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Introduction

Fundamentally, firms are vehicles of production. That is, a firm is an orga-
nization through which raw resources or inputs are transformed into valued
products (goods and services). Managers are stewards over the production
process. They are responsible for ecient production, that is, managers
are responsible for identifying ecient technologies and acquiring low cost,
high quality resources for their transformation into products. As production
technologies and resource availability are dynamic and uncertain, much of
what managers do involves experimentation and interpretation of evidence
generated by the experiments. In the spirit of Demski’s Managerial Uses of
Accounting Information, we take it as given that (at least) a rudimentary
understanding of experimental design and consistent evaluation of evidence
is foundational for a well-prepared, responsible manager.

1.1 Study plan

Our study plan typically involves the following components:

1. experimentation to gather evidence.

2. evidence or experimental information is typically interpreted through
a counterfactual or causal eect lens.

3. managers act by creating and amending production technologies and
projects.
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4. managers respond to information by rebalancing projects and search-
ing for new projects.

5. maximization of expected utility objective is often simplified as max-
imization of long-run wealth via the Kelly criterion.

1.2 Experiments and information

Experiments generate data – often substantial amounts of data. Data
from well-designed experiments are related or framed through systems of
equations that facilitate interpretation of the data. Interpretation of the
data usually takes the form of solving for a set of summary parameters.
However, solutions to large systems of equations are rarely unique. It is
much more common for there to be an abundance of solutions or no exact
solution. In these pages, we’ll primarily focus on the latter case where no
exact solution exists. When no exact solution exists we frame outcomes
(what we’re attempting to explain/understand) in terms of an incomplete
set of observables (regressors or covariates) combined with unobservables
(model errors).
Unobservables are defined by probability distributions assigned to (so-

called) random variables based on our background knowledge of the set-
ting. Some argue random variables are objectively random (whatever that
means) while others argue that the system is suciently complex that we
abandon all hope of fully coping with its detail within an acceptable time
frame (the information is conserved view of say, quantum mechanics). We’ll
simply refer to elements that the analyst/manager is unable to directly
observe as the unobservables (or occasionally the latent variables) in the
equations.
We begin our search for causal eects with simple, single parameter prob-

lems, that is, where outcomes of interest are related to what is known via
a single parameter (usually a mean eect). Then, expand the discussion
to multiple means (ANOVA and ANCOVA) and richer contexts where ex-
planatory variables as well as outcomes are endogenously determined.1

Next, we briefly discuss manager’s project identification, selection, diver-
sification, and rebalancing based on information collected (via experiments)
with an eye on the Kelly criterion – long-run wealth maximization.

1Quantities or variables that are taken as given or are provided from outside the
analysis are said to be exogenous. On the other hand, endogenous variables are deter-
mined within the analysis or model at hand.
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1.3 Kelly criterion

Expected long-run wealth is maximized via the Kelly criterion. That is,
maximize compound (or geometric mean) return on investment

max
w

G [r] =
n
j=1

(
m

i=1 wirij)
pj

s.t.
m

i=1 wi = 1

or equivalently maximize the arithmetic mean (expected value) of the nat-
ural logarithm of returns

max
w

E [r] =
n

j=1 pj ln (
m

i=1 wirij)

s.t.
m

i=1 wi = 1

where wi is portion of wealth invested in project i (this quantity may be
negative which translates into borrowing against its future payo, that is
borrow the investment amount and return the payo to the lender, also
known as short-selling), rij is return (payo on investment equal to one)
on project i in state j (so that

m
i=1 wirij is the return on the portfolio of

projects in state j), and pj is the probability the manager assigns to state
j. Note, G [r] = exp (E [r]) is a consistency check on the analysis.
Analysis of the problem (project selection/diversification) is greatly sim-

plified by converting nominal projects into Arrow-Debreu investments (as-
sets that payo in exactly one state and zero in all other states). Let A
denote a matrix of payos/returns (on normalized to unity investments)
where the rows indicate the project and the columns indicate the states,
v denote a vector of investment costs associated with the projects and y
denote a vector of Arrow-Debreu (or state) values/prices.

Ay = v

If A is full rank (n n and comprised of linearly independent rows and
columns), then

y = A1v

and the elements in row j of A1 identify the portfolio weights on the
nominal projects for constructing the Arrow-Debreu investment that pays
o in state j. As the investment cost for each of the n Arrow-Debreu port-
folios implied by these weights is yj the return on Arrow-Debreu state j
portfolio is 1

yj
where yj is positive otherwise arbitrage (profiting from zero

investment and bearing no risk) opportunities exist. The optimal fraction
of wealth, k, invested in each Arrow-Debreu portfolio of projects is

max
k

G [r] =
n
j=1


kj

1
yj

pj

s.t.
n

j=1 kj = 1
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or

max
k

E [r] =
n

j=1 pj ln

kj

1
yj



s.t.
n

j=1 kj = 1

The first order conditions for the Lagrangian

L =
n

j=1

pj ln


kj
1

yj


 




n

j=1

k  1





are
pj
kj
  = 0, for all j

Since

kj = 1 =

 pj
 =

1
 ,  = 1 and kj = pj . In other words, probability

assignment to state j identifies the optimal fractional investment in state
j.
Notice there are no negative investments in Arrow-Debreu project port-

folios and the optimal weight doesn’t depend on the payo. Maximization
of geometric mean or expected compound return doesn’t include selecting
a portfolio with zero (or negative) return in any state as that kills long-run
wealth accumulation. One can never fully deplete the asset base with this
investment policy as some fraction of wealth is invested in the state that
pays o.
Importantly, the Kelly criterion connects to Shannon’s noisy channel

theorem by equating mutual information,2 I(info; y) = H(info)+H(y)
H(info, y), with the expected gain (in returns) due to information,  =
E [r | info]E [r], where H (·) = 

n
j=1 pj ln pj , or entropy. Let the infor-

2Mutual information is usually defined as

I (X;Y ) = H (Y )H (Y | X)

= H (X)H (X | Y )

but the additivity axiom

H (X,Y ) = H (Y ) +H (X | Y )

= H (X) +H (Y | X)

allows a form that if often computationally simpler. Substitute

H (X | Y ) = H (X,Y )H (Y )

into the expression for mutual information

I (X;Y ) = H (X) (H (X,Y )H (Y ))

= H (X) +H (Y )H (X,Y )
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mation signals be denoted by zj and the states by si, then

H(info) = 
n

j=1

Pr (zj) lnPr (zj)

H(y) = 
n

i=1

Pr (si) lnPr (si)

H(info, y) = 
n

i=1

n

j=1

Pr (si, zj) lnPr (si, zj)

I(info; y) = 
n

j=1

Pr (zj) lnPr (zj)
n

i=1

Pr (si) lnPr (si)

+

n

i=1

n

j=1

Pr (si, zj) lnPr (si, zj)

= 
n

i=1

n

j=1

Pr (si,zj) lnPr (zj)
n

i=1

Pr (si) lnPr (si)

+

n

i=1

n

j=1

Pr (si, zj) lnPr (si, zj)

= 
n

i=1

Pr (si) lnPr (si) +

n

i=1

n

j=1

Pr (si, zj) lnPr (si, zj)


n

i=1

n

j=1

Pr (si,zj) lnPr (zj)

= 
n

i=1

Pr (si) lnPr (si) +

n

i=1

n

j=1

Pr (si, zj) ln
Pr (si, zj)

Pr (zj)

= 
n

i=1

Pr (si) lnPr (si) +

n

i=1

n

j=1

Pr (si, zj) lnPr (si | zj)
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while

E [r | info] =

n

j=1

Pr (zj)

n

i=1

Pr (si | zj) ln
Pr (si | zj)

yi

=

n

j=1

n

i=1

Pr (si, zj) lnPr (si | zj)
n

j=1

n

i=1

Pr (si, zj) ln yi

=

n

j=1

n

i=1

Pr (si, zj) lnPr (si | zj)
n

i=1

Pr (si) ln yi

E [r] =

n

i=1

Pr (si) ln
Pr (si)

yi

=

n

i=1

Pr (si) lnPr (si)
n

i=1

Pr (si) ln yi

 = E [r | info] E [r]

=

n

j=1

n

i=1

Pr (si, zj) lnPr (si | zj)
n

i=1

Pr (si) lnPr (si)

= I(info; y)

This serves to almost immediately identify the value of information as il-
lustrated below.
Contrast the Kelly criterion with maximization of simple returns. This

approach calls for an arbitrarily large position on the state with the highest
payo and either no coverage of or borrowing against (or short selling) the
other states. Such a strategy assures bankruptcy in the long-run.
Next, we consider some examples to explore the Kelly criterion.

Example 1 (base setting) Suppose a manager believes he operates in a
four state world and he identifies the following collection of projects (in-
cluding a safe project) and corresponding payos/returns.

A =





s1 s2 s3 s4

project1 1 1 1 1

project2 1.1 1
1.1 1 1

project3 1 1 1.1 1
1.1

project4

1.1


1.1


1
1.1


1
1.1





v =





1
1
1
1
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and initial joint probability assignment based on (uninformative) state par-
titioning is

s1 s2 s3 s4 Pr (info)
left 1

8
1
8

1
8

1
8

1
2

right 1
8

1
8

1
8

1
8

1
2

Pr (s) 1
4

1
4

1
4

1
4

The Arrow-Debreu investment portfolios are formed as

A1 =





10 5.238 0 4.994

0 5.238 0 5.494

0 0 5.238 4.994

11 0 5.238 5.494





and state prices are

y = A1v =





0.232
0.256
0.244
0.268





The expected (compound) return is E [r] = 0.0014 or G [r] = exp (E [r]) =
1.0014. We explore this from two perspectives. First, write the returns on
each Arrow-Debreu portfolio.





1
0.232 0 0 0

0 1
0.256 0 0

0 0 1
0.244 0

0 0 0 1
0.268




=





4.3025 0 0 0

0 3.9114 0 0

0 0 4.1027 0

0 0 0 3.7293





Since the Kelly criterion indicates the optimal weight k equals the state
probability, k = p = 0.25 for each Arrow-Debreu portfolio,3 the expected
returns are

E [r] = 0.25 log (0.25 4.3025) + 0.25 log (0.25 3.9114)
+0.25 log (0.25 4.1027) + 0.25 log (0.25 3.7293)

= 0.0014

3Maximization of simple return calls for "going all-in" on state s1 and short-selling
Arrow-Debreu portfolios covering other states. In other words, a strategy leading to
bankruptcy with probability 0.75.
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and the geometric mean of returns is

G [r] = (0.25 4.3025)0.25  (0.25 3.9114)0.25

 (0.25 4.1027)0.25  (0.25 3.7293)0.25

= exp (E [r]) = 1.0014

Alternatively, find the portfolio weights, w, that maximize the expected com-
pound return on the projects.

max
w

4
i=1


wT ri

pi

s.t. Tw = 1

where ri is a vector of project returns in state i (column i of matrix A), pi
is the probability assigned to state i, and  is a vector of ones. The solution
is

w =





0.5006
0.5122
0.4884
0.5000





4
i=1


wT ri

pi
= (1.0756)

0.25  (0.9778)0.25  (1.0256)0.25  (0.9323)0.25

= G [r] = 1.0014

and

ln


4
i=1


wT ri

pi

= E [r] = 0.0014

Left/right signals (perhaps odd labels for this setting but bear with us) in this
base setting are uninformative as is apparent as either signal leads to the
same (optimal) portfolios as described above with no information. Hence,
this information leads to no rebalancing. For completeness, we show mutual
information is zero in this setting.

I(info; y) = H(info) +H(y)H(info, y)

=



1

2
ln
1

2

1

2
ln
1

2



+



1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4






 1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8

 1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8



= ln 2 + ln 4 ln 8 = 0
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With each realization, uncertainty is (partially) resolved and the man-
ager rebalances the portfolio of projects by expanding and/or contracting
investment (recall the optimal investment strategy matches the investment
in each state with the likelihood assigned to the state).

Example 2 (rebalancing) Suppose the manager’s operations lead to the
following joint probability assignment

s1 s2 s3 s4 Pr (info)
left 0.20 0.20 0.05 0.05 1

2

right 0.05 0.05 0.20 0.20 1
2

Pr (s) 1
4

1
4

1
4

1
4

Since the payos are the same as the base case, Arrow-Debreu portfolios are
the same as the base case and only the weights are adjusted to reflect the
updated state probability assignments given the information signal. Hence,

if the left signal is observed kleft =





0.40
0.40
0.10
0.10



 with expected return

E [r | left] = 0.40 log (0.40 4.3025) + 0.40 log (0.40 3.9114)
+0.10 log (0.10 4.1027) + 0.10 log (0.10 3.7293)

= 0.2085

while if the right signal is observed kright =





0.10
0.10
0.40
0.40



 with expected return

E [r | right] = 0.10 log (0.10 4.3025) + 0.10 log (0.10 3.9114)
+0.40 log (0.40 4.1027) + 0.40 log (0.40 3.7293)

= 0.1799

and the expected return conditional on acquiring the information is

E [r | info] = Pr (right)E [r | right] + Pr (left)E [r | left]
= 0.5 0.2085 + 0.5 0.1799 = 0.1941

or

G [r | info] = exp (E [r | info])

= G [r | left]Pr(left) G [r | right]Pr(right)

= 1.23180.5  1.19710.5

= 1.2143
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The project portfolio weights conditional on the information are

wleft =





13.1077
0.8195
0.1953
13.0929





and

wright =





12.1066
0.2049
0.7814
12.0929





with the same expected returns as derived above based on the Arrow-Debreu
(state-based) portfolios. The expected gain from the information (relative to
the uninformative base case) is a striking

E [gain | info] = E [r | info] E [r]
= 0.1941 0.0014 = 0.1927

or geometric gain

G [gain | info] =
G [r | info]
G [r]

=
1.2143

1.0014

= exp (E [gain | info]) = exp (0.1927)
= 1.2126

Again, mutual information equals the expected gain (in returns) from the
information

I(info; y)

= H(info) +H(y)H(info, y)

=



1

2
ln
1

2

1

2
ln
1

2



+



1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4






0.20 ln 0.20 0.20 ln 0.20 0.05 ln 0.05 0.05 ln 0.05
0.05 ln 0.05 0.05 ln 0.05 0.20 ln 0.20 0.20 ln 0.20



= ln 2 + ln 4 1.8867
= 0.6931 + 1.3863 1.8867 = 0.1927
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Example 3 (highly informative rebalancing) Suppose the manager’s
operations/experiments are highly informative leading to the following joint
probability assignments

s1 s2 s3 s4 Pr (info)
left 0.249 0.249 0.001 0.001 1

2

right 0.001 0.001 0.249 0.249 1
2

Pr (s) 1
4

1
4

1
4

1
4

Again, the Arrow-Debreu portfolios are the same as the base case and only
the weights are adjusted to reflect the updated state probability assignments
given the information signal. Hence, if the left signal is observed kleft =



0.498
0.498
0.002
0.002



 with expected return

E [r | left] = 0.498 log (0.498 4.3025) + 0.498 log (0.498 3.9114)
+0.002 log (0.002 4.1027) + 0.002 log (0.002 3.7293)

= 0.6921

while if the right signal is observed kright =





0.002
0.002
0.498
0.498



 with expected return

E [r | right] = 0.002 log (0.002 4.3025) + 0.002 log (0.002 3.9114)
+0.498 log (0.498 4.1027) + 0.498 log (0.498 3.7293)

= 0.6449

and the expected return conditional on the information is

E [r | info] = Pr (right)E [r | right] + Pr (left)E [r | left]
= 0.5 0.6921 + 0.5 0.6449 = 0.6685

or

G [r | info] = exp (E [r | info])

= G [r | left]Pr(left) G [r | right]Pr(right)

= 1.99800.5  1.90570.5

= 1.9513

The project portfolio weights conditional on the information are

wleft =





21.3444
1.0203
0.0039
21.3202
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and

wright =





20.3433
0.0041
0.9728
20.3202





with the same expected returns as derived above based on the Arrow-Debreu
(state-based) portfolios. The expected gain from the information (relative to
the uninformative base case) is a striking

E [gain | info] = E [r | info] E [r]
= 0.6685 0.0014 = 0.6671

or geometric gain

G [gain | info] =
G [r | info]
G [r]

=
1.9513

1.0014

= exp (E [gain | info]) = exp (0.6671)
= 1.9485

Again, mutual information equals the expected gain (in returns) from the
information

I(info; y)

= H(info) +H(y)H(info, y)

=



1

2
ln
1

2

1

2
ln
1

2



+



1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4






0.249 ln 0.249 0.249 ln 0.249 0.001 ln 0.001 0.001 ln 0.001
0.001 ln 0.001 0.001 ln 0.001 0.249 ln 0.249 0.249 ln 0.249



= ln 2 + ln 4 1.4124
= 0.6931 + 1.3863 1.4124 = 0.6671

Suppose the manager is unable to pursue projects sucient to span the
states. We focus on the base case with uninformative left/right information.
There appear to be two types of such cases that merit consideration. One
case involves a composite or aggregation of states with the same payos
to fulfill spanning (this occurs when two or more dierent sets of events
occur but lead to the same project payos). Since this allows formation of
Arrow-Debreu project portfolios everything goes through as in the preced-
ing examples. The second case is more troublesome as no such aggregation
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or composite spanning of states is possible and Arrow-Debreu project port-
folios cannot be formed. This leads to the use of brute force methods for
solving the optimal (long-run wealth maximizing) portfolio construction.

Example 4 (composite spanning) Suppose equally likely payos/returns
are as follows.

A =





s1 s2 s3 s4

project1 1.1 1
1.1

1
1.1

1
1.1

project2
1
1.1 1.1 1

1.1
1
1.1

project3
1
1.1

1
1.1


1.1


1.1





where

v =




1
1
1





The portfolio weights, w, that maximize the expected compound return on
the projects are

w =




2.7896
2.7896
6.5792





4
i=1


wT ri

pi
= (0.6685)

0.25  (0.6685)0.25  (1.8283)0.25  (1.8283)0.25

= G [r] = 1.1055

and

ln


4
i=1


wT ri

pi

= E [r] = 0.1003

With only three projects and four states spanning fails so it’s not possible
to construct Arrow-Debreu portfolios that span the four states. However,
in this case as states s3 and s4 have the same payos we can aggregate
to form, say s34, with the same payos as s3 or s4 but with probability
p34 = p3 + p4 = 0.5. Arrow-Debreu 3-state portfolios are formed as

A1 =




4.0228 1.2153 2.4334
1.2153 5.238 2.4334
2.5522 2.5522 5.3779





and state prices are

y = A1v =




0.3740
0.3740
0.2735
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The returns on the Arrow-Debreu portfolios are





1
0.3740 0 0

0 1
0.3740 0

0 0 1
0.2735




=





2.6738 0 0

0 2.6738 0

0 0 3.6566





Since the Kelly criterion indicates the optimal weight k equals the state
probability, k1 = k2 = 0.25 (for Arrow-Debreu portfolios one and two) and
k34 = 0.5, the expected returns are

E [r] = 0.25 log (0.25 2.6738) + 0.25 log (0.25 2.6738)
+0.5 log (0.5 3.6566)

= 0.1003

and

G [r] = (0.25 2.6738)0.25  (0.25 2.6738)0.25

 (0.5 3.6566)0.5

= exp (E [r]) = 1.1055

Left/right signals in this setting are uninformative. Hence, this information
leads to no rebalancing and oers no value to the manager. To complete
the picture, mutual information is zero in this setting is

I(info; y) = H(info) +H(y)H(info, y)

=



1

2
ln
1

2

1

2
ln
1

2



+



1

4
ln
1

4

1

4
ln
1

4

1

2
ln
1

2






 1
8 ln

1
8 

1
8 ln

1
8 

1
4 ln

1
4

 1
8 ln

1
8 

1
8 ln

1
8 

1
4 ln

1
4



= ln 2 + ln 4 ln 8
= 0.6931 + 1.0397 1.7328 = 0

The second case is more troublesome.
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Example 5 (spanning fails) Suppose equally likely payos/returns are
as follows.

A =





s1 s2 s3 s4

project1 1.1 1
1.1

1
1.1

1
1.1

project2
1
1.1 1.1 1

1.1
1
1.1

project3
1
1.1

1
41.1


1.1 4


1.1





where

v =




1
1
1





The portfolio weights, w, that maximize the expected compound return on
the projects are

w =




3.5021
4.5981
9.1002





4
i=1


wT ri

pi
= (0.6443)

0.25  (0.6443)0.25  (2.1806)0.25  (1.9558)0.25

= G [r] = 1.1535

and

ln


4
i=1


wT ri

pi

= E [r] = 0.1428

As in the previous case, spanning fails and even though there exist nonneg-
ative state prices

y =





0.3795
0.3795
0

2.6124



+ 





0.0482
0.0482
0.6502
0.7567



 , 0.3452    0

we cannot construct Arrow-Debreu project portfolios. Therefore, we’re left
with brute force methods to evaluate information value, etc. In spite of this
apparent setback, we’re still able to identify the optimal project portfolio for
maximizing long-run wealth and avoid bankruptcy. Recall, maximization of
the geometric mean steers clear of nonpositive returns in any state (a state
involving a zero return produces an absorbing state while a negative return
results in an imaginary objective function value).



18 1. Introduction

Example 6 (spanning by perturbation) Continue with example 5. The
manager may expand the project set to span the state space by aggregating
existing projects and writing/revising contracts so as to perturb the pay-
os. Suppose project 4 is equal parts projects 1 and 2 plus the following
perturbation, , of the resultant project’s payos/returns.

 =

0 0 0.1 0.1



Hence, the payo matrix is

A =





s1 s2 s3 s4

project1 1.1 1
1.1

1
1.1

1
1.1

project2
1
1.1 1.1 1

1.1
1
1.1

project3
1
1.1

1
41.1


1.1 4


1.1

project4 0.55 + 0.5
1.1 0.55 + 0.5

1.1
1
1.1 + 0.1

1
1.1  0.1





with normalized cost

v =





1
1
1
1





The Arrow-Debreu investment portfolios are formed as

A1 =





3.8615 1.0427 2.7727 0.3426

1.3766 4.1954 2.7727 0.3426

3.5979 3.9669 3.0638 4.6217

1.4021 1.0331 3.0638 5.3783





and state prices are

y = A1v =





0.3885
0.3885
0.1207
0.1207





The returns on each Arrow-Debreu portfolio are




1
0.3885 0 0 0

0 1
0.3885 0 0

0 0 1
0.1207 0

0 0 0 1
0.1207




=





2.5742 0 0 0

0 2.5742 0 0

0 0 8.2824 0

0 0 0 8.2824







1.3 Kelly criterion 19

Since the Kelly criterion indicates the optimal weight k equals the state
probability, k = p = 0.25 for each Arrow-Debreu portfolio, the expected
returns are

E [r] = 0.25 log (0.25 2.5742) + 0.25 log (0.25 2.5742)
+0.25 log (0.25 8.2824) + 0.25 log (0.25 8.2824)

= 0.1435

and the geometric mean of returns is

G [r] = (0.25 2.5742)0.25  (0.25 2.5742)0.25

 (0.25 8.2824)0.25  (0.25 8.2824)0.25

= exp (E [r]) = 1.1543

The portfolio weights, w, that maximize the expected compound return on
the projects are

w =





2.9474
4.0457
9.1190
1.1260





4
i=1


wT ri

pi
= (0.6435)

0.25  (0.6435)0.25  (2.0706)0.25  (2.0706)0.25

= G [r] = 1.1543

and

ln


4
i=1


wT ri

pi

= E [r] = 0.1435

Left/right signals are uninformative so mutual information is zero.

I(info; y) = H(info) +H(y)H(info, y)

=



1

2
ln
1

2

1

2
ln
1

2



+



1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4

1

4
ln
1

4






 1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8

 1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8 

1
8 ln

1
8



= ln 2 + ln 4 ln 8 = 0

However, perturbation through contract design allows us to quickly assess
the value of information.



20 1. Introduction

While there is no information in the preceding example, perturbation
through contract design allows us to quickly assess the value of informa-
tion gathering (experimentation) which is, in turn, fulfilled by project re-
balancing. Much of the remaining coverage addresses experimental design
and interpretation of evidence but we’ll try to keep the firm’s objective
(long-run wealth maximization) in view.


