Contents

10 Bayesian treatment effects without joint distribution of out-comes1
10.1 Treatment effects and counterfactuals 1
10.2 Posterior distribution 2
10.2.1 Likelihood function 3
10.2.2 Prior distribution 3
10.2.3 Posterior distribution 3
10.3 Gibbs sampler for treatment effects 4
10.3.1 Full conditional posterior distributions 4
10.4 Predictive average treatment effects 12
10.4.1 Predicted ATE 12
10.4.2 Predicted LATE 13
10.4.3 Predicted ATT 14
10.4.4 Predicted ATUT 15
10.5 Return to the treatment effect example 16
10.6 Instrumental variable restrictions 18
10.7 Prototypical example 19
10.7.1 High correlation example 21

10

Bayesian treatment effects without joint distribution of outcomes

This chapter continues discussion of Bayesian strategies for identifying treatment effects but now without the joint distribution of outcomes (Chib [2007]). Bayesian data augmentation again replaces the classical control or replacement function.

10.1 Treatment effects and counterfactuals

Suppose we observe treatment or no treatment and the associated outcome, $Y=D Y_{1}+(1-D) Y_{0}$, where

$$
\begin{aligned}
& Y_{1}=\beta_{1}+V_{1} \\
& Y_{0}=\beta_{0}+V_{0}
\end{aligned}
$$

and a representative sample is

Y	D	Y_{1}	Y_{0}	V_{1}	V_{0}
15	1	15	10	0	$-3 \frac{1}{3}$
10	0	15	10	0	$-3 \frac{1}{3}$
20	0	20	20	5	$6 \frac{2}{3}$
20	0	20	20	5	$6 \frac{2}{3}$
10	1	10	10	-5	$-3 \frac{1}{3}$
10	0	10	10	-5	$-3 \frac{1}{3}$

Further, we have the following binary instrument at our disposal z where the representative values $Z=\left[\begin{array}{ll}\iota & z\end{array}\right]$ are

ι	z
1	1
1	0
1	1
1	0
1	1
1	0

and we perceive latent utility, D^{*}, to be related to choice via the instruments.

$$
D^{*}=Z \theta+V_{D}
$$

and observed choice is

$$
D=\left\{\begin{array}{cc}
1 & D^{*}>0 \\
0 & \text { otherwise }
\end{array}\right.
$$

This is the exact setup we discussed earlier in $I V$ example 4 of chapter 3 .

10.2 Posterior distribution

Define the augmented data along with the observed outcome $j=0,1$ as

$$
Y_{j i}^{*}=\left[\begin{array}{c}
Y_{j i} \\
D_{i}^{*}
\end{array}\right]
$$

Also, let

$$
H_{i}=\left[\begin{array}{ccc}
X_{i}\left(1-D_{i}\right) & X_{i} D_{i} & 0 \\
0 & 0 & Z_{i}
\end{array}\right]
$$

and

$$
\beta=\left[\begin{array}{c}
\beta_{0} \\
\beta_{1} \\
\theta
\end{array}\right]
$$

where X is a matrix of outcome regressors, in the current example it is simply ι, a vector of ones, as there are no outcome covariates. Hence, a compact model is

$$
Y_{j i}^{*}=H_{i} \beta+\varepsilon_{j i}
$$

where $\varepsilon_{j i}=\left[\begin{array}{c}V_{j i} \\ V_{D i}\end{array}\right]$ and $\Sigma_{j i}=\operatorname{Var}\left[\varepsilon_{j i}\right]=\frac{1}{\lambda_{i}} \Omega_{j}=\frac{1}{\lambda_{i}}\left[\begin{array}{cc}\eta_{j}^{2} & \omega_{j} \\ \omega_{j} & 1\end{array}\right]$ for $j=0,1$.

10.2.1 Likelihood function

As usual the posterior distribution is proportional to the likelihood function times the prior distribution. The likelihood function is

$$
Y_{j i}^{*} \sim N\left(H_{i} \beta, \Sigma_{j i}\right)
$$

Or,
$\ell\left(\beta, \Sigma_{j i} \mid Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}\right) \propto\left|\Sigma_{j i}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(Y_{j i}^{*}-H_{i} \beta\right)^{T} \Sigma_{j i}^{-1}\left(Y_{j i}^{*}-H_{i} \beta\right)\right]$

10.2.2 Prior distribution

Frequently, relatively diffuse priors are chosen such that the data dominates the posterior distribution. Chib's prior distribution for β is $p(\beta) \sim$ $N\left(\beta_{0}, V_{\beta}\right)$ where $\beta_{0}=0, V_{\beta}=20 I$. Let $\sigma_{j}^{2}=\eta_{j}^{2}-\omega_{j}^{2}>0$, then η_{j}^{2} is defined in terms of σ_{j}^{2} and ω_{j}^{2}. To simplify posterior draws for $\Sigma_{j i}$, treat λ_{i} and σ_{j}^{2} independently and ω_{j} conditional on σ_{j}^{2}. Accordingly, the prior for λ_{i} is $p\left(\lambda_{i}\right) \sim \operatorname{Gamma}\left(\frac{\nu}{2}, \frac{2}{\nu}\right)$ where $\nu=15$, the prior for η_{j}^{2} is inverse gamma, $p\left(\sigma_{j}^{2}\right) \sim$ Inverse-gamma $\left(\frac{\nu_{j 0}}{2}, \frac{2}{d_{j 0}}\right)$ where $\nu_{j 0}=4.22$ and $d_{j 0}=2.22$, and the prior for ω_{j} is conditional normal, $p\left(\omega_{j} \mid \eta_{j}^{2}\right) \sim N\left(m_{j 0}, \sigma_{j}^{2} M_{j 0}\right)$ where $m_{j 0}=0$ and $M_{j 0}=10$. Hence, the joint conjugate prior is normal-inverse gamma-normal-gamma.

$$
\begin{aligned}
p\left(\beta, \Sigma_{j i}\right)= & p(\beta) p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) p\left(\lambda_{i}\right) \\
\propto & \left|V_{\beta}\right|^{-\frac{1}{2}} \exp \left[-\frac{1}{2}\left(\beta-\beta_{0}\right)^{T} V_{\beta}^{-1}\left(\beta-\beta_{0}\right)\right] \\
& \times\left(\sigma_{j}^{2}\right)^{-\frac{\nu_{j 0}}{2}-1} \exp \left[-\frac{d_{j 0}}{2 \sigma_{j}^{2}}\right] \\
& \times\left(\sigma_{j}^{2} M_{j 0}\right)^{-\frac{1}{2}} \exp \left[-\frac{\left(\omega_{j}-m_{j 0}\right)^{2}}{2 \sigma_{j}^{2} M_{j 0}}\right] \\
& \times\left(\lambda_{i}\right)^{\frac{\nu}{2}-1} \exp \left[-\frac{\nu \lambda_{i}}{2}\right]
\end{aligned}
$$

10.2.3 Posterior distribution

Now, the posterior distribution (or posterior kernel) is

$$
p\left(\beta, \Sigma_{j i}, D_{i}^{*} \mid Y_{i}, D_{i}, X_{i}, Z_{i}\right) \propto p\left(\beta, \Sigma_{j i}\right) \ell\left(\beta, \Sigma_{j i} \mid Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}\right)
$$

Unlike the strategy discussed in the previous chapter, the posterior distribution does not involve the counterfactual outcomes.

10.3 Gibbs sampler for treatment effects

As is frequently the case, it's much easier to simulate from the recognizable conditional posterior distributions via a Gibbs sampler than simulate from the unrecognizable joint posterior distribution. We follow Chib [2007] and generate conditional posterior draws in three blocks.

10.3.1 Full conditional posterior distributions

Let Γ_{-x} denote all parameters other than x. The $M c M C$ algorithm cycles through three blocks as follows.

First block
Sample $\psi_{j}=\left(\sigma_{j}^{2}, \omega_{j}\right), j=(0,1)$, conditioned on $\left(Y_{j}^{*}, D, X, Z, \beta, \lambda\right)$ by composition. That is, draw marginalized σ_{j}^{2} on integrating out ω_{j}.

$$
p\left(\sigma_{j}^{2} \mid \Gamma_{-\psi_{j}}, Y_{j}^{*}, D, X, Z\right) \propto \int \frac{p\left(\beta, \Sigma_{j}, D^{*} \mid Y, D, X, Z\right)}{p(\beta) p(\lambda) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)} d \omega_{j}
$$

$\propto \frac{p(\beta) p(\lambda) \int p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right) d \omega_{j}}{p(\beta) p(\lambda) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)}$
$\propto \frac{p\left(\sigma_{j}^{2}\right) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)}{p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)}$
$\propto \frac{p\left(\sigma_{j}^{2}, Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)}{p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)}$
$\propto p\left(\sigma_{j}^{2} \mid Y_{j}^{*}, D, X, Z, \beta, \lambda\right)$

Working through the details, we have

$$
\begin{aligned}
& \frac{p(\beta) p(\lambda) \int p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right) d \omega_{j}}{p(\beta) p(\lambda) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)} \\
& \propto \frac{\int p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right) d \omega_{j}}{p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda\right)} \\
& \propto \int p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right) d \omega_{j} \\
& \propto \int\left(\sigma_{j}^{2}\right)^{-\frac{\nu_{j 0}}{2}-1} \exp \left[-\frac{d_{j 0}}{2 \sigma_{j}^{2}}\right]\left(\sigma_{j}^{2} M_{j 0}\right)^{-\frac{1}{2}} \exp \left[-\frac{\left(\omega_{j}-m_{j 0}\right)^{2}}{2 \sigma_{j}^{2} M_{j 0}}\right] \\
& \times \prod_{i=1}^{n_{j}} \lambda_{i}\left(\sigma_{j}^{2}\right)^{-\frac{n_{j}}{2}} \\
& \times \exp \left[-\frac{1}{2, \sigma_{j}^{2}} \sum_{i=1}^{n_{j}} \lambda_{i}\left[V_{j i}\right.\right. \\
&\left.\left.V_{D i}\right]\left[\begin{array}{cc}
1 & -\omega_{j} \\
-\omega_{j} & \sigma_{j}^{2}+\omega^{2}
\end{array}\right]\left[\begin{array}{c}
V_{j i} \\
V_{D i}
\end{array}\right]\right] d \omega_{j}
\end{aligned}
$$

On making some judicious substitutions into the likelihood function, we have

$$
\begin{aligned}
\propto & \int\left(\sigma_{j}^{2}\right)^{-\frac{\nu_{j 0}}{2}-1} \exp \left[-\frac{d_{j 0}}{2 \sigma_{j}^{2}}\right]\left(\sigma_{j}^{2} M_{j 0}\right)^{-\frac{1}{2}} \exp \left[-\frac{\left(\omega_{j}-m_{j 0}\right)^{2}}{2 \sigma_{j}^{2} M_{j 0}}\right] \\
& \times \prod_{i=1}^{n_{j}} \lambda_{i}\left(\sigma_{j}^{2}\right)^{-\frac{n_{j}}{2}} \\
& \times \exp \left[-\frac{1}{2 \sigma_{j}^{2}} \sum_{i=1}^{n_{j}} \lambda_{i}\left[\begin{array}{ll}
V_{j i} & V_{D i}
\end{array}\right]\left[\begin{array}{cc}
1 & -\omega_{j} \\
-\omega_{j} & \sigma_{j}^{2}+\omega^{2}
\end{array}\right]\left[\begin{array}{c}
V_{j i} \\
V_{D i}
\end{array}\right]\right] d \omega_{j}
\end{aligned}
$$

Collecting terms gives

$$
\begin{aligned}
\propto & \prod_{i=1}^{n_{j}} \lambda_{i} M_{j 0}^{-\frac{1}{2}} \\
& \times\left(\sigma_{j}^{2}\right)^{-\frac{\nu_{j 0+3+n_{j}}^{2}}{2}} \exp \left[-\frac{d_{j 0}}{2 \sigma_{j}^{2}}\right] \int \exp \left[-\frac{1}{2 \sigma_{j}^{2}} \frac{\left(\omega_{j}-m_{j 0}\right)^{2}}{M_{j 0}}\right] \\
& \times \exp \left[-\frac{1}{2 \sigma_{j}^{2}} \sum_{i=1}^{n_{j}} \lambda_{i}\left[\begin{array}{ll}
V_{j i} & V_{D i}
\end{array}\right]\left[\begin{array}{cc}
1 & -\omega_{j} \\
-\omega_{j} & \sigma_{j}^{2}+\omega^{2}
\end{array}\right]\left[\begin{array}{c}
V_{j i} \\
V_{D i}
\end{array}\right]\right] d \omega_{j}
\end{aligned}
$$

Integrating out ω_{j} and dropping some normalizing constants leaves

$$
\propto\left(\sigma_{j}^{2}\right)^{-\frac{\nu_{j 0+3+n_{j}}}{2}} \exp \left[-\frac{d_{j 0}+d_{j}+\sum_{i=1}^{n_{j}} \lambda_{i} u_{i}^{2}}{2 \sigma_{j}^{2}}\right]
$$

where n_{j} is the sample size for subsample j,

$$
d_{j}=\left(V_{j}-m_{j 0} V_{D j}\right)^{T}\left(\Lambda_{j}^{-1}+u_{j} M_{j 0} u_{j}^{T}\right)^{-1}\left(V_{j}-m_{j 0} V_{D j}\right)
$$

Λ_{j} is a diagonal matrix with λ_{i} along the diagonal, $V_{j}=Y_{j}-X_{j} \beta_{j}$, and $V_{D j}=D_{j}^{*}-Z_{j} \theta$. Since we're conditioning on λ_{i} and $V_{D i}=D_{i}^{*}-$ $Z_{i} \theta, \sum_{i=1}^{n_{j}} \lambda_{i} V_{D i}^{2}$ is a normalizing constant and can be dropped from the expression for the kernel. Hence, the kernel is recognizable as inverse gamma.

$$
\begin{aligned}
\sigma_{j}^{2} & \mid \\
& \Gamma_{-\psi_{j}}, Y_{j}^{*}, D, X, Z \\
& \sim \quad \text { inverse gamma }\left(\sigma_{j}^{2} \mid \Gamma_{-\psi_{j}}, Y_{j}^{*}, D, X, Z ; \frac{\nu_{j 0}+n_{j}}{2}, \frac{2}{d_{j 0}+d_{j}}\right)
\end{aligned}
$$

Now, draw ω_{j} conditional on σ_{j}^{2}.

$$
\begin{aligned}
& p\left(\omega_{j} \mid \Gamma_{-\omega_{j}}, Y_{j}^{*}, D, X, Z\right) \propto \frac{p\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right)}{p(\beta) p\left(\sigma_{j}^{2}\right) p(\lambda) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)} \\
& \propto \\
& \quad \propto \frac{p(\beta) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) p\left(\sigma_{j}^{2}\right) p(\lambda) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right)}{p(\beta) p\left(\sigma_{j}^{2}\right) p(\lambda) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)} \\
& \propto \frac{p\left(\omega_{j} \mid \sigma_{j}^{2}\right) p\left(Y_{j}^{*} \mid, D, X, Z, \beta, \omega_{j}, \lambda, \sigma_{j}^{2}\right)}{p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)} \\
& \propto p\left(Y_{j}^{*} \mid, D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right) \\
& p\left(\omega_{j} \mid Y_{j}^{*}, D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)
\end{aligned}
$$

Working through the details, we have

$$
\begin{aligned}
& \frac{p(\beta) p(\lambda) p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right)}{p(\beta) p(\lambda) p\left(\sigma_{j}^{2}\right) p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)} \\
\propto & \frac{p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right)}{p\left(Y_{j}^{*} \mid D, X, Z, \beta, \lambda, \sigma_{j}^{2}\right)} \\
\propto & \int p\left(\sigma_{j}^{2}\right) p\left(\omega_{j} \mid \sigma_{j}^{2}\right) \ell\left(\beta, \Sigma_{j} \mid Y_{j}^{*}, D, X, Z\right) d \omega_{j} \\
\propto & \exp \left[-\frac{\left(\omega_{j}-m_{j 0}\right)^{2}}{2 \sigma_{j}^{2} M_{j 0}}\right] \\
& \times \exp \left[-\frac{1}{2, \sigma_{j}^{2}} \sum_{i=1}^{n_{j}} \lambda_{i}\left[\begin{array}{ll}
V_{j i} & V_{D i}
\end{array}\right]\left[\begin{array}{cc}
1 & -\omega_{j} \\
-\omega_{j} & \sigma_{j}^{2}+\omega^{2}
\end{array}\right]\left[\begin{array}{c}
V_{j i} \\
V_{D i}
\end{array}\right]\right]
\end{aligned}
$$

Collecting terms we have
$\propto \exp \left[-\frac{1}{2 \sigma_{j}^{2}}\left(\frac{\left(\omega_{j}-m_{j 0}\right)^{2}}{2 \sigma_{j}^{2} M_{j 0}}+\sum_{i=1}^{n_{j}} \lambda_{i}\left\{\begin{array}{c}V_{j i}^{2}-\omega_{j} V_{D i} V_{j i} \\ +\left(\sigma_{j}^{2}+\omega_{j}^{2}\right) V_{D i}^{2}-\omega_{j} V_{j i} V_{D i}\end{array}\right\}\right)\right]$

Hence,

$$
\omega_{j} \mid \Gamma_{-\omega_{j}}, Y_{j}^{*}, D, X, Z \sim N\left(\omega_{j} \mid \Gamma_{-\omega_{j}}, Y_{j}^{*}, D, X, Z ; b_{j}, \sigma_{j}^{2} B_{j}\right)
$$

where $b_{j}=B_{j}\left(M_{j 0}^{-1} m_{j 0}+V_{D j}^{T} \Lambda V_{j}\right)$ and $B_{j}=\left(M_{j 0}^{-1}+V_{D j}^{T} \Lambda V_{D j}\right)^{-1} .^{1}$
This strategy warrants comment as b_{j} and B_{j} are based on truncated data (for subsample j) and the truncated covariance $U_{D j}$ and variance $U_{D D}$ differ from their full support counterparts, $W_{D j}$ and $W_{D D}$, while ω_{j} is the full support covariance between V_{D} and V_{j}. Even though the distribution for V_{D} is truncated and the covariance and variance of truncated random variables differs from their counterparts for the full support population, the ratio of the truncated covariance $U_{D D} W_{D j} W_{D D}^{-1}$ to truncated variance $U_{D D}$ equals the ratio of the population covariance $V_{D j}$ to population variance $V_{D D}$ (see Johnson and Kotz [1972, pp. 204-205].

$$
\frac{U_{D D} W_{D j} W_{D D}^{-1}}{U_{D D}}=\frac{W_{D j}}{W_{D D}}
$$

Further, since $W_{D D}$ is normalized to unity we have

$$
\frac{W_{D j}}{W_{D D}}=\frac{W_{D j}}{1}=\omega_{j}
$$

Therefore, this important indicator of the extent of endogeneity, ω_{j}, is identified by our procedure.

Second block
With prior distribution $p(\beta) \sim N\left(\beta_{0}, V_{\beta}\right)$, the posterior distribution for the parameters conditional on $Y^{*}, D, X, Z, \psi_{0}, \psi_{1}, \Lambda$ is

$$
\begin{aligned}
p\left(\beta \mid \Gamma_{-\beta}, Y^{*}, D, X, Z\right) & \propto \frac{p\left(\beta, \Sigma_{j}, D^{*} \mid Y, D, X, Z\right)}{p\left(\Sigma_{j}\right) p\left(Y^{*} \mid D, X, Z, \Sigma_{j}\right)} \\
& \propto \frac{p(\beta) \ell\left(\beta, \Sigma_{j} \mid Y^{*}, D, X, Z\right)}{p\left(Y^{*} \mid D, X, Z, \Sigma_{j}\right)} \\
& \propto \frac{p\left(\beta, Y^{*} \mid D, X, Z, \Sigma_{j}\right)}{p\left(Y^{*} \mid D, X, Z, \Sigma_{j}\right)} \\
& \propto p\left(\beta \mid Y^{*}, D, X, Z, \Sigma_{j}\right)
\end{aligned}
$$

[^0]Working through the details yields a standard Bayesian (GLS or SUR) regression result. One can think of the prior as providing one subsample result and the data another subsample result such that the posterior is a precision-weighted average of the two subsamples.

$$
\begin{aligned}
& p(\beta) \ell\left(\beta, \Sigma_{j} \mid Y^{*}, D, X, Z\right) \propto p\left(\beta, Y^{*} \mid D, X, Z, \Sigma_{j}\right) \\
& \propto \quad \exp \left[-\frac{1}{2}\left(\beta-\beta_{0}\right)^{T} V_{\beta}^{-1}\left(\beta-\beta_{0}\right)\right] \\
& \quad \times \exp \left[-\frac{1}{2}\left(Y^{*}-H_{0} \beta\right)^{T} \Lambda_{0} \Omega_{0}^{-1}\left(Y^{*}-H_{0} \beta\right)\right] \\
& \quad \times \exp \left[-\frac{1}{2}\left(Y^{*}-H_{1} \beta\right)^{T} \Lambda_{1} \Omega_{1}^{-1}\left(Y^{*}-H_{1} \beta\right)\right]
\end{aligned}
$$

Hence, we can draw β from

$$
\beta \mid \Gamma_{-\beta}, Y^{*}, D, X, Z \sim N\left(\beta \mid Y^{*}, D, X, Z, \Sigma_{j} ; \widehat{\beta}, \Sigma_{\beta}\right)
$$

where

$$
\begin{gathered}
\widehat{\beta}=\Sigma_{\beta}\left[V_{\beta}^{-1} \beta_{0}+A_{0}+A_{1}\right] \\
A_{j}=\sum_{i \in n_{j}} \lambda_{i} H_{j i}^{T} \Omega_{j}^{-1} Y_{i}^{*} \\
\Sigma_{\beta}=\left[V_{\beta}^{-1}+\sum_{i \in n_{0}} \lambda_{i} H_{0 i}^{T} \Omega_{0}^{-1} H_{0 i}+\sum_{i \in n_{1}} \lambda_{i} H_{1 i}^{T} \Omega_{1}^{-1} H_{1 i}\right]^{-1}
\end{gathered}
$$

Again, any difference in the two expressions does not involve β and is absorbed via normalization.

Third block
Sample $\left(D_{j i}^{*}, \lambda_{i}\right)$ conditioned on $Y_{j i}, D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}$ by composition. That is, marginalize $Y_{j i}^{*}$ by integrating out λ_{i}. Then, draw λ_{i} conditional on $D_{i}^{*} . Y_{j i}^{*}=\left(Y_{j i}, D_{i}^{*}\right)$ marginalized is bivariate Student $\mathrm{t}(\nu)$ and the conditional distribution of $\left(D_{i}^{*} \mid Y_{j i}\right)$ is univariate, noncentral scaled Student $\mathrm{t}\left(\mu_{j i}, h_{j i} \phi_{j}^{2} ; \nu+1\right)$ where

$$
\begin{gathered}
\mu_{j i}=Z_{i} \theta+\frac{\omega_{j}}{\eta_{j}^{2}}\left(Y_{j i}-X_{i} \beta_{j}\right) \\
h_{j i}=\frac{\nu}{\nu+1}\left[1+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\nu\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)}\right]
\end{gathered}
$$

and

$$
\phi_{j}^{2}=1-\frac{\omega_{j}^{2}}{\eta_{j}^{2}}
$$

In other words, the conditional posterior for D_{i}^{*} is

$$
\begin{aligned}
& p\left(D_{i}^{*} \mid \Gamma_{-D^{*}}, Y_{j i}, D_{i}, X_{i}, Z_{i}\right) \propto \int \frac{p\left(\beta_{j}, \Sigma_{j}, D_{i}^{*} \mid Y_{j i}, D_{i}, X_{i}, Z_{i}\right)}{p\left(\psi_{j}\right) p\left(\beta_{j}\right) p\left(Y_{j i} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} d \lambda_{i} \\
& \propto \int \frac{p\left(\psi_{j}\right) p\left(\beta_{j}\right) p\left(\lambda_{i}\right) \ell\left(\beta_{j}, \Sigma_{j} \mid Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}\right)}{p\left(\psi_{j}\right) p\left(\beta_{j}\right) p\left(Y_{j i} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} d \lambda_{i} \\
& \propto \frac{p\left(Y_{j i}, D_{i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)}{p\left(Y_{j i} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} \\
& \propto p\left(D_{i}^{*} \mid Y_{j i}, D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)
\end{aligned}
$$

We work through the details carefully as mistakes are easily made in this case (at least for me).

$$
\begin{aligned}
& \frac{p\left(Y_{j i}, D_{i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)}{p\left(Y_{j i} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} \\
& \propto \int_{0}^{\infty} \frac{p\left(Y_{j i}, D_{i}^{*}, \lambda_{i} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)}{\int_{-\infty}^{\infty}\left[\int_{0}^{\infty} p\left(Y_{j i}, \lambda_{i}, D_{i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right) d \lambda_{i}\right] d D_{i}^{*}} d \lambda_{i} \\
& \propto \int \frac{\lambda_{i}^{\frac{\nu}{2}} \exp \left[-\frac{\lambda_{i}}{2}\left\{\nu+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}-2 \omega\left(Y_{j i}-X_{i} \beta_{j}\right)\left(D_{i}^{*}-Z_{i} \theta\right)+\left(\sigma^{2}+\omega^{2}\right)\left(D_{i}^{*}-Z_{i} \theta\right)^{2}}{\sigma_{j}^{2}}\right\}\right]}{\int \lambda_{i}^{\frac{\nu-1}{2}} \exp \left[-\frac{\lambda_{i}}{2}\left\{\nu+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}\right\}\right] d \lambda_{i}} d \lambda_{i} \\
& \propto \int \frac{\lambda_{i}^{\frac{\nu}{2}} \exp \left[-\frac{\lambda_{i}}{2}\left\{\nu+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}-2 \omega_{j}\left(Y_{j i}-X_{i} \beta_{j}\right)\left(D_{i}^{*}-Z_{i} \theta\right)+\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)\left(D_{i}^{*}-Z_{i} \theta\right)^{2}}{\sigma_{j}^{2}}\right\}\right]}{\left(\nu+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}\right)^{-\frac{\nu+1}{2}}} d \lambda_{i} \\
& \propto \int \lambda_{i}^{\frac{\nu}{2}} \exp \left[-\frac{\lambda_{i}}{2}\left\{\begin{array}{c}
\nu+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}-2 \omega_{j}\left(Y_{j i}-X_{i} \beta_{j}\right)\left(D_{i}^{*}-Z_{i} \theta\right)}{\sigma_{j}^{2}} \\
+\frac{+\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)\left(D_{i}^{*}-Z_{i} \theta\right)^{2}}{\sigma_{j}^{2}}
\end{array}\right\}\right] d \lambda_{i} \\
& \propto\left[\frac{\sigma_{j}^{2}\left(\nu+\left(D_{i}^{*}-Z_{i} \theta\right)^{2}\right)+\left(Y_{j i}-X_{i} \beta_{j}-\omega_{j}\left(D_{i}^{*}-Z_{i} \theta\right)\right)^{2}}{\sigma_{j}^{2}}\right]^{-\frac{v+2}{2}}
\end{aligned}
$$

This looks like the kernel for a univariate Student t with $\nu+1$ degrees of freedom. Some manipulation bears this out and identifies the centrality
and scale parameters. Work with the term in brackets

$$
\begin{aligned}
& \frac{\sigma_{j}^{2}\left(\nu+\left(D_{i}^{*}-Z_{i} \theta\right)^{2}\right)+\left(Y_{j i}-X_{i} \beta_{j}-\omega_{j}\left(D_{i}^{*}-Z_{i} \theta\right)\right)^{2}}{\sigma_{j}^{2}} \\
&= \nu+\frac{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}\left(D_{i}^{*}-Z_{i} \theta\right)^{2}+\frac{\left(Y_{j i}-X_{i} \beta_{j}-\omega_{j}\left(D_{i}^{*}-Z_{i} \theta\right)\right)^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}}{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}} \\
&= \nu+\frac{\frac{\sigma_{j}^{2}\left(D_{i}^{*}-Z_{i} \theta\right)^{2}+\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}-2 \omega_{j}\left(D_{i}^{*}-Z_{i} \theta\right)\left(Y_{j i}-X_{i} \beta_{j}\right)+\omega_{j}^{2}\left(D_{i}^{*}-Z_{i} \theta\right)}{\sigma_{j}^{2}+\omega_{j}^{2}}}{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}} \\
&= \nu+\frac{\left(D_{i}^{*}-Z_{i} \theta\right)^{2}+\frac{-2 \omega_{j}\left(D_{i}^{*}-Z_{i} \theta\right)\left(Y_{j i}-X_{i} \beta_{j}\right)+\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}}{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}} \\
&= \nu+\frac{\left(D_{i}^{*}-Z_{i} \theta-\frac{\omega_{j}}{\sigma_{j}^{2}+\omega_{j}^{2}}\left(Y_{j i}-X_{i} \beta_{j}\right)\right)^{2}+\frac{\sigma_{j}^{2}\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)^{2}}}{\frac{\sigma^{2}}{\sigma^{2}+\omega^{2}}} \\
&= \nu+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}+\frac{\left(D_{i}^{*}-Z_{i} \theta-\frac{\omega_{j}}{\sigma_{j}^{2}+\omega_{j}^{2}}\left(Y_{j i}-X_{i} \beta_{j}\right)\right)^{2}}{\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)}}{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}} \\
&= \nu\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)+\left(Y_{j i}-X_{i} \beta_{j}\right)^{2} \\
&\left(\sigma_{j}^{2}+\omega_{j}^{2}\right) \\
& \sigma_{j}+\frac{\left.\sigma_{j}^{2}-Z_{i} \theta-\frac{\omega_{j}}{\sigma_{j}^{2}+\omega_{j}^{2}}\left(Y_{j i}-{\omega_{j}^{2}}_{i} \beta_{j}\right)\right)^{2}}{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}} \\
&= h_{j}(\nu+1)+\frac{\left(D_{i}^{*}-Z_{i} \theta-\frac{\omega_{j}}{\sigma_{j}^{2}+\omega_{2}^{2}}\left(Y_{j i}-X_{i} \beta_{j}\right)\right)^{2}}{2}
\end{aligned}
$$

recall

$$
h_{j i}=\frac{\nu}{\nu+1}\left[1+\frac{\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\nu\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)}\right]
$$

which can be rewritten as

$$
\frac{1}{\nu+1}\left[\frac{\nu\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)+\left(Y_{j i}-X_{i} \beta_{j}\right)^{2}}{\left(\sigma_{j}^{2}+\omega_{j}^{2}\right)}\right]
$$

and the term in brackets is identical to our expression above prior to substituting in $h_{j}(\nu+1)$. Placing this expression back into the kernel expression,
we have

$$
\begin{aligned}
& {\left[h_{j i}(\nu+1)+\frac{\left(D_{i}^{*}-Z_{i} \theta-\frac{\omega_{j}}{\sigma_{j}^{2}+\omega_{j}^{2}}\left(Y_{j i}-X_{i} \beta_{j}\right)\right)^{2}}{\frac{\sigma_{j}^{2}}{\sigma_{j}^{2}+\omega_{j}^{2}}}\right]^{-\frac{v+2}{2}} } \\
\propto & {\left[(\nu+1)+\frac{\left(D_{i}^{*}-Z_{i} \theta-\frac{\omega}{\sigma^{2}+\omega^{2}}\left(Y_{j i}-X_{i} \beta_{j}\right)\right)^{2}}{h_{j i} \frac{\sigma^{2}}{\sigma^{2}+\omega^{2}}}\right]^{-\frac{v+2}{2}} }
\end{aligned}
$$

Hence,

$$
D_{i}^{*} \mid \Gamma_{-D^{*}}, Y_{j i}, D_{i}, X_{i}, Z_{i} \sim t\left(D_{i}^{*} \mid Y_{j i}, D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j} ; \mu_{j i}, h_{j i} \phi_{j}^{2}, \nu+1\right)
$$

Simulation involves truncated Student t draws with D_{i}^{*} stemming from $t\left(\mu_{0 i}, h_{0 i} \phi_{0}^{2}, \nu+1\right) I_{(-\infty, 0)}$ if $D_{i}=0$ and from $t\left(\mu_{1 i}, h_{1 i} \phi_{1}^{2}, \nu+1\right) I_{(0, \infty)}$ if $D_{i}=1(i \leq n)$.

The posterior for λ_{i} conditional on $Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{0}, \psi_{1}$ is

$$
\begin{aligned}
p\left(\lambda_{i} \mid \Gamma_{-\lambda_{i}},\right. & \left.Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}\right) \propto \frac{p\left(\beta_{j}, \Sigma_{j}, D_{i}^{*} \mid Y_{j i}, D_{i}, X_{i}, Z_{i}\right)}{p\left(\psi_{j}\right) p\left(\beta_{j}\right) p\left(Y_{j i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} \\
& \propto \frac{p\left(\psi_{j}\right) p\left(\beta_{j}\right) p\left(\lambda_{i}\right) \ell\left(\beta_{j}, \Sigma_{j} \mid Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}\right)}{p\left(\psi_{j}\right) p\left(\beta_{j}\right) p\left(Y_{j i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} \\
& \propto \frac{p\left(\lambda_{i}, Y_{j i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)}{p\left(Y_{j i}^{*} \mid D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right)} \\
& \propto p\left(\lambda_{i} \mid Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j}\right) \\
& \propto \lambda_{i}^{\frac{\nu}{2}} \exp \left[-\frac{\lambda_{i} \nu}{2}-\frac{\lambda_{i} G_{i}}{2}\right]
\end{aligned}
$$

Hence,
$\lambda_{i} \mid \Gamma_{-\lambda_{i}}, Y_{i}^{*}, D_{i}, X_{i}, Z_{i} \sim \operatorname{gamma}\left(\lambda_{i} \mid Y_{j i}^{*}, D_{i}, X_{i}, Z_{i}, \beta_{j}, \psi_{j} ; \frac{\nu+2}{2}, \frac{2}{\nu+G_{j i}}\right)$
where $G_{j i}=\left(Y_{j i}^{*}-H_{i} \beta_{j}\right)^{T} \Omega_{j}^{-1}\left(Y_{j i}^{*}-H_{i} \beta_{j}\right)$.
The McMC algorithm continues by returning to the first block and repeating the cycle conditional on the last draw until we have a representative, convergent sample of $M c M C$ simulated draws. As usual, starting values for the Gibbs sampler are varied to test convergence of the posterior distributions (adequate coverage of the sample space). Stationary convergence plots and quickly dampening autocorrelation plots support the notion of representative posterior draws.

10.4 Predictive average treatment effects

To keep things interesting, we're going to define a different set of average treatment effects. That is, we're going to focus on predictive or out-ofsample treatment effects. The idea involves a straightforward generalization of Bayesian updating to include $Y_{j, n+1}$. In principle, we draw $Y_{j, n+1}, j=$ 0,1 from the marginal posterior by marginalizing the unknowns

$$
\begin{aligned}
p\left(Y_{j, n+1} \mid Y, H, D\right)= & \int p\left(Y_{j, n+1} \mid H_{n+1}, \lambda_{n+1}, \Lambda, \beta_{j}, \psi_{j}, Y, H, D\right) \\
& \times p\left(H_{n+1}, \lambda_{n+1}, \Lambda, \beta_{j}, \psi_{j} \mid Y, H, D\right) d \lambda_{n+1} d \Lambda \\
& d \beta_{j} d \psi_{j} d H_{n+1}
\end{aligned}
$$

where

$$
\begin{aligned}
& p\left(Y_{j, n+1} \mid H_{n+1}, \lambda_{n+1}, \Lambda, \beta_{j}, \psi_{j}, Y, H, D\right) \\
= & p\left(Y_{j, n+1} \mid H_{n+1}, \lambda_{n+1}, \Lambda, \beta_{j}, \psi_{j}\right) \sim N\left(X_{n+1} \beta_{j}, \frac{\eta_{j}^{2}}{\lambda_{n+1}}\right)
\end{aligned}
$$

While analytical integration is daunting, it is straightforward to sample from the Markov chain if we approximate the distribution for H_{n+1} by its empirical distribution.

10.4.1 Predicted ATE

For the g th $(g \leq M)$ iteration of the $M c M C$ algorithm, when the chain is defined by $\left(\Lambda^{(g)}, \beta_{j}^{(g)}, \psi_{j}^{(g)}\right)$, we draw $Y_{j, n+1}^{(g)}$ from the predictive distribution by adding the following steps to our previously defined $M c M C$ algorithm. To accommodate inherently unobservable heterogeneity, the following algorithm differs from Chib [2007].

- Draw $X_{n+1}^{(g)}$ by assigning probability $\frac{1}{n}$ to each row of regressors.
- Draw $\lambda_{n+1}^{(g)}$ from gamma $\left(\frac{\nu}{2}, \frac{2}{\nu}\right)$.
- Draw $V_{D, n+1}^{(g)}$ from $N\left(0, \frac{1}{\lambda_{n+1}^{(g)}}\right)$.
- Draw $D_{n+1}^{*(g)}=Z_{n+1}^{(g)} \theta^{(g)}+V_{D, n+1}^{(g)}$.
- Draw $Y_{j, n+1}^{(g)} \sim N\left(X_{n+1}^{(g)} \beta_{j}^{(g)}+\omega_{j}^{(g)} V_{D, n+1}^{(g)}, \frac{\sigma_{j}^{2(g)}}{\lambda_{n+1}^{(g)}}\right)$ for $j=0,1$.

This produces the desired sample for the predictive distribution

$$
\left\{Y_{j, n+1}^{(1)}, \ldots, Y_{j, n+1}^{(M)}\right\}
$$

A sample of predictive conditional treatment effects is then defined by

$$
\begin{aligned}
& \left\{\Delta_{n+1}^{(1)}\left|X_{n+1}^{(1)}, \ldots, \Delta_{n+1}^{(M)}\right| X_{n+1}^{(M)}\right\} \\
\equiv & \left\{\left(Y_{1, n+1}^{(1)}-Y_{0, n+1}^{(1)} \mid X_{n+1}^{(1)}\right), \ldots, Y\left(\left.\begin{array}{l}
(M) \\
1, n+1
\end{array}-Y_{0, n+1}^{(M)} \right\rvert\, X_{n+1}^{(M)}\right)\right\}
\end{aligned}
$$

By iterated expectations, the predictive (unconditional) average treatment effect is

$$
\begin{aligned}
& E_{X_{n+1}}\left[E\left[\Delta_{n+1} \mid X_{n+1}, Y, H, D\right]\right] \\
= & \int Y_{1, n+1} p\left(Y_{1} \mid X_{n+1}, Y, H, D\right) \\
& \times p\left(X_{n+1} \mid Y, H, D\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0} \mid X_{n+1}, Y, H, D\right) \\
& \times p\left(X_{n+1} \mid Y, H, D\right) d Y_{0} d X_{n+1} \\
= & \int Y_{1, n+1} p\left(Y_{1}, X_{n+1} \mid Y, H, D\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0}, X_{n+1} \mid Y, H, D\right) d Y_{0} d X_{n+1}
\end{aligned}
$$

Then estimated $A T E$ is

$$
\operatorname{estATE}=\frac{1}{M} \sum_{g=1}^{M}\left(Y_{1, n+1}^{(g)}-Y_{0, n+1}^{(g)}\right)
$$

This latter quantity - our estimate of the predictive average treatment effect - is simply the average over our post-convergence difference in predictive draws.

10.4.2 Predicted LATE

Local average treatment effects are defined for the subsample of compliers. For binary instrument z, compliers are identified by $D_{1}-D_{0}=1$ where D_{j} refers to the selection variable when the instrument z has value j. We add the following steps to the algorithm to identify compliers for our predictive sample. Let $Z_{j, n+1}^{(g)}=Z_{n+1}^{(g)}$ where j refers to the value of the binary instrument $z_{n+1}^{(g)}$.

- Set $z_{n+1}^{(g)}=0$, then $D_{0, n+1}^{(g)}=I\left(Z_{0, n+1}^{(g)} \theta^{(g)}+V_{D, n+1}^{(g)}>0\right)$.
- Set $z_{n+1}^{(g)}=1$, then $D_{1, n+1}^{(g)}=I\left(Z_{1, n+1}^{(g)} \theta^{(g)}+V_{D, n+1}^{(g)}>0\right)$.
- Define $C_{n+1}^{(g)}=I\left(D_{1, n+1}^{(g)}-D_{0, n+1}^{(g)}=1\right)$.

A sample of predictive conditional treatment effects for the subsample of compliers is then defined by

$$
\begin{aligned}
& \left\{\left(\Delta_{n+1}^{(1)} \mid X_{n+1}^{(1)}, C_{n+1}^{(g)}=1\right), \ldots,\left(\Delta_{n+1}^{\left(M_{c}\right)} \mid X_{n+1}^{\left(M_{c}\right)}, C_{n+1}^{(g)}=1\right)\right\} \\
\equiv & \left\{\begin{array}{c}
\left(Y_{1, n+1}^{(1)}-Y_{0, n+1}^{(1)} \mid X_{n+1}^{(1)}, C_{n+1}^{(g)}=1\right), \ldots, \\
\left.\left.Y\binom{\left(M_{c}\right)}{1, n+1} Y_{0, n+1}^{\left(M_{c}\right)} \right\rvert\, X_{n+1}^{\left(M_{c}\right)}, C_{n+1}^{(g)}=1\right)
\end{array}\right\}
\end{aligned}
$$

where $M_{c}=\sum_{g=1}^{M} C_{n+1}^{(g)}$. By iterated expectations, the predictive (unconditional) local average treatment effect is

$$
\begin{aligned}
& E_{X_{n+1}}\left[E\left[\Delta_{n+1} \mid X_{n+1}, Y, H, D, C_{n+1}^{(g)}=1\right]\right] \\
= & \int Y_{1, n+1} p\left(Y_{1} \mid X_{n+1}, Y, H, D, C_{n+1}^{(g)}=1\right) \\
& \times p\left(X_{n+1} \mid Y, H, D, C_{n+1}^{(g)}=1\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0} \mid X_{n+1}, Y, H, D, C_{n+1}^{(g)}=1\right) \\
& \times p\left(X_{n+1} \mid Y, H, D, C_{n+1}^{(g)}=1\right) d Y_{0} d X_{n+1} \\
= & \int Y_{1, n+1} p\left(Y_{1}, X_{n+1} \mid Y, H, D, C_{n+1}^{(g)}=1\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0}, X_{n+1} \mid Y, H, D, C_{n+1}^{(g)}=1\right) d Y_{0} d X_{n+1}
\end{aligned}
$$

Then, estimated $L A T E$ is

$$
e s t L A T E=\frac{1}{M_{c}} \sum_{g=1}^{M_{c}}\left(Y_{1, n+1}^{(g)}-Y_{0, n+1}^{(g)} \mid C_{n+1}^{(g)}=1\right)
$$

10.4.3 Predicted ATT

The draws are in place for predicted treatment effects on treated and untreated except for $D_{n+1}^{(g)}$.

- Draw j from Bernoulli $\left(\frac{\sum_{i=1}^{n} D_{i}}{n}\right)$ and let $D_{n+1}^{(g)}=D_{j, n+1}^{(g)}$ where $D_{j, n+1}^{(g)}$ was defined in the previous step for $j=0,1$.
For $D_{n+1}^{(g)}=1$ the predicted treatment effect on the treated is defined by

$$
\begin{aligned}
& \left\{\left(\Delta_{n+1}^{(1)} \mid X_{n+1}^{(1)}, D_{n+1}^{(g)}=1\right), \ldots,\left(\Delta_{n+1}^{\left(M_{D}\right)} \mid X_{n+1}^{\left(M_{D}\right)}, D_{n+1}^{(g)}=1\right)\right\} \\
\equiv & \left\{\begin{array}{c}
\left(Y_{1, n+1}^{(1)}-Y_{0, n+1}^{(1)} \mid X_{n+1}^{(1)}, D_{n+1}^{(g)}=1\right), \ldots, \\
\left.\left.Y\binom{\left(M_{D}\right)}{1, n+1} Y_{0, n+1}^{\left(M_{D}\right)} \right\rvert\, X_{n+1}^{\left(M_{D}\right)}, D_{n+1}^{(g)}=1\right)
\end{array}\right\}
\end{aligned}
$$

where $M_{D}=\sum_{g=1}^{M} D_{n+1}^{(g)}$. By iterated expectations, the predictive (unconditional) average treatment effect on the treated is

$$
\begin{aligned}
& E_{X_{n+1}}\left[E\left[\Delta_{n+1} \mid X_{n+1}, Y, H, D, D_{n+1}^{(g)}=1\right]\right] \\
= & \int Y_{1, n+1} p\left(Y_{1} \mid X_{n+1}, Y, H, D, D_{n+1}^{(g)}=1\right) \\
& \times p\left(X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=1\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0} \mid X_{n+1}, Y, H, D, D_{n+1}^{(g)}=1\right) \\
= & \times p\left(X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=1\right) d Y_{0} d X_{n+1} \\
& \int Y_{1, n+1} p\left(Y_{1}, X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=1\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0}, X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=1\right) d Y_{0} d X_{n+1}
\end{aligned}
$$

Then, estimated $A T T$ is

$$
e s t A T T=\frac{\sum_{g=1}^{M}\left(Y_{1, n+1}^{(g)}-Y_{0, n+1}^{(g)} \mid D_{n+1}^{(g)}=1\right)}{\sum_{g=1}^{M} D_{n+1}^{(g)}}
$$

10.4.4 Predicted ATUT

Analogously, for $D_{n+1}^{(g)}=0$ the predicted treatment effect on the untreated is defined by

$$
\begin{aligned}
& \left\{\left(\Delta_{n+1}^{(1)} \mid X_{n+1}^{(1)}, D_{n+1}^{(g)}=0\right), \ldots,\left(\Delta_{n+1}^{\left(M_{D_{0}}\right)} \mid X_{n+1}^{\left(M_{D_{0}}\right)}, D_{n+1}^{(g)}=0\right)\right\} \\
\equiv & \left\{\begin{array}{c}
\left(Y_{1, n+1}^{(1)}-Y_{0, n+1}^{(1)} \mid X_{n+1}^{(1)}, D_{n+1}^{(g)}=0\right), \ldots, \\
Y\left(\left.\begin{array}{l}
\left(M_{D_{0}}\right) \\
1, n+1
\end{array} Y_{0, n+1}^{\left(M_{D_{0}}\right)} \right\rvert\, X_{n+1}^{\left(M_{D_{0}}\right)}, D_{n+1}^{(g)}=0\right)
\end{array}\right\}
\end{aligned}
$$

where $M_{D_{0}}=\sum_{g=1}^{M} 1-D_{n+1}^{(g)}=M-M_{D}$. By iterated expectations, the predictive (unconditional) average treatment effect on the treated is

$$
\begin{aligned}
& E_{X_{n+1}}\left[E\left[\Delta_{n+1} \mid X_{n+1}, Y, H, D, D_{n+1}^{(g)}=0\right]\right] \\
= & \int Y_{1, n+1} p\left(Y_{1} \mid X_{n+1}, Y, H, D, D_{n+1}^{(g)}=0\right) \\
& \times p\left(X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=1\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0} \mid X_{n+1}, Y, H, D, D_{n+1}^{(g)}=0\right) \\
& \times p\left(X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=1\right) d Y_{0} d X_{n+1} \\
= & \int Y_{1, n+1} p\left(Y_{1}, X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=0\right) d Y_{1} d X_{n+1} \\
& -\int Y_{0, n+1} p\left(Y_{0}, X_{n+1} \mid Y, H, D, D_{n+1}^{(g)}=0\right) d Y_{0} d X_{n+1}
\end{aligned}
$$

Then, estimated ATUT is

$$
\text { estATUT }=\frac{\sum_{g=1}^{M}\left(Y_{1, n+1}^{(g)}-Y_{0, n+1}^{(g)} \mid D_{n+1}^{(g)}=0\right)}{\sum_{g=1}^{M} 1-D_{n+1}^{(g)}}
$$

10.5 Return to the treatment effect example

Initially, we employ Bayesian data augmentation via a Gibbs sampler on the treatment effect problem outlined above. Recall this example was employed in the projections notes to illustrate where the inverse-Mills ratios control functions strategy based on the full complement of instruments ${ }^{2}$ was exceptionally effective.

The representative sample is

Y	D	Y_{1}	Y_{0}	Z_{1}	Z_{2}	Z_{3}	Z_{4}
15	1	15	9	5	4	3	1
14	1	14	10	-6	-5	-4	-2
13	1	13	11	0	0	0	1
13	0	11	13	0	0	1	0
14	0	10	14	0	1	0	0
15	0	9	15	1	0	0	0

[^1]which is repeated 200 times to create a sample of $n=1,200$ observations. The Gibbs sampler employs 15,000 draws from the conditional posteriors. The first 5, 000 draws are discarded as burn-in, then sample statistics are based on the remaining 10, 000 draws. First, estimated coefficients for outcome and selection equations are tabulated. This is followed by variancecovariance estimates in a second table.

statistic	β_{1}	β_{0}	θ_{1}	θ_{2}	θ_{3}	θ_{4}
mean	13.80	13.78	0.380	-0.147	-0.845	0.842
median	13.80	13.78	0.381	-0.147	-0.845	0.842
standard dev	0.036	0.043	0.033	0.038	0.042	0.042
quantiles:						
0.01	13.72	13.68	0.301	-0.238	-0.942	0.747
0.05	13.74	13.71	0.325	-0.195	-0.914	0.773
0.10	13.76	13.73	0.337	-0.195	-0.899	0.788
0.25	13.75	13.78	0.358	-0.172	-0.874	0.813
0.75	13.83	13.81	0.403	-0.122	-0.817	0.870
0.90	13.85	13.84	0.422	-0.098	-0.791	0.895
0.95	13.86	13.85	0.435	-0.084	-0.776	0.910
0.99	13.89	13.88	0.457	-0.059	-0.747	0.937

Sample statistics for the model coefficients of the data augmented Gibbs sampler applied to the sparse data example

statistic	λ_{0}	λ_{1}	ω_{0}	ω_{1}	η_{0}^{2}	η_{1}^{2}
mean	1.051	1.042	-0.754	0.710	1.026	0.878
median	1.008	1.000	-0.753	0.710	1.021	0.876
standard dev			0.069	0.044	0.090	0.056
quantiles:						
0.01	0.387	0.384	-0.919	0.603	0.840	0.754
0.05	0.528	0.523	-0.868	0.637	0.888	0.789
0.10	0.616	0.610	-0.844	0.653	0.914	0.807
0.25	0.785	0.778	-0.801	0.680	0.963	0.839
0.75	1.269	1.260	-0.706	0.740	1.084	0.914
0.90	1.541	1.530	-0.667	0.766	1.145	0.950
0.95	1.720	1.709	-0.642	0.781	1.183	0.971
0.99	2.091	2.079	-0.600	0.812	1.258	1.015

Sample statistics for the covariance parameters of the data augmented Gibbs sampler applied to the sparse data example

The results demonstrate selection bias as the means are biased upward from 12. This does not bode well for effective estimation of marginal or average treatment effects. Estimated average treatment effects are tabulated
below; recall $D G P$ parameters are $A T E=0, A T T=4, A T U T=-4$, amd $L A T E=-2$.

statistic	estATE	estATT	estATUT	estLATE
mean	0.035	0.558	-0.523	0.035
median	0.019	0.000	0.000	0.019
standard dev	1.848	1.205	1.175	1.848
quantiles:				
0.01	-4.366	-1.720	-4.366	-4.366
0.05	-2.944	-0.705	-2.935	-2.944
0.10	-2.254	-0.128	-2.211	-2.254
0.25	-1.164	0.000	-0.980	-1.164
0.75	1.221	1.046	0.000	1.221
0.90	2.331	2.281	0.179	2.331
0.95	3.083	3.074	0.754	3.083
0.99	4.487	4.487	1.815	4.487

Sample statistics for estimated average treatment effects of the data augmented Gibbs sampler applied to the sparse data example

The average treatment effects on the treated and untreated suggest heterogeneity but are grossly understated compared to the $D G P$ averages of 4 and -4 . Next, we revisit the sparse data problem and attempt to consider what is left out of our model specification.

10.6 Instrumental variable restrictions

To fully exploit the instruments with the limited sample space our data covers we'll need to add data augmentation of counterfactuals to our algorithm. Counterfactuals are drawn conditional on everything else, $Y^{*}, H, D, \beta, \Sigma_{j}$, $j=0,1$.

$$
Y^{m i s s}=D Y_{0}^{m i s s}+(1-D) Y_{1}^{m i s s}
$$

where

$$
Y_{j i}^{m i s s} \sim N\left(X_{j i} \beta_{j}+\omega_{j} V_{D i}, \frac{\sigma_{j}^{2}}{\lambda_{i}}\right)
$$

and $V_{D i}=D_{i}^{*}-Z_{i} \theta$. That is, we're still not employing the full distribution of outcomes; implicitly V_{0} and V_{1} are treated as independent. Then, we can add the instrumental variable restrictions discussed in chapter 9 for this sparse data case. That is, counterfactual outcomes are drawn such that they are independent of the instruments. $D Y+(1-D) Y^{d r a w}$ and $D Y^{\text {draw }}+(1-D) Y$ are independent of Z. This is our $I V$ data augmented Gibbs sampler treatment effect analysis.

To implement this we add the following steps along with the counterfactual draws above to the previous Gibbs sampler. Minimize the distance of $Y^{\text {draw }}$ from $Y^{\text {miss }}$ such that $Y_{1}^{*}=D Y+(1-D) Y^{\text {draw }}$ and $Y_{0}^{*}=D Y^{\text {draw }}+(1-D) Y$ are orthogonal to the instruments, Z.

$$
\begin{aligned}
& \min _{Y^{\text {draw }}}\left(Y^{d r a w}-Y^{\text {miss }}\right)^{T}\left(Y^{\text {draw }}-Y^{\text {miss }}\right) \\
& \text { s.t. } Z^{T}\left[D Y+(1-D) Y^{\text {draw }}\right. \\
&\left.D Y^{\text {draw }}+(1-D) Y\right]=0
\end{aligned}
$$

where the constraint is $p \times 2$ zeroes and p is the number of columns in Z (the number of instruments). Hence, the $I V M c M C$ outcome draws are

$$
Y_{1}^{*}=D Y+(1-D) Y^{d r a w}
$$

and

$$
Y_{0}^{*}=D Y^{d r a w}+(1-D) Y
$$

Rather than repeat results for the $I V$ data augmented Gibbs sampler applied to the sparse data example presented in the previous chapter (results are similar), we turn to a prototypical (nonsparse data) example to evaluate the efficacy of our Bayesian treatment effects without the joint outcome distribution strategy.

10.7 Prototypical example

Treatment effects for the following $D G P$ are analyzed via a Bayesian data augmentation without full outcome distributions strategy. The $D G P$ is

$$
\begin{aligned}
E U & =\gamma_{0}+\gamma_{1} x+\gamma_{2} z+V_{D} \\
& =-1+1 x+1 z+V_{D} \\
Y_{1} & =\alpha_{1}+\beta_{1} x+V_{1} \\
& =2+10 x+V_{1} \\
Y_{0} & =\alpha_{0}+\beta_{0} x+V_{0} \\
& =1+2 x+V_{0}
\end{aligned}
$$

where x is uniform $(0,1)$ and z is binary ($\operatorname{Bernoulli}(0.5)$) and variancecovariance for $\left(V_{D}, V_{1}, V_{0}\right)$ is

$$
\left[\begin{array}{ccc}
1 & 0.7 & -0.7 \\
0.7 & 1 & -0.1 \\
-0.7 & -0.1 & 1
\end{array}\right]
$$

The Gibbs sampler employs 15,000 draws from the conditional posteriors. ${ }^{3}$ The first 5,000 draws are discarded as burn-in, then sample statistics

[^2]are based on the remaining 10, 000 draws. First, estimated coefficients for outcome and selection equations are tabulated. This is followed by variancecovariance estimates in a second table

statistic	α_{0}	β_{0}	α_{1}	β_{1}	γ_{0}	γ_{1}	γ_{2}
mean	1.184	2.094	2.232	9.750	-0.863	0.806	0.985
median	1.184	2.094	2.233	9.750	-0.864	0.806	0.986
standard dev	0.075	0.137	0.088	0.132	0.067	0.106	0.051
quantiles:							
0.01	1.005	1.779	2.023	9.446	-1.017	0.559	0.867
0.05	1.060	1.868	2.085	9.535	-0.973	0.633	0.902
0.10	1.087	1.920	2.119	9.582	-0.950	0.671	0.919
0.25	1.134	2.001	2.175	9.661	-0.908	0.735	0.950
0.75	1.234	2.187	2.292	9.839	-0.818	0.878	1.021
0.90	1.277	2.272	2.344	9.918	-0.777	0.944	1.051
0.95	1.304	2.320	2.376	9.967	-0.753	0.984	1.068
0.99	1.356	2.413	2.433	10.06	-0.706	1.052	1.106

Sample statistics for the model coefficients of the data augmented Gibbs sampler applied to the prototypical example

statistic	λ_{0}	λ_{1}	ω_{0}	ω_{1}	η_{0}^{2}	η_{1}^{2}
mean	0.996	0.993	-0.488	0.599	0.723	0.824
median	0.951	0.948	-0.488	0.599	0.720	0.821
standard dev			0.044	0.050	0.051	0.065
quantiles:						
0.01	0.346	0.346	-0.593	0.486	0.615	0.688
0.05	0.481	0.479	-0.562	0.519	0.643	0.724
0.10	0.566	0.564	-0.545	0.536	0.659	0.744
0.25	0.732	0.729	-0.518	0.565	0.686	0.778
0.75	1.213	1.209	-0.458	0.633	0.756	0.867
0.90	1.483	1.479	-0.431	0.663	0.790	0.909
0.95	1.663	1.658	-0.415	0.681	0.811	0.935
0.99	2.036	2.033	-0.387	0.717	0.852	0.990

Sample statistics for the covariance parameters of the data augmented Gibbs sampler applied to the prototypical example

[^3]These parameter estimates are quite close to their DGP counterparts which
is encouraging for identifying treatment effects.
Estimated average treatment effects are tabulated below; sample average treatment effects are $A T E=4.962, A T T=6.272, A T U T=3.620$, amd $L A T E=4.804$.

statistic	estATE	estATT	estATUT	estLATE
mean	4.866	5.963	3.684	4.840
median	4.855	6.075	3.593	4.843
standard dev	2.757	2.513	2.510	2.262
quantiles:				
0.01	-1.145	0.680	-1.724	0.261
0.05	0.415	1.798	-0.273	1.261
0.10	1.294	2.570	0.451	1.808
0.25	2.798	4.009	1.804	3.041
0.75	6.942	7.828	5.587	4.843
0.90	8.473	9.131	7.034	6.674
0.95	9.245	9.958	7.789	7.815
0.99	10.859	11.27	9.017	8.389

Sample statistics for estimated average treatment effects of the data augmented Gibbs sampler applied to the prototypical example

These results correspond reasonably well with the $D G P$. This Bayesian
strategy without full outcome distributions seems to have potential for identifying outcome heterogeneity.

10.7.1 High correlation example

One concern with this identification strategy might be an extreme correlation $D G P$. That is, we identify treatment effects without (bounding unidentified parameters for) the full joint distribution for outcomes. Implicitly, at least for treatment effects on treated and untreated we're behaving as if unobservable outcome with and without treatment $\left(V_{1}, V_{0}\right)$ are independent. Suppose we have the same setup as the previous prototypical example except the correlation between unobserved expected utility, V_{D}, and unobserved outcome with treatment, V_{1}, is $\rho_{D 1}=0.9$, and with unobserved outcome without treatment, V_{0}, is $\rho_{D 0}=-0.9$. Then, the bounds on the unidentifiable parameter, ρ_{10}, are $(-1.0,-0.62)$; in other words, $\rho_{10}=0$ is not included within bounds which preserve positive definiteness of variance-covariance matrix, Σ. A natural question then is how effective is the treatment effect identification strategy without joint outcome distributions. Next, we report the results of a simulation experiment addressing this out of bounds correlation issue.

Suppose the $D G P$ is

$$
\begin{aligned}
E U & =\gamma_{0}+\gamma_{1} x+\gamma_{2} z+V_{D} \\
& =-1+1 x+1 z+V_{D} \\
Y_{1} & =\alpha_{1}+\beta_{1} x+V_{1} \\
& =2+10 x+V_{1} \\
Y_{0} & =\alpha_{0}+\beta_{0} x+V_{0} \\
& =1+2 x+V_{0}
\end{aligned}
$$

where x is uniform $(0,1)$ and z is binary (Bernoulli (0.5)) and variancecovariance for $\left(V_{D}, V_{1}, V_{0}\right)$ is

$$
\left[\begin{array}{ccc}
1 & 0.9 & -0.9 \\
0.9 & 1 & -0.8 \\
-0.9 & -0.8 & 1
\end{array}\right]
$$

The Gibbs sampler employs 15,000 draws from the conditional posteriors. The first 5, 000 draws are discarded as burn-in, then sample statistics are based on the remaining 10, 000 draws. First, estimated coefficients for outcome and selection equations are tabulated. This is followed by variancecovariance estimates in a second table

statistic	α_{0}	β_{0}	α_{1}	β_{1}	γ_{0}	γ_{1}	γ_{2}
mean	1.201	2.272	2.258	9.658	-1.048	1.103	1.057
median	1.202	2.271	2.582	9.658	-1.049	1.104	1.057
standard dev	0.062	0.113	0.075	0.116	0.068	0.112	0.043
quantiles:							
0.01	1.051	2.009	2.408	9.387	-1.209	0.839	0.957
0.05	1.098	2.087	2.456	9.468	-1.161	0.920	0.986
0.10	1.121	2.127	2.484	9.507	-1.136	0.960	1.002
0.25	1.160	2.195	2.532	9.580	-1.094	1.029	1.029
0.75	1.243	2.347	2.634	9.734	-1.003	1.180	1.086
0.90	1.282	2.416	2.679	9.807	-0.960	1.249	1.111
0.95	1.303	2.457	2.705	9.851	-0.934	1.290	1.127
0.99	1.348	2.537	2.751	9.933	-0.893	1.366	1.116

Sample statistics for the model coefficients of the data augmented
Gibbs sampler applied to the $\left|\rho_{10}\right| \gg 0$ example

statistic	λ_{0}	λ_{1}	ω_{0}	ω_{1}	η_{0}^{2}	η_{1}^{2}
mean	0.969	0.960	-0.584	0.597	0.569	0.591
median	0.926	0.915	-0.584	0.598	0.567	0.590
standard dev			0.035	0.034	0.037	0.037
quantiles:						
0.01	0.312	0.302	-0.665	0.517	0.487	0.510
0.05	0.447	0.436	-0.640	0.541	0.510	0.532
0.10	0.534	0.523	-0.629	0.553	0.523	0.544
0.25	0.702	0.692	-0.607	0.574	0.543	0.565
0.75	1.189	1.179	-0.561	0.620	0.593	0.615
0.90	1.461	1.452	-0.539	0.640	0.618	0.638
0.95	1.641	1.632	-0.526	0.653	0.631	0.652
0.99	2.016	2.006	-0.501	0.675	0.659	0.680

Sample statistics for the covariance parameters of the data augmented Gibbs sampler applied to the $\left|\rho_{10}\right| \gg 0$ example

These parameter estimates are quite close to their DGP counterparts which
is encouraging for identifying treatment effects. Outcome error variances are an exception as they are dampened considerably (from 1 to ~ 0.6); on the other hand, correlations with unobserved expected utility are dampened relatively little (from 0.9 in absolute value to ~ 0.8).

Estimated average treatment effects are tabulated below; sample average treatment effects are $A T E=5.144, A T T=6.815, A T U T=3.370$, amd $L A T E=4.922$.

statistic	estATE	estATT	estATUT	estLATE
mean	5.070	6.344	3.744	5.044
median	5.073	6.411	3.691	5.081
standard dev	2.579	2.232	2.223	1.893
quantiles:				
0.01	-0.467	1.644	-1.028	1.093
0.05	0.901	2.649	0.269	2.005
0.10	1.719	3.302	0.903	2.484
0.25	3.164	4.701	2.070	3.591
0.75	6.984	7.999	5.406	6.502
0.90	8.443	9.190	6.787	7.560
0.95	9.228	9.833	7.446	8.031
0.99	10.585	11.16	8.377	8.862

Sample statistics for estimated average treatment effects of the data augmented Gibbs sampler applied to the $\left|\rho_{10}\right| \gg 0$ example

These results correspond remarkably well with the $D G P$ and with unre-
ported joint outcome distribution (bounding of the unidentied parameter as discussed in the previous chapter) identification strategy results in spite of our bounding concerns.

[^0]: ${ }^{1}$ The difference between expanding the expression in brackets above and the normal kernel indicated here,

 $$
 \frac{1}{2 \sigma_{j}^{2}}\left\{\begin{array}{c}
 V_{j}^{T} \Lambda V_{j}+\sigma_{j}^{2} V_{D}^{T} \Lambda V_{D} \\
 +B M_{j 0}^{-1}\left[-2 m_{j 0} V_{j}^{T} \Lambda V_{D}+m_{j 0}^{2} V_{D}^{T} \Lambda V_{D}-M_{j 0}\left(V_{j}^{T} \Lambda V_{D}\right)^{2}\right]
 \end{array}\right\}
 $$

 is entirely constants absorbed through normalization.

[^1]: ${ }^{2}$ Typically, we're fortunate to identify any instruments. In the example, the instruments form a basis for the nullspace to the outcomes, Y_{1} and Y_{0}. In this (linear or Gaussian) sense, we've exhausted the potential set of instruments.

[^2]: ${ }^{3}$ The results presented in this chapter employ two-stage estimation. That is, a Gibbs sampler is employed to estimate the selection equation. Then, the coefficient means

[^3]: from this first stage are employed in the Gibbs sampler for estimating outcome model parameters, covariances, and treatment effects. Simultaneous estimation of selection and outcome parameters (not reported), along the lines suggested by Chib [2007], produces similar results (especially for the average treatmet effects). Results differ primarily in that selection equation parameters are dampened (around 0.5 in absolute value) and variances are dampened (approximately 0.5) for simultaneous estimation.

