11.4.5 Quantile treatment eects based on the data alone

On the other hand, quantile treatment eects based on the data alone are
wider. From section 11.1.2, the -quantile bounds are

r (, x)

 Q (y | x) 
s (, x)

where

r (, x) =
Q Pr(m is s in g |x)

Pr(o b s e r v e d |x)
(y | x, observed) if Pr (missing | x) < 

y0 otherwise

and

s (, x) =
Q 

Pr(o b s e r v e d |x)
(y | x, observed) if Pr (missing | x) < 1 
y1 otherwise

To illustrate quantile bounds for treatment eects, consider the binary
treatment case. Quantile bounds based on the data alone are

r (, x, 0)  Q [y (0) | x]  s (, x, 0)
r (, x, 1)  Q [y (1) | x]  s (, x, 1)

so that quantile treatment eect, Q [y (1) | x]Q [y (0) | x], bounds are

r (, x, 1) s (, x, 0)  QTE ( | x)  s (, x, 1) r (, x, 0)

where

r (, x, 0) =
Q Pr(z=1)

Pr(z=0)

(y | x, z = 0) if Pr (z = 1 | x) < 

y0 otherwise

s (, x, 0) =
Q 

Pr(z=0)
(y | x, z = 0) if Pr (z = 1 | x) < 1 
y1 otherwise

r (, x, 1) =
Q Pr(z=0)

Pr(z=1)

(y | x, z = 1) if Pr (z = 0 | x) < 

y0 otherwise

s (, x, 1) =
Q 

Pr(z=1)
(y | x, z = 1) if Pr (z = 0 | x) < 1 
y1 otherwise
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A binary treatment illustration helps illuminate some of the subtleties as-
sociated with quantile treatment eect bounds.

11.4.6 Example

Example 42 (MTR bounds for QTE) Suppose the DGP is the same
as example 40.

Y Y (1) Y (0) TE = Y (1) Y (0) z 
0 2 0 2 0 0
0 2 0 2 0 1
2 4 2 2 0 0
4 4 2 2 1 1
3 5 3 2 0 0
5 5 3 2 1 1
4 6 4 2 0 0
6 6 4 2 1 1
6 8 6 2 0 0
8 8 6 2 1 1

The median and first and third quartile bounds based on MTR are

 Qlower [y (0)] Qupper [y (0)] Qlower [y (1)] Qupper [y (1)]
0.2 0 (0, 2) (0, 2) 4
0.25 0 2 2 (4, 5)
0.4 0 (3, 4) (3, 4) 5
0.5 (2, 3) 4 4 8
0.6 3 (4, 5) (4, 5) 8
0.75 4 6 6 8
0.8 4 6 6 8

 QTElower ( |MTR) QTEupper ( |MTR)
0.2 (0, 2) (0, 2) = 0 4 0 = 4
0.25 2 2 = 0 5 0 = 5
0.4 (3, 4) (3, 4) = 0 5 0 = 5
0.5 4 4 = 0 8 2 = 6
0.6 (4, 5) (4, 5) = 0 8 3 = 5
0.75 6 6 = 0 8 4 = 4
0.8 6 6 = 0 8 4 = 4

where non-unique quantiles are indicated by intervals. While these bounds
may not seem very tight, MTR (in conjunction with the data) always re-
sults in informative bounds. Monotone response implies the treatment eect
is never negative but the data alone may not rule out negative treatment
eects. The data alone identify the following substantially wider quantile
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treatment eect bounds.

 QTElower ( | data) QTEupper ( | data)
0.2 0 (0, 2) = 2 (5, 6) 0 = 6
0.25 0 2 = 2 6 0 = 6
0.4 0 (3, 4) = 4 8 0 = 8
0.5 0 (4, 6) = 6 8 0 = 8
0.6 (0, 4) (6, 8) = 8 8 (0, 2) = 8
0.75 5 8 = 3 8 3 = 5
0.8 6 8 = 2 8 (3, 4) = 5

As indicated in example 40, treatment eects are homogeneously equal to 2
for all unique quantiles for this DGP. The existence of a binary instrument
leads to the following bounds on QTE() for the subpopulation of compli-
ers (quartile treatment eects are not point identified as quartiles are not
unique for the DGP conditional on z1  z0 = 1).

 QTElower ( | z1  z0 = 1) QTEupper ( | z1  z0 = 1)
0.2 2 2
0.25 1 3
0.4 2 2
0.5 1 3
0.6 2 2
0.75 0 4
0.8 2 2

11.5 Extrapolation and the mixing problem

Suppose the analyst observes outcomes of an idealized classical, randomized
experiment with full treatment compliance but wishes to extrapolate or pre-
dict outcomes in settings where treatment (or compliance) varies across in-
dividuals. That is, the classical experiment has the property Pr (y (t) | x, z) =
Pr (y (t) | x) but the analyst wishes to extrapolate to settings in which in-
dependence fails. This is referred to as the mixing problem as it seeks
inference on a probability mixture from marginal probabilities.
Define a treatment policy  as one that specifies the treatment to be

assigned each individual in a population. Then, treatment for individual
j assigned treatment according to policy  is denoted zj and the corre-
sponding outcome is yj  y (zj). As some individuals conform with their
assignment and some may not, population outcomes under policy  are
described by random variable y

y =


t

y (t) · 1 (z = t)
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Conditional on covariates, x, the probability distribution for population
outcomes is

Pr (y | x) =


t

Pr (y (t) | x, z = t) Pr (z = t | x)

A classical experiment supplies an answer to the treatment eect question,
while the mixing problem seeks the distribution of outcome under policy  .
A variety of policy implications are possible based on classical experimental
evidence depending on what attendant conditions the analyst finds credible.
A randomized experiment reveals Pr (y (t) | x). The law of total proba-

bility says

Pr (y (t) | x) = Pr (y (t) | x, z = t) Pr (z = t | x)
+Pr (y (t) | x, z = t) Pr (z = t | x)

Thus, Pr (y (t) | x) is a mixture of outcome distributions Pr (y (t) | x, z = t)
and Pr (y (t) | x, z = t) with mixing probability weights Pr (z = t | x) and
Pr (z = t | x). The mixing problem involves establishing bounds on the
outcome distributions Pr (y (t) | x, z = t) for all treatments t from the mar-
ginal distributions Pr (y (t) | x) which, in turn, can be utilized to establish
bounds on Pr (y | x). We consider both known and unknown mixing prob-
abilities in a binary outcome, binary treatment example below. But first,
we develop some preliminaries.

11.5.1 Fréchet bounds

Sometimes it’s more convenient to work with joint outcome distributions
than through outcome distributions conditional on treatment. This is the
case, for instance, when questioning what classical experimental evidence
alone tells the analyst about the mixing problem. In such cases, Fréchet
bounds are instructive. Fréchet [1951] identified relations of marginal dis-
tributions that are helpful for bounding their joint distribution. Fréchet
bounds are

max {0,Pr (y (t)  A) + Pr (y (s)  A) 1}
 Pr (y (t)  A  y (s)  A) 

min {Pr (y (t)  A) ,Pr (y (s)  A)}

The upper bound is straightforward as the intersection of sets cannot exceed
the smaller of the two sets. The lower bound follows from the union of sets.
That is,

1  Pr (y (t)  A  y (s)  A)
= Pr (y (t)  A) + Pr (y (s)  A) Pr (y (t)  A  y (s)  A)
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Rearranging yields

Pr (y (t)  A  y (s)  A)  Pr (y (t)  A) + Pr (y (s)  A) 1

Since probability cannot be smaller than zero, we have Fréchet’s lower
bound.

11.5.2 Examples – binary outcome, binary treatment

Example 43 (binary outcome, binary treatment) Suppose randomly
assigned treatment is denoted t = t1 and control or no treatment is denoted
t = t0 and outcomes are success y (t) = 1 or failure y (t) = 0. Further, sup-
pose the evidence indicates Pr (y (t1) = 1 | x) = 0.67 and Pr (y (t0) = 1 | x) =
0.49. What does this classical experiment reveal about other treatment poli-
cies? Next, we explore various treatment response and treatment policy
identification strategies for which the success probability identification re-
gions are tabulated below.

identification conditions success rate: Pr (y = 1 | x)

experimental evidence alone [0.16, 1]

treatment response conditions:

statistically independent outcomes [0.33, 0.83]

monotone treatment response [0.49, 0.67]

treatment policies:

treatment at random [0.49, 0.67]

outcome maximization [0.67, 1]
outcome maximization and

statistically independent outcomes
0.83

known mixing probabilities:
1
10 population receives treatment [0.39, 0.59]

5
10 population receives treatment [0.17, 0.99]

9
10 population receives treatment [0.57, 0.77]

1
10 population receives treatment

at random
0.51

5
10 population receives treatment

at random
0.58

9
10 population receives treatment

at random
0.65

Clearly, a wide range of policy implications are possible depending on the
conditions the analyst finds credible.
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Example 44 (continuation of example 43 – evidence alone) First,
consider what the evidence alone tells the analyst about Pr (y (t) = 1 | x).
It may seem that if some individuals receive treatment and others do not
that the success probability lies between 0.49 and 0.67. While this may be
true under some conditions, it is not in general the case. Each individual
faces one of four possibilities: [y (t1) = 0, y (t0) = 0], [y (t1) = 1, y (t0) = 0],
[y (t1) = 0, y (t0) = 1], and [y (t1) = 1, y (t0) = 1]. Varying treatment has no
impact when y (t1) = y (t0) but determines outcome when y (t1) = y (t0).
The highest success rate is achieved by a policy oering treatment t0 to
individuals with [y (t1) = 0, y (t0) = 1] and treatment t1 to individuals with
[y (t1) = 1, y (t0) = 0]. Then, the only failure occurs for individuals with
[y (t1) = 0, y (t0) = 0] and success probability is 1Pr (y (t1) = 0, y (t0) = 0).
Similarly, the lowest success rate is achieved by a policy oering treatment
t1 to individuals with [y (t1) = 0, y (t0) = 1] and treatment t0 to individuals
with [y (t1) = 1, y (t0) = 0]. Then, the only individuals who achieve success
are those with [y (t1) = 1, y (t0) = 1]. Hence, the lowest probability of suc-
cess is Pr (y (t1) = 1, y (t0) = 1). This gives (suppressing the conditioning
on covariates)

Pr (y (t1) = 1, y (t0) = 1)  Pr (y = 1)  1 Pr (y (t1) = 0, y (t0) = 0)

but the evidence doesn’t directly reveal the joint probabilities as treatments
are mutually exclusive. Rather, the experiment reveals marginal probabilities
(again, omitting conditioning on covariates).

Pr (y (t1) = 1) = 0.67

and
Pr (y (t0) = 1) = 0.49

Using Bayes theorem, we search for the widest interval for Pr (y = 1)
which involves assigning the set of conditional probabilities that minimize
Pr (y (t1) = 1, y (t0) = 1)+Pr (y (t1) = 0, y (t0) = 0) and are consistent with
the marginal probabilities determined from the evidence. That is, we assign
probabilities by solving the following constrained optimization problem. To
simplify notation, let

pij  Pr (y (t0) = i | y (t1) = j)

and
qij  Pr (y (t1) = i | y (t0) = j)

Now, solve

min
p00,q00,q01,p010

0.51q00 + 0.67 (1 p01)

s.t.

0.51q00  0.33p00 = 0
0.51 (1 q00) 0.67p01 = 0
0.49q01  0.33 (1 p00) = 0

0.49 (1 q01) 0.67 (1 p01) = 0
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The solution is

p00  Pr (y (t0) = 0 | y (t1) = 0) = 0
q00  Pr (y (t1) = 0 | y (t0) = 0) = 0
q01  Pr (y (t1) = 0 | y (t0) = 1) = 0.6735
p01  Pr (y (t0) = 0 | y (t1) = 1) = 0.7612

and implies the following joint outcomes distribution

Pr (y (t1) = 0, y (t0) = 0) = 0

Pr (y (t1) = 1, y (t0) = 0) = 0.51

Pr (y (t1) = 0, y (t0) = 1) = 0.33

Pr (y (t1) = 1, y (t0) = 1) = 0.16

Hence, the identification bounds from the evidence alone is

0.16 = Pr (y (t1) = 1  y (t0) = 1)
 Pr (y = 1) 

1 Pr (y (t1) = 0  y (t0) = 0) = 1

This is an application of the Fréchet bound. The Fréchet bounds on the joint
outcomes are

0.16  Pr (y (t1) = 1  y (t0) = 1)  0.49

and
0  Pr (y (t1) = 0  y (t0) = 0)  0.33

Hence, the evidence only slightly narrows the mixing bounds as the widest
interval from the above Fréchet bounds is

0.16  Pr (y = 1)  1 0 = 1

Now, we explore conditions regarding response to treatment.

Example 45 (continuation of example 43 – independent outcomes)
Suppose outcomes are believed to be independent, then the identification re-
gion based on the data can be narrowed somewhat. The analyst appends the
independence condition

Pr (y (t0) | y (t1) = 0) = Pr (y (t0) | y (t1) = 1)
Pr (y (t1) | y (t0) = 0) = Pr (y (t1) | y (t0) = 1)

or
Pr (y (t1) , y (t0)) = Pr (y (t1)) Pr (y (t0))
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to the foregoing analysis and again solve for the widest interval

Pr (y (t1) = 1, y (t0) = 1)  Pr (y = 1)  1 Pr (y (t1) = 0, y (t0) = 0)

Using Bayes theorem, this interval is widest for the following conditional
distributions

Pr (y (t0) = 0 | y (t1) = 0) = Pr (y (t0) = 0 | y (t1) = 1) = 0.51
Pr (y (t1) = 0 | y (t0) = 0) = Pr (y (t1) = 0 | y (t0) = 1) = 0.33

which implies the following joint distribution

Pr (y (t1) = 0, y (t0) = 0) = 0.17

Pr (y (t1) = 1, y (t0) = 0) = 0.34

Pr (y (t1) = 0, y (t0) = 1) = 0.16

Pr (y (t1) = 1, y (t0) = 1) = 0.33

Hence, outcome independence in conjunction with the evidence yields 0.33 
Pr (y = 1)  0.83.

Example 46 (cont. of example 43 – monotone treatment response)
If the analyst believes treatment is never harmful to any individual, then
treatment response is monotonic, y (t1)  y (t0) for all individuals. This
is an MTR identification strategy and success probability lies between that
observed for the untreated and that observed for the treated, Namely, 0.49 
Pr (y = 1)  0.67. To see this recall MTR implies Pr (y (t1)) stochastically
dominates Pr (y (t0)). That is,

Pr (y (t1)  0)  Pr (y  0)  Pr (y (t0)  0)

can be translated as Pr (y = 1) = 1 Pr (y  0) resulting in

0.49  Pr (y = 1)  0.67

Notice, evidence from randomized treatment may refute MTR as the inter-
val may be empty.

Next, we turn attention from treatment response to dierent treatment
policies.

Example 47 (cont. of example 43 – treatment at random) If the
analyst wishes to explore a policy of randomized treatment then treatment
is independent of outcome [y (t1) , y (t0)]. In other words,

Pr (y (t1) , y (t0) | z ) = Pr (y (t1) , y (t0))

This implies

Pr (y ) = Pr (y (t1) | z = t1) Pr (z = t1)+Pr (y (t0) | z = t0) Pr (z = t0)
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which simplifies as

Pr (y ) = Pr (y (t1)) Pr (z = t1) + Pr (y (t0)) Pr (z = t0)

If Pr (z ) is known then Pr (y ) is point-identified. Otherwise, the bounds
are

min {Pr (y (t1) = 1) ,Pr (y (t0) = 1)}
 Pr (y ) 

max {Pr (y (t1) = 1) ,Pr (y (t0) = 1)}

or
0.49  Pr (y )  0.67

Example 48 (cont. of example 43 – outcome optimized) Suppose
the policy is to treat according to best response

y = max {y (t1) , y (t0)}

This implies
Pr (y  0) = Pr (y (t1)  0  y (t0)  0)

The Fréchet bound indicates the right hand side involves bounds

max {0,Pr (y (t1)  1) + Pr y ((t0)  1) 1}
 Pr (y (t1)  0  y (t0)  0) 

min {Pr (y (t1)  1) ,Pr (y ((t0)  1))}

Again, applying the translation Pr (y = 1) = 1 Pr (y  0) we have

1min {Pr (y (t1)  1) ,Pr (y (t0)  1)}
 1 Pr (y  0) 

1max {0,Pr (y (t1)  1) + Pr y ((t0)  1) 1}

1 0.33  Pr (y = 1)  1max {0, 0.84 1}
0.67  Pr (y = 1)  1

Example 49 (cont. of example 43 – optimal independent outcomes)
Suppose the policy treats according to best response and outcomes are inde-
pendent. Then,

Pr (y  0) = Pr (y (t1)  1)Pr (y (t0)  1)
= 0.33 · 0.51 = 0.17

and
Pr (y = 1) = 0.83

In other words, the probability is point-identified.
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Next, we explore some cases involving known mixing probabilities.

Example 50 (cont. of example 43 – known percent treated) Suppose
a known fraction p of the population receives treatment Pr (z = t1) = p.
The law of total probability gives

Pr (y = 1) = Pr (y (t1) = 1 | z = t1) p
+Pr (y (t0) = 1 | z = t0) (1 p)

The experimental evidence, Pr (y (t0) = 1) and Pr (y (t1) = 1), relates to the
quantities of interest, Pr (y (t0) = 1 | z = t0) and Pr (y (t1) = 1 | z = t0),
as follows.

Pr (y (t0) = 1) = Pr (y (t0) = 1 | z = t0) (1 p)
+Pr (y (t0) = 1 | z = t1) p

and

Pr (y (t1) = 1) = Pr (y (t1) = 1 | z = t0) (1 p)
+Pr (y (t1) = 1 | z = t1) p

Let C0  Pr (y (t0) = 1 | z = t1) and C1  Pr (y (t1) = 1 | z = t0). If
C0 = 1, then the lower bound is

Pr (y (t0) = 1 | z = t0) = max

0,
Pr (y (t0) = 1) p

1 p



If C0 = 0, then the upper bound is

Pr (y (t0) = 1 | z = t0) = min

1,
Pr (y (t0) = 1)

1 p



Similarly, if C1 = 1, then the lower bound is

Pr (y (t1) = 1 | z = t1) = max

0,
Pr (y (t1) = 1) (1 p)

p



If C1 = 0, then the upper bound is

Pr (y (t1) = 1 | z = t1) = min

1,
Pr (y (t1) = 1)

p



Thus, the identification region for

Pr (y = 1) = Pr (y (t1) = 1 | z = t1) p
+Pr (y (t0) = 1 | z = t0) (1 p)
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is

max {0,Pr (y (t0) = 1) p}+max {0,Pr (y (t1) = 1) (1 p)}
 Pr (y = 1) 

min {1 p,Pr (y (t0) = 1)}+min {p,Pr (y (t1) = 1)}

Therefore, for p = 0.10, we have

max {0, 0.49 0.10}+max {0, 0.67 0.90}
 Pr (y = 1) 

min {0.90, 0.49}+min {0.10, 0.67}
0.39  Pr (y = 1)  0.59

For p = 0.50, we have

max {0, 0.49 0.50}+max {0, 0.67 0.50}
 Pr (y = 1) 

min {0.50, 0.49}+min {0.50, 0.67}
0.17  Pr (y = 1)  0.99

For p = 0.90, we have

max {0, 0.49 0.90}+max {0, 0.67 0.10}
 Pr (y = 1) 

min {0.10, 0.49}+min {0.90, 0.67}
0.57  Pr (y = 1)  0.77

Example 51 (cont. of example 43 – randomly treat known percent)
Suppose the policy is to treat fraction p of the population at random. Then,

Pr (y = 1) = Pr (y (t0)) (1 p) + Pr (y (t1)) p

Since all of the right hand side quantities are known, Pr (y = 1) is point
identified. For p = 0.10, we have

Pr (y = 1) = 0.49 · 0.90 + 0.67 · 0.10 = 0.51

For p = 0.50, we have

Pr (y = 1) = 0.49 · 0.50 + 0.67 · 0.50 = 0.58

For p = 0.90, we have

Pr (y = 1) = 0.49 · 0.10 + 0.67 · 0.90 = 0.65
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11.6 Appendix: bounds on spreads

We briefly discuss nonparametric identification bounds for spread para-
meters following Blundell, Gosling, Ichimura, and Meghir [Econometrica,
2007] (BGIM). Suppose the analyst is concerned about the spread in the
distribution of some random variable y (the classic case, spread in wages, is
addressed by BGIM but we can imagine reported quantities, like spread in
earnings, to be the object of interest as well). Nonparametric spreads are
derived from dierences in quantiles such as the interquartile range. Let the
quantiles be denoted by qi where q2 > q1. The conservative identification
region for the spread, D = yq2  yq1 ,16 is

max

0, yq2(l)  yq1(u)


 D  yq2(u)  yq1(l)

where yqi(l) is the lower bound for quantile qi of y, and yqi(u) is the upper
bound for quantile qi of y. The bounds for quantiles

yq(l)  yq  yq(u)

are derived from bounds on the CDF (cumulative distribution function)

Pr (z = 1)F (y | z = 1)  F (y)  Pr (z = 1)F (y | z = 1) + Pr (z = 0)

In other words, the lower bound solves

q = Pr (z = 1)F (y | z = 1) + Pr (z = 0)

for y, while the upper bound solves

q = Pr (z = 1)F (y | z = 1)

for y. Without restrictions on the support of Y , the analyst can only identify
lower bounds for q > Pr (z = 0) and upper bounds for q < Pr (z = 1).
BGIM exploit properties of the CDF to narrow bounds on D. By the

law of total probability

F (y) = Pr (z = 1)F (y | z = 1) + Pr (z = 0)F (y | z = 0)

which can be rewritten as

F (y | z = 0) =
F (y) Pr (z = 1)F (y | z = 1)

Pr (z = 0)

Recognizing the CDF for missing data, F (y | z = 0), is nondecreasing in y
implies F (y)  Pr (z = 1)F (y | z = 1). Now, express quantile q2 in terms

16Throughout this discussion, conditioning on covariates is suppressed to simplify
notation.
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of the distribution for the observable data relative to some uncertain quan-
tile q1 value y0 


yq1(l), yq1(u)



q2 = Pr (z = 1) [F (y | z = 1) F (y0 | z = 1)] + q1

where the quantity in brackets is nonnegative. Rearranging and utilizing
Bayes rule gives

F (y | z = 1) = F (y0 | z = 1) +
q2  q1
Pr (z = 1)

This is the upper bound on the q2-quantile relative to q1 expressed in terms
of the uncertain q1-quantile value, y0. Then, the upper bound on the spread
is (weakly) less than the conservative upper bound

D(u) = sup
y0[yq1(l),yq1(u)]


F1


F (y0 | z = 1) +

q2  q1
Pr (z = 1)


 y0



 yq2(u)  yq1(l)

The lower bound for the spread is simply

D(l) = max

0, yq2(l)  yq1(u)



the same as the conservative lower bound. Thus, the BGIM CDF -based
identification bounds for spread

D(l)  D  D(u)

are (weakly) tighter than the conservative bounds

max

0, yq2(l)  yq1(u)


 D  yq2(u)  yq1(l)

Next, we’ll illustrate identification bounds for spread parameters (specif-
ically, the interquartile range, D = y75  y25) via some examples. In order
to demonstrate the bounds, we consider examples in which the missing
outcome data lie entirely above or entirely below the observable outcome
data.

11.6.1 Examples

Example 52 ((y | z = 0) < (y | z = 1)) Suppose outcome is normally dis-
tributed with mean 1, 000, standard deviation 300, and interquartile range
1202 798 = 405 where the analyst observes the top p fraction of the pop-
ulation. In other words, the missing data are all from the bottom (1 p)
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fraction and the observable distribution is truncated below. The following
table depicts the BGIM and conservative bounds for various p.

conservative bounds BGIM bounds
p D(l) D(u) D(l) D(u)

0.9 318 513 318 427
0.8 240 696 240 531
0.76 210 900 210 705
0.7 165 unbounded 165 unbounded
0.6 87 unbounded 87 unbounded
0.5 0 unbounded 0 unbounded
0.4 0 unbounded 0 unbounded

p yq25(l) yq25(u) yq75(l) yq75(u)

0.9 798 884 1202 1311
0.8 798 962 1202 1493
0.76 798 992 1202 1698
0.7 unbounded 1038 1202 unbounded
0.6 unbounded 1116 1202 unbounded
0.5 unbounded 1202 1202 unbounded
0.4 unbounded 1311 1202 unbounded

Naturally, the bounds are inversely related to p as the information or evi-
dence available to the analyst is increasing in p.

Example 53 ((y | z = 0) > (y | z = 1)) Suppose the DGP remains as above
except the truncation occurs above rather than below. In other words, the
top (1 p) fraction of outcomes are missing. The table below describes the
BGIM and conservative bounds for various p.

conservative bounds BGIM bounds
p D(l) D(u) D(l) D(u)

0.9 318 513 318 427
0.8 240 696 240 531
0.76 210 900 210 705
0.7 165 unbounded 165 unbounded
0.6 87 unbounded 87 unbounded
0.5 0 unbounded 0 unbounded
0.4 0 unbounded 0 unbounded

p yq25(l) yq25(u) yq75(l) yq75(u)

0.9 689 798 1116 1202
0.8 507 798 1038 1202
0.76 302 798 1008 1202
0.7 unbounded 798 962 unbounded
0.6 unbounded 798 884 unbounded
0.5 unbounded 798 798 unbounded
0.4 unbounded 798 689 unbounded
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With symmetrical lower and upper truncation in the two examples, the
analyst observes a shift from the lower quantile-25 to upper quantile-25
bound of 798 and a similar shift from lower quantile-75 bound to upper
quantile-75 bound of 1202. The interquartile range is unbounded when half
or more of the data are missing at either end of the distribution.


