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10
Bayesian treatment e!ects without
joint distribution of outcomes

This chapter continues discussion of Bayesian strategies for identifying
treatment e!ects but now without the joint distribution of outcomes (Chib
[2007]). Bayesian data augmentation again replaces the classical control or
replacement function.

10.1 Treatment e!ects and counterfactuals

Suppose we observe treatment or no treatment and the associated outcome,
Y = DY1 + (1!D)Y0, where

Y1 = !1 + V1

Y0 = !0 + V0

and a representative sample is

Y D Y1 Y0 V1 V0
15 1 15 10 0 !3 13
10 0 15 10 0 !3 13
20 0 20 20 5 6 23
20 0 20 20 5 6 23
10 1 10 10 !5 !3 13
10 0 10 10 !5 !3 13
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Further, we have the following binary instrument at our disposal z where
the representative values Z =

!
" z

"
are

" z
1 1
1 0
1 1
1 0
1 1
1 0

and we perceive latent utility, D!, to be related to choice via the instru-
ments.

D! = Z# + VD

and observed choice is

D =

#
1 D! > 0
0 otherwise

This is the exact setup we discussed earlier in IV example 4 of chapter 3.

10.2 Posterior distribution

Define the augmented data along with the observed outcome j = 0, 1 as

Y !ji =

$
Yji
D!
i

%

Also, let

Hi =

$
Xi (1!Di) XiDi 0

0 0 Zi

%

and

! =

&
' !0
!1
#

(
)

where X is a matrix of outcome regressors, in the current example it is
simply ", a vector of ones, as there are no outcome covariates. Hence, a
compact model is

Y !ji = Hi! + $ji

where $ji =
$
Vji
VDi

%
and !ji = V ar [$ji] =

1
!i
"j =

1
!i

$
%2j &j
&j 1

%
for

j = 0, 1.
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10.2.1 Likelihood function

As usual the posterior distribution is proportional to the likelihood function
times the prior distribution. The likelihood function is

Y !ji " N (Hi!,!ji)

Or,

'
*
!,!ji | Y !ji, Di, Xi, Zi

+
# |!ji|

" 1
2 exp

$
!
1

2

*
Y !ji !Hi!

+T
!"1ji

*
Y !ji !Hi!

+%

10.2.2 Prior distribution

Frequently, relatively di!use priors are chosen such that the data domi-
nates the posterior distribution. Chib’s prior distribution for ! is p (!) "
N (!0, V") where !0 = 0, V" = 20I. Let (

2
j = %

2
j!&2j > 0, then %2j is defined

in terms of (2j and &
2
j . To simplify posterior draws for !ji, treat )i and

(2j independently and &j conditional on (
2
j . Accordingly, the prior for )i is

p ()i) " Gamma
*
#
2 ,

2
#

+
where * = 15, the prior for %2j is inverse gamma,

p
*
(2j
+
" Inverse!gamma

,
#j0
2 ,

2
dj0

-
where *j0 = 4.22 and dj0 = 2.22, and

the prior for &j is conditional normal, p
*
&j | %2j

+
" N

*
mj0,(

2
jMj0

+
where

mj0 = 0 and Mj0 = 10. Hence, the joint conjugate prior is normal-inverse
gamma-normal-gamma.

p (!,!ji) = p (!) p
*
(2j
+
p
*
&j | (2j

+
p ()i)

# |V" |
" 1
2 exp

$
!
1

2
(! ! !0)

T
V "1" (! ! !0)

%

$
*
(2j
+" !j0

2 "1
exp

.
!
dj0
2(2j

/

$
*
(2jMj0

+" 1
2 exp

.
!
(&j !mj0)

2

2(2jMj0

/

$ ()i)
!
2"1 exp

$
!
*)i
2

%

10.2.3 Posterior distribution

Now, the posterior distribution (or posterior kernel) is

p (!,!ji, D
!
i | Yi, Di, Xi, Zi) # p (!,!ji) '

*
!,!ji | Y !ji, Di, Xi, Zi

+
Unlike the strategy discussed in the previous chapter, the posterior distri-
bution does not involve the counterfactual outcomes.
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10.3 Gibbs sampler for treatment e!ects

As is frequently the case, it’s much easier to simulate from the recognizable
conditional posterior distributions via a Gibbs sampler than simulate from
the unrecognizable joint posterior distribution. We follow Chib [2007] and
generate conditional posterior draws in three blocks.

10.3.1 Full conditional posterior distributions

Let #"x denote all parameters other than x. The McMC algorithm cycles
through three blocks as follows.

First block

Sample +j =
*
(2j ,&j

+
, j = (0, 1), conditioned on

*
Y !j , D,X,Z,!,)

+
by

composition. That is, draw marginalized (2j on integrating out &j .

p
,
(2j | #"$j , Y

!
j , D,X,Z

-
#
0

p (!,!j , D
! | Y,D,X,Z)

p (!) p ()) p
*
Y !j | D,X,Z,!,)

+d&j

#
p (!) p ())

1
p
*
(2j
+
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
d&j

p (!) p ()) p
*
Y !j | D,X,Z,!,)

+

#
p
*
(2j
+
p
*
Y !j | D,X,Z,!,),(2j

+
p
*
Y !j | D,X,Z,!,)

+

#
p
*
(2j , Y

!
j | D,X,Z,!,)

+
p
*
Y !j | D,X,Z,!,)

+
# p

*
(2j | Y

!
j , D,X,Z,!,)

+
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Working through the details, we have

p (!) p ())
1
p
*
(2j
+
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
d&j

p (!) p ()) p
*
Y !j | D,X,Z,!,)

+

#

1
p
*
(2j
+
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
d&j

p
*
Y !j | D,X,Z,!,)

+
#

0
p
*
(2j
+
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
d&j

#
0 *

(2j
+" !j0

2 "1
exp

.
!
dj0
2(2j

/ *
(2jMj0

+" 1
2 exp

.
!
(&j !mj0)

2

2(2jMj0

/

$
nj2
i=1

)i
*
(2j
+"nj

2

$ exp

.
!

1

2,(2j

nj3
i=1

)i
!
Vji VDi

" $ 1 !&j
!&j (2j + &

2

% $
Vji
VDi

%/
d&j

On making some judicious substitutions into the likelihood function, we
have

#
0 *

(2j
+" !j0

2 "1
exp

.
!
dj0
2(2j

/ *
(2jMj0

+" 1
2 exp

.
!
(&j !mj0)

2

2(2jMj0

/

$
nj2
i=1

)i
*
(2j
+"nj

2

$ exp

.
!
1

2(2j

nj3
i=1

)i
!
Vji VDi

" $ 1 !&j
!&j (2j + &

2

% $
Vji
VDi

%/
d&j

Collecting terms gives

#
nj2
i=1

)iM
" 1
2

j0

$
*
(2j
+" !j0+3+nj

2 exp

.
!
dj0
2(2j

/0
exp

.
!
1

2(2j

(&j !mj0)
2

Mj0

/

$ exp

.
!
1

2(2j

nj3
i=1

)i
!
Vji VDi

" $ 1 !&j
!&j (2j + &

2

% $
Vji
VDi

%/
d&j

Integrating out &j and dropping some normalizing constants leaves

#
*
(2j
+" !j0+3+nj

2 exp

.
!
dj0 + dj +

4nj
i=1 )iu

2
i

2(2j

/
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where nj is the sample size for subsample j,

dj = (Vj !mj0VDj)
T *
$"1j + ujMj0u

T
j

+"1
(Vj !mj0VDj) ,

$j is a diagonal matrix with )i along the diagonal, Vj = Yj ! Xj!j ,
and VDj = D!

j ! Zj#. Since we’re conditioning on )i and VDi = D!
i !

Zi#,
4nj

i=1 )iV
2
Di is a normalizing constant and can be dropped from the ex-

pression for the kernel. Hence, the kernel is recognizable as inverse gamma.

(2j | #"$j , Y
!
j , D,X,Z

" inverse gamma

5
(2j | #"$j , Y

!
j , D,X,Z;

*j0 + nj
2

,
2

dj0 + dj

6

Now, draw &j conditional on (2j .

p
*
&j | #"%j , Y

!
j , D,X,Z

+
#

p
*
!,!j | Y !j , D,X,Z

+
p (!) p

*
(2j
+
p ()) p

*
Y !j | D,X,Z,!,),(2j

+

#
p (!) p

*
&j | (2j

+
p
*
(2j
+
p ()) '

*
!,!j | Y !j , D,X,Z

+
p (!) p

*
(2j
+
p ()) p

*
Y !j | D,X,Z,!,),(2j

+

#
p
*
&j | (2j

+
p
*
Y !j |, D,X,Z,!,&j ,),(2j

+
p
*
Y !j | D,X,Z,!,),(2j

+

#
p
*
&j , Y

!
j |, D,X,Z,!,),(2j

+
p
*
Y !j | D,X,Z,!,),(2j

+
# p

*
&j | Y !j , D,X,Z,!,),(

2
j

+
Working through the details, we have

p (!) p ()) p
*
(2j
+
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
p (!) p ()) p

*
(2j
+
p
*
Y !j | D,X,Z,!,),(2j

+

#
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
p
*
Y !j | D,X,Z,!,),(2j

+
#

0
p
*
(2j
+
p
*
&j | (2j

+
'
*
!,!j | Y !j , D,X,Z

+
d&j

# exp

.
!
(&j !mj0)

2

2(2jMj0

/

$ exp

.
!

1

2,(2j

nj3
i=1

)i
!
Vji VDi

" $ 1 !&j
!&j (2j + &

2

% $
Vji
VDi

%/

Collecting terms we have

# exp

.
!
1

2(2j

7
(&j !mj0)

2

2(2jMj0
+

nj3
i=1

)i

8
V 2ji ! &jVDiVji

+
*
(2j + &

2
j

+
V 2Di ! &jVjiVDi

9:/
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Hence,

&j | #"%j , Y
!
j , D,X,Z " N

*
&j | #"%j , Y

!
j , D,X,Z; bj ,(

2
jBj

+

where bj = Bj
*
M"1
j0 mj0 + V

T
Dj$Vj

+
and Bj =

*
M"1
j0 + V

T
Dj$VDj

+"1
.1

This strategy warrants comment as bj and Bj are based on truncated
data (for subsample j) and the truncated covariance UDj and variance UDD
di!er from their full support counterparts, WDj and WDD, while &j is the
full support covariance between VD and Vj . Even though the distribution
for VD is truncated and the covariance and variance of truncated random
variables di!ers from their counterparts for the full support population, the
ratio of the truncated covariance UDDWDjW

"1
DD to truncated variance UDD

equals the ratio of the population covariance VDj to population variance
VDD (see Johnson and Kotz [1972, pp. 204-205].

UDDWDjW
"1
DD

UDD
=
WDj

WDD

Further, since WDD is normalized to unity we have

WDj

WDD
=
WDj

1
= &j

Therefore, this important indicator of the extent of endogeneity, &j , is
identified by our procedure.

Second block

With prior distribution p (!) " N (!0, V"), the posterior distribution for
the parameters conditional on Y !, D,X,Z,+0,+1,$ is

p (! | #"" , Y !, D,X,Z) #
p (!,!j , D

! | Y,D,X,Z)
p (!j) p (Y ! | D,X,Z,!j)

#
p (!) ' (!,!j | Y !, D,X,Z)

p (Y ! | D,X,Z,!j)

#
p (!, Y ! | D,X,Z,!j)
p (Y ! | D,X,Z,!j)

# p (! | Y !, D,X,Z,!j)

1The di!erence between expanding the expression in brackets above and the normal
kernel indicated here,

1

2!2j

!
"

#

V Tj !Vj + !
2
jV

T
D!VD

+BM!1
j0

$
!2mj0V

T
j !VD +m

2
j0V

T
D!VD !Mj0

%
V Tj !VD

&2'
(
)

* ,

is entirely constants absorbed through normalization.
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Working through the details yields a standard Bayesian (GLS or SUR)
regression result. One can think of the prior as providing one subsample
result and the data another subsample result such that the posterior is a
precision-weighted average of the two subsamples.

p (!) ' (!,!j | Y !, D,X,Z) # p (!, Y ! | D,X,Z,!j)

# exp

$
!
1

2
(! ! !0)

T
V "1" (! ! !0)

%

$ exp
$
!
1

2
(Y ! !H0!)

T
$0"

"1
0 (Y ! !H0!)

%

$ exp
$
!
1

2
(Y ! !H1!)

T
$1"

"1
1 (Y ! !H1!)

%

Hence, we can draw ! from

! | #"" , Y !, D,X,Z " N
,
! | Y !, D,X,Z,!j ; ;!,!"

-

where ;! = !"
<
V "1" !0 +A0 +A1

=

Aj =
3
i#nj

)iH
T
ji"

"1
j Y !i

!" =

.
V "1" +

3
i#n0

)iH
T
0i"

"1
0 H0i +

3
i#n1

)iH
T
1i"

"1
1 H1i

/"1

Again, any di!erence in the two expressions does not involve ! and is
absorbed via normalization.

Third block

Sample
*
D!
ji,)i

+
conditioned on Yji, Di, Xi, Zi,!j ,+j by composition. That

is, marginalize Y !ji by integrating out )i. Then, draw )i conditional on
D!
i . Y

!
ji = (Yji, D

!
i ) marginalized is bivariate Student t(*) and the con-

ditional distribution of (D!
i | Yji) is univariate, noncentral scaled Student

t
*
µji, hji,

2
j ; * + 1

+
where

µji = Zi# +
&j
%2j

*
Yji !Xi!j

+

hji =
*

* + 1

.
1 +

*
Yji !Xi!j

+2
*
*
(2j + &

2
j

+
/

and

,2j = 1!
&2j
%2j
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In other words, the conditional posterior for D!
i is

p (D!
i | #"D! , Yji, Di, Xi, Zi) #

0
p
*
!j ,!j , D

!
i | Yji, Di, Xi, Zi

+
p
*
+j
+
p
*
!j
+
p
*
Yji | Di, Xi, Zi,!j ,+j

+d)i

#
0
p
*
+j
+
p
*
!j
+
p ()i) '

*
!j ,!j | Y !ji, Di, Xi, Zi

+
p
*
+j
+
p
*
!j
+
p
*
Yji | Di, Xi, Zi,!j ,+j

+ d)i

#
p
*
Yji, D

!
i | Di, Xi, Zi,!j ,+j

+
p
*
Yji | Di, Xi, Zi,!j ,+j

+
# p

*
D!
i | Yji, Di, Xi, Zi,!j ,+j

+

We work through the details carefully as mistakes are easily made in this
case (at least for me).

p
*
Yji, D

!
i | Di, Xi, Zi,!j ,+j

+
p
*
Yji | Di, Xi, Zi,!j ,+j

+

#
0 $

0

p
*
Yji, D

!
i ,)i | Di, Xi, Zi,!j ,+j

+
1$
"$

!1$
0
p
*
Yji,)i, D!

i | Di, Xi, Zi,!j ,+j
+
d)i
"
dD!

i

d)i

#
0 )

!
2
i exp

$
!!i

2

8
* +

(Yji"Xi"j)
2"2%(Yji"Xi"j)(D!

i"Zi&)+('
2+%2)(D!

i"Zi&)
2

'2j

9%

1
)
!"1
2

i exp

$
!!i

2

8
* +

(Yji"Xi"j)
2

'2j+%
2
j

9%
d)i

d)i

#
0 )

!
2
i exp

$
!!i

2

8
* +

(Yji"Xi"j)
2"2%j(Yji"Xi"j)(D!

i"Zi&)+('
2
j+%

2
j)(D

!
i"Zi&)

2

'2j

9%

5
* +

(Yji"Xi"j)
2

'2j+%
2
j

6" !+1
2

d)i

#
0
)
!
2
i exp

&
>'!)i

2

?@A
@B
* +

(Yji"Xi"j)
2"2%j(Yji"Xi"j)(D!

i"Zi&)
'2j

+
+('2j+%

2
j)(D

!
i"Zi&)

2

'2j

C@D
@E

(
F) d)i

#

&
'(2j

,
* + (D!

i ! Zi#)
2
-
+
*
Yji !Xi!j ! &j (D!

i ! Zi#)
+2

(2j

(
)
" v+2

2

This looks like the kernel for a univariate Student t with * + 1 degrees
of freedom. Some manipulation bears this out and identifies the centrality
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and scale parameters. Work with the term in brackets

(2j

,
* + (D!

i ! Zi#)
2
-
+
*
Yji !Xi!j ! &j (D!

i ! Zi#)
+2

(2j

= * +

'2j
'2j+%

2
j
(D!

i ! Zi#)
2
+
(Yji"Xi"j"%j(D

!
i"Zi&))

2

'2j+%
2
j

'2j
'2j+%

2
j

= * +

'2j (D
!
i"Zi&)

2+(Yji"Xi"j)
2"2%j(D!

i"Zi&)(Yji"Xi"j)+%2j (D
!
i"Zi&)

'2j+%
2
j

'2j
'2j+%

2
j

= * +
(D!

i ! Zi#)
2
+

"2%j(D!
i"Zi&)(Yji"Xi"j)+(Yji"Xi"j)

2

'2j+%
2
j

'2j
'2j+%

2
j

= * +

,
D!
i ! Zi# !

%j
'2j+%

2
j

*
Yji !Xi!j

+-2
+

'2j(Yji"Xi"j)
2

('2j+%2j)
2

'2

'2+%2

= * +

*
Yji !Xi!j

+2
*
(2j + &

2
j

+ +

,
D!
i ! Zi# !

%j
'2j+%

2
j

*
Yji !Xi!j

+-2
'2j

'2j+%
2
j

=
*
*
(2j + &

2
j

+
+
*
Yji !Xi!j

+2
*
(2j + &

2
j

+ +

,
D!
i ! Zi# !

%j
'2j+%

2
j

*
Yji !Xi!j

+-2
'2j

'2j+%
2
j

= hj (* + 1) +

,
D!
i ! Zi# !

%j
'2j+%

2
j

*
Yji !Xi!j

+-2
'2

'2j+%
2
j

recall

hji =
*

* + 1

.
1 +

*
Yji !Xi!j

+2
*
*
(2j + &

2
j

+
/

which can be rewritten as

1

* + 1

.
*
*
(2j + &

2
j

+
+
*
Yji !Xi!j

+2
*
(2j + &

2
j

+
/

and the term in brackets is identical to our expression above prior to substi-
tuting in hj (* + 1). Placing this expression back into the kernel expression,
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we have

&
>'hji (* + 1) +

,
D!
i ! Zi# !

%j
'2j+%

2
j

*
Yji !Xi!j

+-2
'2j

'2j+%
2
j

(
F)
" v+2

2

#

&
>'(* + 1) +

,
D!
i ! Zi# !

%
'2+%2

*
Yji !Xi!j

+-2
hji

'2

'2+%2

(
F)
" v+2

2

Hence,

D!
i | #"D! , Yji, Di, Xi, Zi " t

*
D!
i | Yji, Di, Xi, Zi,!j ,+j ;µji, hji,

2
j , * + 1

+
Simulation involves truncated Student t draws with D!

i stemming from
t
*
µ0i, h0i,

2
0, * + 1

+
I("$,0) if Di = 0 and from t

*
µ1i, h1i,

2
1, * + 1

+
I(0,$) if

Di = 1 (i % n).
The posterior for )i conditional on Y !ji, Di, Xi, Zi,!j ,+0,+1 is

p
*
)i | #"!i , Y

!
ji, Di, Xi, Zi

+
#

p
*
!j ,!j , D

!
i | Yji, Di, Xi, Zi

+
p
*
+j
+
p
*
!j
+
p
*
Y !ji | Di, Xi, Zi,!j ,+j

+

#
p
*
+j
+
p
*
!j
+
p ()i) '

*
!j ,!j | Y !ji, Di, Xi, Zi

+
p
*
+j
+
p
*
!j
+
p
*
Y !ji | Di, Xi, Zi,!j ,+j

+

#
p
*
)i, Y

!
ji | Di, Xi, Zi,!j ,+j

+
p
*
Y !ji | Di, Xi, Zi,!j ,+j

+
# p

*
)i | Y !ji, Di, Xi, Zi,!j ,+j

+

# )
!
2
i exp

$
!
)i*

2
!
)iGi
2

%

Hence,

)i | #"!i , Y
!
i , Di, Xi, Zi " gamma

5
)i | Y !ji, Di, Xi, Zi,!j ,+j ;

* + 2

2
,

2

* +Gji

6

where Gji =
*
Y !ji !Hi!j

+T
""1j

*
Y !ji !Hi!j

+
.

The McMC algorithm continues by returning to the first block and re-
peating the cycle conditional on the last draw until we have a represen-
tative, convergent sample of McMC simulated draws. As usual, starting
values for the Gibbs sampler are varied to test convergence of the posterior
distributions (adequate coverage of the sample space). Stationary conver-
gence plots and quickly dampening autocorrelation plots support the notion
of representative posterior draws.



12 10. Bayesian treatment e!ects without joint distribution of outcomes

10.4 Predictive average treatment e!ects

To keep things interesting, we’re going to define a di!erent set of average
treatment e!ects. That is, we’re going to focus on predictive or out-of-
sample treatment e!ects. The idea involves a straightforward generalization
of Bayesian updating to include Yj,n+1. In principle, we draw Yj,n+1, j =
0, 1 from the marginal posterior by marginalizing the unknowns

p (Yj,n+1 | Y,H,D) =

0
p
*
Yj,n+1 | Hn+1,)n+1,$,!j ,+j , Y,H,D

+
$p
*
Hn+1,)n+1,$,!j ,+j | Y,H,D

+
d)n+1d$

d!jd+jdHn+1

where

p
*
Yj,n+1 | Hn+1,)n+1,$,!j ,+j , Y,H,D

+

= p
*
Yj,n+1 | Hn+1,)n+1,$,!j ,+j

+
" N

7
Xn+1!j ,

%2j
)n+1

:

While analytical integration is daunting, it is straightforward to sample
from the Markov chain if we approximate the distribution for Hn+1 by its
empirical distribution.

10.4.1 Predicted ATE

For the gth (g % M) iteration of the McMC algorithm, when the chain

is defined by
,
$(g),!

(g)
j ,+

(g)
j

-
, we draw Y

(g)
j,n+1 from the predictive dis-

tribution by adding the following steps to our previously defined McMC
algorithm. To accommodate inherently unobservable heterogeneity, the fol-
lowing algorithm di!ers from Chib [2007].

• Draw X(g)
n+1 by assigning probability

1
n to each row of regressors.

• Draw )(g)n+1 from gamma
*
#
2 ,

2
#

+
.

• Draw V (g)D,n+1 from N

5
0, 1

!
(g)
n+1

6
.

• Draw D!(g)
n+1 = Z

(g)
n+1#

(g) + V
(g)
D,n+1.

• Draw Y (g)j,n+1 " N
5
X
(g)
n+1!

(g)
j + &

(g)
j V

(g)
D,n+1,

'
2(g)
j

!
(g)
n+1

6
for j = 0, 1.

This produces the desired sample for the predictive distributionG
Y
(1)
j,n+1, . . . , Y

(M)
j,n+1

H
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A sample of predictive conditional treatment e!ects is then defined byG
%
(1)
n+1 | X

(1)
n+1, . . . ,%

(M)
n+1 | X

(M)
n+1

H

&
G,
Y
(1)
1,n+1 ! Y

(1)
0,n+1 | X

(1)
n+1

-
, . . . , Y

,
(M)
1,n+1 ! Y

(M)
0,n+1 | X

(M)
n+1

-H

By iterated expectations, the predictive (unconditional) average treatment
e!ect is

EXn+1
[E [%n+1 | Xn+1, Y,H,D]]

=

0
Y1,n+1p (Y1 | Xn+1, Y,H,D)

$p (Xn+1 | Y,H,D) dY1dXn+1

!
0
Y0,n+1p (Y0 | Xn+1, Y,H,D)

$p (Xn+1 | Y,H,D) dY0dXn+1

=

0
Y1,n+1p (Y1, Xn+1 | Y,H,D) dY1dXn+1

!
0
Y0,n+1p (Y0, Xn+1 | Y,H,D) dY0dXn+1

Then estimated ATE is

estATE =
1

M

M3
g=1

,
Y
(g)
1,n+1 ! Y

(g)
0,n+1

-

This latter quantity – our estimate of the predictive average treatment
e!ect – is simply the average over our post-convergence di!erence in pre-
dictive draws.

10.4.2 Predicted LATE

Local average treatment e!ects are defined for the subsample of compliers.
For binary instrument z, compliers are identified by D1 ! D0 = 1 where
Dj refers to the selection variable when the instrument z has value j.
We add the following steps to the algorithm to identify compliers for our
predictive sample. Let Z(g)j,n+1 = Z

(g)
n+1 where j refers to the value of the

binary instrument z(g)n+1.

• Set z(g)n+1 = 0, then D
(g)
0,n+1 = I

,
Z
(g)
0,n+1#

(g) + V
(g)
D,n+1 > 0

-
.

• Set z(g)n+1 = 1, then D
(g)
1,n+1 = I

,
Z
(g)
1,n+1#

(g) + V
(g)
D,n+1 > 0

-
.

• Define C(g)n+1 = I
,
D
(g)
1,n+1 !D

(g)
0,n+1 = 1

-
.
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A sample of predictive conditional treatment e!ects for the subsample
of compliers is then defined byG,

%
(1)
n+1 | X

(1)
n+1, C

(g)
n+1 = 1

-
, . . . ,

,
%
(Mc)
n+1 | X

(Mc)
n+1 , C

(g)
n+1 = 1

-H

&

?A
B
,
Y
(1)
1,n+1 ! Y

(1)
0,n+1 | X

(1)
n+1, C

(g)
n+1 = 1

-
, . . . ,

Y
,
(Mc)
1,n+1 ! Y

(Mc)
0,n+1 | X

(Mc)
n+1 , C

(g)
n+1 = 1

-
CD
E

where Mc =
4M

g=1 C
(g)
n+1. By iterated expectations, the predictive (uncon-

ditional) local average treatment e!ect is

EXn+1

<
E
<
%n+1 | Xn+1, Y,H,D,C

(g)
n+1 = 1

==

=

0
Y1,n+1p

,
Y1 | Xn+1, Y,H,D,C

(g)
n+1 = 1

-

$p
,
Xn+1 | Y,H,D,C

(g)
n+1 = 1

-
dY1dXn+1

!
0
Y0,n+1p

,
Y0 | Xn+1, Y,H,D,C

(g)
n+1 = 1

-

$p
,
Xn+1 | Y,H,D,C

(g)
n+1 = 1

-
dY0dXn+1

=

0
Y1,n+1p

,
Y1, Xn+1 | Y,H,D,C

(g)
n+1 = 1

-
dY1dXn+1

!
0
Y0,n+1p

,
Y0, Xn+1 | Y,H,D,C

(g)
n+1 = 1

-
dY0dXn+1

Then, estimated LATE is

estLATE =
1

Mc

Mc3
g=1

,
Y
(g)
1,n+1 ! Y

(g)
0,n+1 | C

(g)
n+1 = 1

-

10.4.3 Predicted ATT

The draws are in place for predicted treatment e!ects on treated and un-
treated except for D(g)

n+1.

• Draw j from Bernoulli
,!n

i=1Di

n

-
and letD(g)

n+1 = D
(g)
j,n+1 whereD

(g)
j,n+1

was defined in the previous step for j = 0, 1.

For D(g)
n+1 = 1 the predicted treatment e!ect on the treated is defined byG,
%
(1)
n+1 | X

(1)
n+1, D

(g)
n+1 = 1

-
, . . . ,

,
%
(MD)
n+1 | X(MD)

n+1 , D
(g)
n+1 = 1

-H

&

?A
B
,
Y
(1)
1,n+1 ! Y

(1)
0,n+1 | X

(1)
n+1, D

(g)
n+1 = 1

-
, . . . ,

Y
,
(MD)
1,n+1 ! Y

(MD)
0,n+1 | X

(MD)
n+1 , D

(g)
n+1 = 1

-
CD
E
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where MD =
4M

g=1D
(g)
n+1. By iterated expectations, the predictive (uncon-

ditional) average treatment e!ect on the treated is

EXn+1

<
E
<
%n+1 | Xn+1, Y,H,D,D

(g)
n+1 = 1

==

=

0
Y1,n+1p

,
Y1 | Xn+1, Y,H,D,D

(g)
n+1 = 1

-

$p
,
Xn+1 | Y,H,D,D

(g)
n+1 = 1

-
dY1dXn+1

!
0
Y0,n+1p

,
Y0 | Xn+1, Y,H,D,D

(g)
n+1 = 1

-

$p
,
Xn+1 | Y,H,D,D

(g)
n+1 = 1

-
dY0dXn+1

=

0
Y1,n+1p

,
Y1, Xn+1 | Y,H,D,D

(g)
n+1 = 1

-
dY1dXn+1

!
0
Y0,n+1p

,
Y0, Xn+1 | Y,H,D,D

(g)
n+1 = 1

-
dY0dXn+1

Then, estimated ATT is

estATT =

4M
g=1

,
Y
(g)
1,n+1 ! Y

(g)
0,n+1 | D

(g)
n+1 = 1

-
4M

g=1D
(g)
n+1

10.4.4 Predicted ATUT

Analogously, for D(g)
n+1 = 0 the predicted treatment e!ect on the untreated

is defined by

8,
%
(1)
n+1 | X

(1)
n+1, D

(g)
n+1 = 0

-
, . . . ,

5
%
(MD0)
n+1 | X(

MD0)
n+1 , D

(g)
n+1 = 0

69

&

?@A
@B

,
Y
(1)
1,n+1 ! Y

(1)
0,n+1 | X

(1)
n+1, D

(g)
n+1 = 0

-
, . . . ,

Y

5
(MD0)
1,n+1 ! Y

(MD0)
0,n+1 | X(

MD0)
n+1 , D

(g)
n+1 = 0

6
C@D
@E
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where MD0
=
4M

g=1 1 ! D
(g)
n+1 = M !MD. By iterated expectations, the

predictive (unconditional) average treatment e!ect on the treated is

EXn+1

<
E
<
%n+1 | Xn+1, Y,H,D,D

(g)
n+1 = 0

==

=

0
Y1,n+1p

,
Y1 | Xn+1, Y,H,D,D

(g)
n+1 = 0

-

$p
,
Xn+1 | Y,H,D,D

(g)
n+1 = 1

-
dY1dXn+1

!
0
Y0,n+1p

,
Y0 | Xn+1, Y,H,D,D

(g)
n+1 = 0

-

$p
,
Xn+1 | Y,H,D,D

(g)
n+1 = 1

-
dY0dXn+1

=

0
Y1,n+1p

,
Y1, Xn+1 | Y,H,D,D

(g)
n+1 = 0

-
dY1dXn+1

!
0
Y0,n+1p

,
Y0, Xn+1 | Y,H,D,D

(g)
n+1 = 0

-
dY0dXn+1

Then, estimated ATUT is

estATUT =

4M
g=1

,
Y
(g)
1,n+1 ! Y

(g)
0,n+1 | D

(g)
n+1 = 0

-
4M

g=1 1!D
(g)
n+1

10.5 Return to the treatment e!ect example

Initially, we employ Bayesian data augmentation via a Gibbs sampler on
the treatment e!ect problem outlined above. Recall this example was em-
ployed in the projections notes to illustrate where the inverse-Mills ratios
control functions strategy based on the full complement of instruments2

was exceptionally e!ective.
The representative sample is

Y D Y1 Y0 Z1 Z2 Z3 Z4
15 1 15 9 5 4 3 1
14 1 14 10 !6 !5 !4 !2
13 1 13 11 0 0 0 1
13 0 11 13 0 0 1 0
14 0 10 14 0 1 0 0
15 0 9 15 1 0 0 0

2Typically, we’re fortunate to identify any instruments. In the example, the instru-
ments form a basis for the nullspace to the outcomes, Y1 and Y0. In this (linear or
Gaussian) sense, we’ve exhausted the potential set of instruments.
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which is repeated 200 times to create a sample of n = 1, 200 observations.
The Gibbs sampler employs 15, 000 draws from the conditional posteri-
ors. The first 5, 000 draws are discarded as burn-in, then sample statistics
are based on the remaining 10, 000 draws. First, estimated coe"cients for
outcome and selection equations are tabulated. This is followed by variance-
covariance estimates in a second table.

statistic !1 !0 #1 #2 #3 #4
mean 13.80 13.78 0.380 !0.147 !0.845 0.842
median 13.80 13.78 0.381 !0.147 !0.845 0.842

standard dev 0.036 0.043 0.033 0.038 0.042 0.042
quantiles:
0.01 13.72 13.68 0.301 !0.238 !0.942 0.747
0.05 13.74 13.71 0.325 !0.195 !0.914 0.773
0.10 13.76 13.73 0.337 !0.195 !0.899 0.788
0.25 13.75 13.78 0.358 !0.172 !0.874 0.813
0.75 13.83 13.81 0.403 !0.122 !0.817 0.870
0.90 13.85 13.84 0.422 !0.098 !0.791 0.895
0.95 13.86 13.85 0.435 !0.084 !0.776 0.910
0.99 13.89 13.88 0.457 !0.059 !0.747 0.937

Sample statistics for the model coe"cients of the data augmented
Gibbs sampler applied to the sparse data example

statistic )0 )1 &0 &1 %20 %21
mean 1.051 1.042 !0.754 0.710 1.026 0.878
median 1.008 1.000 !0.753 0.710 1.021 0.876

standard dev 0.069 0.044 0.090 0.056
quantiles:
0.01 0.387 0.384 !0.919 0.603 0.840 0.754
0.05 0.528 0.523 !0.868 0.637 0.888 0.789
0.10 0.616 0.610 !0.844 0.653 0.914 0.807
0.25 0.785 0.778 !0.801 0.680 0.963 0.839
0.75 1.269 1.260 !0.706 0.740 1.084 0.914
0.90 1.541 1.530 !0.667 0.766 1.145 0.950
0.95 1.720 1.709 !0.642 0.781 1.183 0.971
0.99 2.091 2.079 !0.600 0.812 1.258 1.015

Sample statistics for the covariance parameters of the data augmented
Gibbs sampler applied to the sparse data example

The results demonstrate selection bias as the means are biased upward
from 12. This does not bode well for e!ective estimation of marginal or av-
erage treatment e!ects. Estimated average treatment e!ects are tabulated
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below; recall DGP parameters are ATE = 0, ATT = 4, ATUT = !4, amd
LATE = !2.

statistic estATE estATT estATUT estLATE
mean 0.035 0.558 !0.523 0.035
median 0.019 0.000 0.000 0.019

standard dev 1.848 1.205 1.175 1.848
quantiles:
0.01 !4.366 !1.720 !4.366 !4.366
0.05 !2.944 !0.705 !2.935 !2.944
0.10 !2.254 !0.128 !2.211 !2.254
0.25 !1.164 0.000 !0.980 !1.164
0.75 1.221 1.046 0.000 1.221
0.90 2.331 2.281 0.179 2.331
0.95 3.083 3.074 0.754 3.083
0.99 4.487 4.487 1.815 4.487

Sample statistics for estimated average treatment e!ects of the
data augmented Gibbs sampler applied to the sparse data example

The average treatment e!ects on the treated and untreated suggest het-
erogeneity but are grossly understated compared to the DGP averages of 4
and !4. Next, we revisit the sparse data problem and attempt to consider
what is left out of our model specification.

10.6 Instrumental variable restrictions

To fully exploit the instruments with the limited sample space our data cov-
ers we’ll need to add data augmentation of counterfactuals to our algorithm.
Counterfactuals are drawn conditional on everything else, Y !, H,D,!,!j ,
j = 0, 1.

Y miss = DY miss0 + (1!D)Y miss1

where

Y missji " N

7
Xji!j + &jVDi,

(2j
)i

:

and VDi = D!
i !Zi#. That is, we’re still not employing the full distribution

of outcomes; implicitly V0 and V1 are treated as independent. Then, we
can add the instrumental variable restrictions discussed in chapter 9 for
this sparse data case. That is, counterfactual outcomes are drawn such
that they are independent of the instruments. DY + (1!D)Y draw and
DY draw+(1!D)Y are independent of Z. This is our IV data augmented
Gibbs sampler treatment e!ect analysis.
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To implement this we add the following steps along with the counter-
factual draws above to the previous Gibbs sampler. Minimize the dis-
tance of Y draw from Y miss such that Y !1 = DY + (1!D)Y draw and
Y !0 = DY

draw + (1!D)Y are orthogonal to the instruments, Z.

min
Y draw

*
Y draw ! Y miss

+T *
Y draw ! Y miss

+
s.t. ZT

!
DY + (1!D)Y draw DY draw + (1!D)Y

"
= 0

where the constraint is p $ 2 zeroes and p is the number of columns in Z
(the number of instruments). Hence, the IV McMC outcome draws are

Y !1 = DY + (1!D)Y
draw

and
Y !0 = DY

draw + (1!D)Y

Rather than repeat results for the IV data augmented Gibbs sampler ap-
plied to the sparse data example presented in the previous chapter (results
are similar), we turn to a prototypical (nonsparse data) example to evalu-
ate the e"cacy of our Bayesian treatment e!ects without the joint outcome
distribution strategy.

10.7 Prototypical example

Treatment e!ects for the following DGP are analyzed via a Bayesian data
augmentation without full outcome distributions strategy. The DGP is

EU = -0 + -1x+ -2z + VD

= !1 + 1x+ 1z + VD
Y1 = .1 + !1x+ V1

= 2 + 10x+ V1

Y0 = .0 + !0x+ V0

= 1 + 2x+ V0

where x is uniform(0, 1) and z is binary (Bernoulli(0.5)) and variance-
covariance for (VD, V1, V0) is&

' 1 0.7 !0.7
0.7 1 !0.1
!0.7 !0.1 1

(
)

The Gibbs sampler employs 15, 000 draws from the conditional posteri-
ors.3 The first 5, 000 draws are discarded as burn-in, then sample statistics

3The results presented in this chapter employ two-stage estimation. That is, a Gibbs
sampler is employed to estimate the selection equation. Then, the coe"cient means
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are based on the remaining 10, 000 draws. First, estimated coe"cients for
outcome and selection equations are tabulated. This is followed by variance-
covariance estimates in a second table

statistic .0 !0 .1 !1 -0 -1 -2
mean 1.184 2.094 2.232 9.750 !0.863 0.806 0.985
median 1.184 2.094 2.233 9.750 !0.864 0.806 0.986

standard dev 0.075 0.137 0.088 0.132 0.067 0.106 0.051
quantiles:
0.01 1.005 1.779 2.023 9.446 !1.017 0.559 0.867
0.05 1.060 1.868 2.085 9.535 !0.973 0.633 0.902
0.10 1.087 1.920 2.119 9.582 !0.950 0.671 0.919
0.25 1.134 2.001 2.175 9.661 !0.908 0.735 0.950
0.75 1.234 2.187 2.292 9.839 !0.818 0.878 1.021
0.90 1.277 2.272 2.344 9.918 !0.777 0.944 1.051
0.95 1.304 2.320 2.376 9.967 !0.753 0.984 1.068
0.99 1.356 2.413 2.433 10.06 !0.706 1.052 1.106

Sample statistics for the model coe"cients of the data augmented
Gibbs sampler applied to the prototypical example

statistic )0 )1 &0 &1 %20 %21
mean 0.996 0.993 !0.488 0.599 0.723 0.824
median 0.951 0.948 !0.488 0.599 0.720 0.821

standard dev 0.044 0.050 0.051 0.065
quantiles:
0.01 0.346 0.346 !0.593 0.486 0.615 0.688
0.05 0.481 0.479 !0.562 0.519 0.643 0.724
0.10 0.566 0.564 !0.545 0.536 0.659 0.744
0.25 0.732 0.729 !0.518 0.565 0.686 0.778
0.75 1.213 1.209 !0.458 0.633 0.756 0.867
0.90 1.483 1.479 !0.431 0.663 0.790 0.909
0.95 1.663 1.658 !0.415 0.681 0.811 0.935
0.99 2.036 2.033 !0.387 0.717 0.852 0.990

Sample statistics for the covariance parameters of the data augmented
Gibbs sampler applied to the prototypical example

from this first stage are employed in the Gibbs sampler for estimating outcome model
parameters, covariances, and treatment e!ects. Simultaneous estimation of selection and
outcome parameters (not reported), along the lines suggested by Chib [2007], produces
similar results (especially for the average treatmet e!ects). Results di!er primarily in
that selection equation parameters are dampened (around 0.5 in absolute value) and
variances are dampened (approximately 0.5) for simultaneous estimation.
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These parameter estimates are quite close to their DGP counterparts which

is encouraging for identifying treatment e!ects.
Estimated average treatment e!ects are tabulated below; sample average

treatment e!ects are ATE = 4.962, ATT = 6.272, ATUT = 3.620, amd
LATE = 4.804.

statistic estATE estATT estATUT estLATE
mean 4.866 5.963 3.684 4.840
median 4.855 6.075 3.593 4.843

standard dev 2.757 2.513 2.510 2.262
quantiles:
0.01 !1.145 0.680 !1.724 0.261
0.05 0.415 1.798 !0.273 1.261
0.10 1.294 2.570 0.451 1.808
0.25 2.798 4.009 1.804 3.041
0.75 6.942 7.828 5.587 4.843
0.90 8.473 9.131 7.034 6.674
0.95 9.245 9.958 7.789 7.815
0.99 10.859 11.27 9.017 8.389

Sample statistics for estimated average treatment e!ects of the
data augmented Gibbs sampler applied to the prototypical example

These results correspond reasonably well with the DGP. This Bayesian

strategy without full outcome distributions seems to have potential for
identifying outcome heterogeneity.

10.7.1 High correlation example

One concern with this identification strategy might be an extreme cor-
relation DGP. That is, we identify treatment e!ects without (bounding
unidentified parameters for) the full joint distribution for outcomes. Im-
plicitly, at least for treatment e!ects on treated and untreated we’re be-
having as if unobservable outcome with and without treatment (V1, V0) are
independent. Suppose we have the same setup as the previous prototypical
example except the correlation between unobserved expected utility, VD,
and unobserved outcome with treatment, V1, is /D1 = 0.9, and with unob-
served outcome without treatment, V0, is /D0 = !0.9. Then, the bounds
on the unidentifiable parameter, /10, are (!1.0,!0.62); in other words,
/10 = 0 is not included within bounds which preserve positive definiteness
of variance-covariance matrix, !. A natural question then is how e!ective
is the treatment e!ect identification strategy without joint outcome distri-
butions. Next, we report the results of a simulation experiment addressing
this out of bounds correlation issue.
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Suppose the DGP is

EU = -0 + -1x+ -2z + VD

= !1 + 1x+ 1z + VD
Y1 = .1 + !1x+ V1

= 2 + 10x+ V1

Y0 = .0 + !0x+ V0

= 1 + 2x+ V0

where x is uniform(0, 1) and z is binary (Bernoulli(0.5)) and variance-
covariance for (VD, V1, V0) is

&
' 1 0.9 !0.9

0.9 1 !0.8
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The Gibbs sampler employs 15, 000 draws from the conditional posteri-
ors. The first 5, 000 draws are discarded as burn-in, then sample statistics
are based on the remaining 10, 000 draws. First, estimated coe"cients for
outcome and selection equations are tabulated. This is followed by variance-
covariance estimates in a second table

statistic .0 !0 .1 !1 -0 -1 -2
mean 1.201 2.272 2.258 9.658 !1.048 1.103 1.057
median 1.202 2.271 2.582 9.658 !1.049 1.104 1.057

standard dev 0.062 0.113 0.075 0.116 0.068 0.112 0.043
quantiles:
0.01 1.051 2.009 2.408 9.387 !1.209 0.839 0.957
0.05 1.098 2.087 2.456 9.468 !1.161 0.920 0.986
0.10 1.121 2.127 2.484 9.507 !1.136 0.960 1.002
0.25 1.160 2.195 2.532 9.580 !1.094 1.029 1.029
0.75 1.243 2.347 2.634 9.734 !1.003 1.180 1.086
0.90 1.282 2.416 2.679 9.807 !0.960 1.249 1.111
0.95 1.303 2.457 2.705 9.851 !0.934 1.290 1.127
0.99 1.348 2.537 2.751 9.933 !0.893 1.366 1.116

Sample statistics for the model coe"cients of the data augmented
Gibbs sampler applied to the |/10| >> 0 example
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statistic )0 )1 &0 &1 %20 %21
mean 0.969 0.960 !0.584 0.597 0.569 0.591
median 0.926 0.915 !0.584 0.598 0.567 0.590

standard dev 0.035 0.034 0.037 0.037
quantiles:
0.01 0.312 0.302 !0.665 0.517 0.487 0.510
0.05 0.447 0.436 !0.640 0.541 0.510 0.532
0.10 0.534 0.523 !0.629 0.553 0.523 0.544
0.25 0.702 0.692 !0.607 0.574 0.543 0.565
0.75 1.189 1.179 !0.561 0.620 0.593 0.615
0.90 1.461 1.452 !0.539 0.640 0.618 0.638
0.95 1.641 1.632 !0.526 0.653 0.631 0.652
0.99 2.016 2.006 !0.501 0.675 0.659 0.680

Sample statistics for the covariance parameters of the data augmented
Gibbs sampler applied to the |/10| >> 0 example

These parameter estimates are quite close to their DGP counterparts which

is encouraging for identifying treatment e!ects. Outcome error variances are
an exception as they are dampened considerably (from 1 to " 0.6); on the
other hand, correlations with unobserved expected utility are dampened
relatively little (from 0.9 in absolute value to " 0.8).
Estimated average treatment e!ects are tabulated below; sample average

treatment e!ects are ATE = 5.144, ATT = 6.815, ATUT = 3.370, amd
LATE = 4.922.

statistic estATE estATT estATUT estLATE
mean 5.070 6.344 3.744 5.044
median 5.073 6.411 3.691 5.081

standard dev 2.579 2.232 2.223 1.893
quantiles:
0.01 !0.467 1.644 !1.028 1.093
0.05 0.901 2.649 0.269 2.005
0.10 1.719 3.302 0.903 2.484
0.25 3.164 4.701 2.070 3.591
0.75 6.984 7.999 5.406 6.502
0.90 8.443 9.190 6.787 7.560
0.95 9.228 9.833 7.446 8.031
0.99 10.585 11.16 8.377 8.862

Sample statistics for estimated average treatment e!ects of the
data augmented Gibbs sampler applied to the |/10| >> 0 example

These results correspond remarkably well with the DGP and with unre-
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ported joint outcome distribution (bounding of the unidentied parameter
as discussed in the previous chapter) identification strategy results in spite
of our bounding concerns.


