
Di§erence-in-di§erence causal e§ects designs

Di§erence-in-di§erence (d-i-d) designs receive growing popularity in account-
ing causal e§ect analyses. Panel data (time series and cross-sectional data) in
which there is an intervention (possibly, regulatory) leading some firms to adopt
treatment (perhaps, a di§erent disclosure strategy) while other firms do not of-
ten prompt d-i-d experiments. Such d-i-d experiments are typically interpreted
as providing evidence on the average treatment e§ect on the treated (ATT )
during the post-intervention period (t = 1).

E [Y1  Y0 | D = 1]

where Y1 represents potential outcome with treatment, Y0 represents potential
outcome without treatment, and D = 1 identifies the subpopulation who adopt
treatment while D = 0 identifies the subpopulation who don’t adopt treatment.
Hence, prior to the intervention date (t = 0) typically all firms are without treat-
ment (D = 0). For completeness, other average treatment e§ects are average
treatment e§ect on the untreated (ATUT )

E [Y1  Y0 | D = 0]

and the unconditional average treatment e§ect (ATE) or via iterated expecta-
tions

E [Y1  Y0] = Pr (D = 1)E [Y1  Y0 | D = 1] + Pr (D = 0)E [Y1  Y0 | D = 0]

As d-i-d is an ignorable treatment strategy, average treatment e§ect identi-
fication draws from conditional mean independence and common support. Con-
ditional mean independence indicates the data generating process (DGP) is
characterized by

E [Y1 | X,D] = E [Y1 | X]

and especially, for ATT

E [Y0 | X,D] = E [Y0 | X]

This condition is not verifiable via data tests as it is counterfactual in nature,
(Y1 | D = 0) and (Y0 | D = 1) are unobservable. Rather, the analyst engages in
thought experiments to query the logical consistency of the condition applied
to the setting at-hand. On the other hand, common support applies to both
the unknown DGP and the observed sample. Common support refers to the
overlap of covariate distributions for the treated (D = 1) and untreated (D = 0)
subpopulations/subsamples. Reliance on common support in the samples allows
inference from the data rather than extrapolations outside the data. DGP
common support is more subtle and will be discussed and illustrated via some
stylized examples below.
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For the examples, all DGPs have the following partially observable covariates
(Xj , j = 0, 1) and unobservable (Uj , j = 0, 1) common structure.

Y1 = 1X1 + U1

Y0 = 0X0 + U0

and observed outcomes and covariates are

Y = DY1 + (1D)Y0
X = DX1 + (1D)X0

Both outcomes and covariates can be missing.
We explore three (linear) d-i-d designs from sparsest to most elaborate.

Design one ignores covariates X where 2, the coe¢cient on D, is interpreted
as ATT .

Y = 0 + 1t+ 2D + "1 (1)

Design two includes covariates, X, where 2 is interpreted as ATT .

Y = 0 + 1t+ 2D + 3X + "2 (2)

Design three includes covariates and interactions, X D, where 2+ 4E [X] is
interpreted as ATT .

Y = 0 + 1t+ 2D + 3X + 4X D + "3 (3)

Design three is the only one of these designs capable of identifying conditional
average treatment e§ects where 2 + 4 (X = x) is interpreted as ATT (X).

Example 1 (homogeneous outcome) Suppose the DGP is

t D X1 U1 Y1 X0 U0 Y0 X Y
0 0 1 1 0 1 1 0 1 0
0 0 2 1 1 2 1 1 2 1
0 0 3 1 2 3 1 2 3 2
0 0 1 1 2 1 1 2 1 2
0 0 2 1 3 2 1 3 2 3
0 0 3 1 4 3 1 4 3 4
1 1 1 0 1 1 0 1 1 1
1 1 2 0 2 2 0 2 2 2
1 1 3 0 3 3 0 3 3 3
1 0 1 0 1 1 0 1 1 1
1 0 2 0 2 2 0 2 2 2
1 0 3 0 3 3 0 3 3 3

means 0.5 0.25 2 0 2 2 0 2 2 1
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Conditional average treatment e§ects vary with the covariate.

X = 1 X = 2 X = 3
E [Y1 | X1, D = 1]
E [Y0 | X0, D = 1]

1 (1) = 2 2 (2) = 4 3 (3) = 6

E [Y1 | X1, D = 0]
E [Y0 | X0, D = 0]

1 (1) = 2 2 (2) = 4 3 (3) = 6

E [Y1 | X1] E [Y0 | X0] 1 (1) = 2 2 (2) = 4 3 (3) = 6

Unconditional average treatment e§ects indicate homogeneity.

ATT = EX1
[E [Y1 | X1, D = 1]] EX0

[E [Y0 | X0, D = 1]]

=
1

3
(2) +

1

3
(4) +

1

3
(6) = 4

ATUT = EX1
[E [Y1 | X1, D = 0]] EX0

[E [Y0 | X0, D = 0]]

=
1

3
(2) +

1

3
(4) +

1

3
(6) = 4

ATE = EX1
[E [Y1 | X1]] EX0

[E [Y0 | X0]]

=
1

3
(2) +

1

3
(4) +

1

3
(6) = 4

Regression parameters are expected to be unbiased (and asymptotically consis-
tent) as unobservables in each subpopulation regression are conditionally unbi-
ased.

Xj = 1 Xj = 2 Xj = 3 t = 0 t = 1
E [U1 | X1,t] 0 0 0 0 0
E [U0 | X0,t] 0 0 0 0 0

Importantly, conditional mean independence is satisfied.

D = 1 D = 0
E [Y1 | X1 = 1, D] 1 1
E [Y1 | X1 = 2, D] 2 2
E [Y1 | X1 = 3, D] 3 3
E [Y0 | X0 = 1, D] 1 1
E [Y0 | X0 = 2, D] 2 2
E [Y0 | X0 = 3, D] 3 3

Design one yields
Y = 2 + 0t+ 4D + "1,
suggested ATT = 4

(1)

Design two yields
Y = 1 + 0t+ 4D  1

2X + "2,
suggested ATT = 4

(2)
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Design three yields

Y = 0 + 0t+ 0D X + 2X D + "3,
suggested ATT (X = 1) = 0 + 2 1 = 2
suggested ATT (X = 2) = 0 + 2 2 = 4
suggested ATT (X = 3) = 0 + 2 3 = 6

suggested ATT = 0 + 2 2 = 4

(3)

As suggested the parameters are consistent with the DGP and,1 most signifi-
cantly, all three designs e§ectively identify ATT . However, only design three
identifies the conditional average treatment e§ects. This is a prototype setting
for d-i-d designs. The next example is a slight variation in which the regression
condition E [Uj | Xj , t] = 0 is not satisfied but conditional mean independence
is satisfied by the DGP.

Example 2 (homogeneous outcome but E [Uj | Xj , t] 6= 0) Suppose the DGP
is a slight variation of example 1

t D X1 U1 Y1 X0 U0 Y0 X Y
0 0 1 1 0 1 1 0 1 0
0 0 2 0 2 2 0 2 2 2
0 0 3 1 4 3 1 4 3 4
0 0 1 1 0 1 1 0 1 0
0 0 2 0 2 2 0 2 2 2
0 0 3 1 4 3 1 4 3 4
1 1 1 1 0 1 1 0 1 0
1 1 2 0 2 2 0 2 2 2
1 1 3 1 4 3 1 4 3 4
1 0 1 1 0 1 1 0 1 0
1 0 2 0 2 2 0 2 2 2
1 0 3 1 4 3 1 4 3 4

means 0.5 0.25 2 0 2 2 0 2 2 1

Conditional average treatment e§ects vary with the covariate.

X = 1 X = 2 X = 3
E [Y1 | X1, D = 1]
E [Y0 | X0, D = 1]

0 (0) = 0 2 (2) = 4 4 (4) = 8

E [Y1 | X1, D = 0]
E [Y0 | X0, D = 0]

0 (0) = 0 2 (2) = 4 4 (4) = 8

E [Y1 | X1] E [Y0 | X0] 0 (0) = 0 2 (2) = 4 4 (4) = 8

1This is most transparent for design three where the coe¢cient on X for the D = 0
subpopulation is 1 and for the D = 1 subpopulation is 1 + 2 = 1, and other parameters
are zero.
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Unconditional average treatment e§ects indicate homogeneity.

ATT = EX1
[E [Y1 | X1, D = 1]] EX0

[E [Y0 | X0, D = 1]]

=
1

3
(0) +

1

3
(4) +

1

3
(8) = 4

ATUT = EX1
[E [Y1 | X1, D = 0]] EX0

[E [Y0 | X0, D = 0]]

=
1

3
(0) +

1

3
(4) +

1

3
(8) = 4

ATE = EX1 [E [Y1 | X1]] EX0 [E [Y0 | X0]]

=
1

3
(0) +

1

3
(4) +

1

3
(8) = 4

Regression parameters may not be unbiased (or asymptotically consistent) as
unobservables in each subpopulation regression are not conditionally unbiased
(in particular, Xj = 1, 3).

Xj = 1 Xj = 2 Xj = 3 t = 0 t = 1
E [U1 | X1,t] 1 0 1 0 0
E [U0 | X0,t] 1 0 1 0 0

However, conditional mean independence is satisfied.

D = 1 D = 0
E [Y1 | X1 = 1, D] 0 0
E [Y1 | X1 = 2, D] 2 2
E [Y1 | X1 = 3, D] 4 4
E [Y0 | X0 = 1, D] 0 0
E [Y0 | X0 = 2, D] 2 2
E [Y0 | X0 = 3, D] 4 4

Design one yields
Y = 2 + 0t+ 4D + "1,
suggested ATT = 4

(1)

Design two yields
Y = 0 + 0t+ 4D X + "2,

suggested ATT = 4
(2)

Design three yields

Y = 2 + 0t 4D  2X + 4X D + "3,
suggested ATT (X = 1) = 4 + 4 1 = 0
suggested ATT (X = 2) = 4 + 4 2 = 4
suggested ATT (X = 3) = 4 + 4 3 = 8

suggested ATT = 4 + 4 2 = 4

(3)

Even though the regression parameters might be biased the symmetry in (Xj , Uj)
is such that bias does not emerge (in particular, positive corr (X1, U1) is o§set by
negative corr (X0, U0)). All three designs e§ectively identify unconditional ATT
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and conditional ATT (X) as the DGP exhibits full common or balanced support.
The next example maintains homogeneous outcome but begins to explore the
impact of unbalanced covariate support in a d-i-d design.

Example 3 (homogeneous outcome with unbalanced covariates) Suppose
the DGP is

t D X1 U1 Y1 X0 U0 Y0 X Y
0 0 1 1 0 1 1 0 1 0
0 0 2 0 2 3 0 3 3 3
0 0 3 1 4 1 1 2 1 2
0 0 1 1 0 1 1 0 1 0
0 0 2 0 2 3 0 3 3 3
0 0 3 1 4 1 1 2 1 2
1 1 1 1 0 1 1 0 1 0
1 1 2 0 2 3 0 3 2 2
1 1 3 1 4 1 1 2 3 4
1 0 1 1 0 1 1 0 1 0
1 0 2 0 2 3 0 3 3 3
1 0 3 1 4 1 1 2 1 2

means 0.5 0.25 2 0 2 1 23 0 1 23 1 34  3
4

Conditional average treatment e§ects vary with the covariate.

X = 1 X = 2 X = 3
E [Y1 | X1, D = 1]
E [Y0 | X0, D = 1]

0 (1) = 1 2 (NA) = NA 4 (3) = 7

E [Y1 | X1, D = 0]
E [Y0 | X0, D = 0]

0 (1) = 1 2 (NA) = NA 4 (3) = 7

E [Y1 | X1] E [Y0 | X0] 0 (1) = 1 2 (NA) = NA 4 (3) = 7

Unconditional average treatment e§ects indicate homogeneity.

ATT = EX1
[E [Y1 | X1, D = 1]] EX0

[E [Y0 | X0, D = 1]]

=
1

3
(0) +

1

3
(2) +

1

3
(4)


2

3
(1) +

1

3
(3)


= 3

2

3

ATUT = EX1
[E [Y1 | X1, D = 0]] EX0

[E [Y0 | X0, D = 0]]

=
1

3
(0) +

1

3
(2) +

1

3
(4)


2

3
(1) +

1

3
(3)


= 3

2

3

ATE = EX1 [E [Y1 | X1]] EX0 [E [Y0 | X0]]

=
1

3
(0) +

1

3
(2) +

1

3
(4)


2

3
(1) +

1

3
(3)


= 3

2

3

Regression parameters are not expected to be unbiased (or asymptotically con-
sistent) as unobservables in each subpopulation regression are not conditionally
unbiased.

Xj = 1 Xj = 2 Xj = 3 t = 0 t = 1
E [U1 | X1,t] 1 0 1 0 0
E [U0 | X0,t] 0 NA 0 0 0
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However, conditional mean independence is satisfied.

D = 1 D = 0
E [Y1 | X1 = 1, D] 0 0
E [Y1 | X1 = 2, D] 2 2
E [Y1 | X1 = 3, D] 4 4
E [Y0 | X0 = 1, D] 1 1
E [Y0 | X0 = 2, D] NA NA
E [Y0 | X0 = 3, D] 3 3

Design one yields
Y = 1 23 + 0t+ 3

2
3D + "1,

suggested ATT = 3 23
(1)

Design two yields
Y = 1 + 0t+ 3 45D 

2
5X + "2,

suggested ATT = 3 45
(2)

Design three yields2

Y = 0 + 0t 2D X + 3X D + "3,
suggested ATT (X = 1) = 2 + 3 1 = 1
suggested ATT (X = 2) = 2 + 3 2 = 4
suggested ATT (X = 3) = 2 + 3 3 = 7
suggested ATT = 2 + 3 1 34 = 3

1
4

(3)

As suggested the parameters are inconsistent with the DGP (in particular, posi-
tive corr (X1, U1) is not o§set by zero corr (X0, U0)). Only design one e§ectively
identifies unconditional ATT presumably because of the lack of common support
(no overlap at X = 2). Surprisingly, design three e§ectively identifies condi-
tional average treatment e§ects for X = 1, 3. To explore common support, we
focus on the data excluding (X = 2). The average treatment e§ects conditional
on (X = 1, 3) limited support exhibit the same outcome homogeneity.

ATT (X = 1, 3) = E [Y1 | X = 1, 3, D = 1] E [Y0 | X = 1, 3, D = 1]

=
1

2
(0) +

1

2
(4)


2

3
(1) +

1

3
(3)


= 3

2

3

ATUT (X = 1, 3) = E [Y1 | X = 1, 3, D = 0] E [Y0 | X = 1, 3, D = 0]

=
1

2
(0) +

1

2
(4)


2

3
(1) +

1

3
(3)


= 3

2

3

ATE (X = 1, 3) = EX1 [E [Y1 | X1 = 1, 3]] EX0 [E [Y0 | X0 = 1, 3]]

= 3
2

3

2Here suggested ATT involves iteration of X over the entire observed sample. If we employ
only the D = 1 subsample suggested ATT is 2 + 3 2 = 4 6= 3 2

3
.
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Although conditional mean independence is satisfied, the covariate distribution
for Y1 di§ers between the two subpopulations, D = 0, 1. Design one yields

Y = 1 23 + 0t+ 3
2
3D + "1,

suggested ATT (X = 1, 3) = 3 23
(1)

Design two yields
Y = 1 + 0t+ 3 45D 

2
5X + "2,

suggested ATT (X = 1, 3) = 3 45
(2)

Design three yields3

Y = 0 + 0t 2D X + 3X D + "3,
suggested ATT (X = 1) = 2 + 3 1 = 1
suggested ATT (X = 3) = 2 + 3 3 = 7

suggested ATT (X = 1, 3) = 2 + 3 1 811 = 3
2
11

(3)

Only design one identifies ATT (X = 1, 3) because of covariate imbalance in
the two subpopulations (D = 0 and D = 1). Again, design three e§ectively
identifies conditional average treatment e§ects for X = 1, 3 and we’re spared the
embarrassment of suggesting ATT (X = 2). Next, we consider a slight variation
on this example where the DGP reflects E [Uj | Xj , t] = 0.

Example 4 (
homogeneous outcome with unbalanced covariates

and E [Uj | Xj ] = 0
)

Suppose the DGP is

t D X1 U1 Y1 X0 U0 Y0 X Y
0 0 1 1 0 1 1 0 1 0
0 0 2 1 1 1 1 0 1 0
0 0 3 1 2 3 1 2 3 2
0 0 1 1 2 1 1 2 1 2
0 0 2 1 3 1 1 2 1 2
0 0 3 1 4 3 1 4 3 4
1 1 1 0 1 1 0 1 1 1
1 1 2 0 2 1 0 1 2 2
1 1 3 0 3 3 0 3 3 3
1 0 1 0 1 1 0 1 1 1
1 0 2 0 2 1 0 1 1 1
1 0 3 0 3 3 0 3 3 3

means 0.5 0.25 2 0 2 1 23 0 1 23 1 34  3
4

3Here suggested ATT involves iteration of X over the entire observed sample. If we employ
only the D = 1 subsample suggested ATT is 2 + 3 2 = 4 6= 3 2

3
.
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Conditional average treatment e§ects vary with the covariate.

X = 1 X = 2 X = 3
E [Y1 | X1, D = 1]
E [Y0 | X0, D = 1]

1 (1) = 2 2 (NA) = NA 3 (3) = 6

E [Y1 | X1, D = 0]
E [Y0 | X0, D = 0]

1 (1) = 2 2 (NA) = NA 3 (3) = 6

E [Y1 | X1] E [Y0 | X0] 1 (1) = 2 2 (NA) = NA 3 (3) = 6

Unconditional average treatment e§ects indicate homogeneity.

ATT = EX1
[E [Y1 | X1, D = 1]] EX0

[E [Y0 | X0, D = 1]]

=
1

3
(1) +

1

3
(2) +

1

3
(3)


2

3
(1) +

1

3
(3)


= 3

2

3

ATUT = EX1 [E [Y1 | X1, D = 0]] EX0 [E [Y0 | X0, D = 0]]

=
1

3
(1) +

1

3
(2) +

1

3
(3)


2

3
(1) +

1

3
(3)


= 3

2

3

ATE = EX1
[E [Y1 | X1]] EX0

[E [Y0 | X0]]

=
1

3
(1) +

1

3
(2) +

1

3
(3)


2

3
(1) +

1

3
(3)


= 3

2

3

Regression parameters are expected to be unbiased (and asymptotically consis-
tent) as unobservables in each subpopulation regression are conditionally unbi-
ased.

Xj = 1 Xj = 2 Xj = 3 t = 0 t = 1
E [U1 | X1,t] 0 0 0 0 0
E [U0 | X0,t] 0 NA 0 0 0

Also, conditional mean independence is satisfied.

D = 1 D = 0
E [Y1 | X1 = 1, D] 1 1
E [Y1 | X1 = 2, D] 2 2
E [Y1 | X1 = 3, D] 3 3
E [Y0 | X0 = 1, D] 1 1
E [Y0 | X0 = 2, D] NA NA
E [Y0 | X0 = 3, D] 3 3

Design one yields
Y = 1 23 + 0t+ 3

2
3D + "1,

suggested ATT = 3 23
(1)

Design two yields

Y =  2
3 + 0t+ 3

13
15D 

3
5X + "2,

suggested ATT = 3 1315
(2)
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Design three yields4

Y = 0 + 0t+ 0D X + 2X D + "3,
suggested ATT (X = 1) = 0 + 2 1 = 2
suggested ATT (X = 2) = 0 + 2 2 = 4
suggested ATT (X = 3) = 0 + 2 3 = 6
suggested ATT = 0 + 2 1 34 = 3

1
2

(3)

As suggested the parameters are consistent with the DGP (see design three).
Only design one e§ectively identifies ATT because of the lack of common support
(no overlap at X = 2). Design three e§ectively identifies conditional average
treatment e§ects for X = 1, 3. To explore common support, we again focus
on the data excluding (X = 2). The average treatment e§ects conditional on
(X = 1, 3) limited support exhibit the same outcome homogeneity.

ATT (X = 1, 3) = E [Y1 | X1 = 1, 3, D = 1] E [Y0 | X0 = 1, 3, D = 1]

=
1

2
(1) +

1

2
(3)


2

3
(1) +

1

3
(3)


= 3

2

3

ATUT (X = 1, 3) = E [Y1 | X1 = 1, 3, D = 0] E [Y0 | X0 = 1, 3, D = 0]

=
1

2
(1) +

1

2
(3)


2

3
(1) +

1

3
(3)


= 3

2

3

ATE (X = 1, 3) = EX1 [E [Y1 | X1 = 1, 3]] EX0 [E [Y0 | X0 = 1, 3]]

= 3
2

3

Although conditional mean independence is satisfied, the covariate distribution
for Y1 di§ers between the two subpopulations, D = 0, 1. Design one yields

Y = 1 23 + 0t+ 3
2
3D + "1,

suggested ATT (X = 1, 3) = 3 23
(1)

Design two yields

Y =  2
3 + 0t+ 3

13
15D 

3
5X + "2,

suggested ATT (X = 1, 3) = 3 1315
(2)

Design three yields5

Y = 0 + 0t+ 0D  1X + 2X D + "3,
suggested ATT (X = 1) = 0 + 2 1 = 2
suggested ATT (X = 3) = 0 + 2 3 = 6

suggested ATT (X = 1, 3) = 0 + 2 1 811 = 3
5
11

(3)

As in example 3, only design one identifies the local ATT (X = 1, 3). Design
three e§ectively identifies conditional average treatment e§ects for X = 1, 3.

4Here suggested ATT involves iteration of X over the entire observed sample. If we employ
only the D = 1 subsample suggested ATT is 0 + 2 2 = 4 6= 3 2

3
.

5Here suggested ATT involves iteration of X over the entire observed sample. If we employ
only the D = 1 subsample suggested ATT is 0 + 2 2 = 4 6= 3 2

3
.
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Apparently, lack of common support in the DGP confounds d-i-d’s ability to
identify average treatment e§ects even if sample adjustments are made in at-
tempt to work with common support evidenced in the sample. Notice, if the co-
variate distribution in the two subpopulations (D = 0 and D = 1) are balanced
as in example 1 average treatment e§ects are identified by all three designs.
Next, we explore a case in which covariates are balanced but conditional mean
independence fails.

Example 5 (
homogeneous outcome with balanced covariates

but conditional mean independence fails ) Suppose

the DGP is

t D X1 U1 Y1 X0 U0 Y0 X Y
0 0 1 1 0 1 1 0 1 0
0 0 2 0 2 2 0 2 2 2
0 0 3 1 4 3 1 4 3 4
0 0 1 1 0 1 1 0 1 0
0 0 2 0 2 2 0 2 2 2
0 0 3 1 4 3 1 4 3 4
1 1 1 1 2 3 1 2 1 2
1 1 2 0 2 2 0 2 2 2
1 1 3 1 2 1 1 2 3 2
1 0 1 1 2 3 1 2 3 2
1 0 2 0 2 2 0 2 2 2
1 0 3 1 2 1 1 2 1 2

means 0.5 0.25 2 0 2 2 0 2 2 1

Conditional average treatment e§ects vary with the covariate.

X = 1 X = 2 X = 3
E [Y1 | X1, D = 1]
E [Y0 | X0, D = 1]

2 (2) = 4 2 (2) = 4 2 (2) = 4

E [Y1 | X1, D = 0]
E [Y0 | X0, D = 0]

2
3 


 2
3


= 4

3 2 (2) = 4 3 13 

3 13


= 6 23

E [Y1 | X1] E [Y0 | X0] 2 (2) = 4 2 (2) = 4 2 (2) = 4

Unconditional average treatment e§ects indicate homogeneity.

ATT = EX1 [E [Y1 | X1, D = 1]] EX0 [E [Y0 | X0, D = 1]]

=
1

3
(4) +

1

3
(4) +

1

3
(4) = 4

ATUT = EX1
[E [Y1 | X1, D = 0]] EX0

[E [Y0 | X0, D = 0]]

=
1

3


4

3


+
1

3
(4) +

1

3


6
2

3


= 4

ATE = EX1 [E [Y1 | X1]] EX0 [E [Y0 | X0]]

=
1

3
(2) +

1

3
(4) +

1

3
(6) = 4
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Regression parameters are expected to be unbiased (and asymptotically consis-
tent) as unobservables in each subpopulation regression are conditionally unbi-
ased.

Xj = 1 Xj = 2 Xj = 3 t = 0 t = 1
E [U1 | X1,t] 0 0 0 0 0
E [U0 | X0,t] 0 0 0 0 0

Further, conditional mean independence is not satisfied for Y0 or Y1.

D = 1 D = 0
E [Y1 | X1 = 1, D] 2 2

3
E [Y1 | X1 = 2, D] 2 2
E [Y1 | X1 = 3, D] 2 3 13
E [Y0 | X0 = 1, D] 2  2

3
E [Y0 | X0 = 2, D] 2 2
E [Y0 | X0 = 3, D] 2 3 13

Design one yields
Y = 2 + 0t+ 4D + "1,
suggested ATT = 4

(1)

Design two yields
Y = 0 + 0t+ 4D  1X + "2,

suggested ATT = 4
(2)

Design three yields

Y = 2
3 + 0t+ 1

1
3D  1

1
3X + 1 13X D + "3,

suggested ATT (X = 1) = 1 13 + 1
1
3  1 = 2

2
3

suggested ATT (X = 2) = 1 13 + 1
1
3  2 = 4

suggested ATT (X = 3) = 1 13 + 1
1
3  3 = 5

1
3

suggested ATT = 1 13 + 1
1
3  2 = 4

(3)

The parameters are inconsistent with the DGP (as the DGP does not exhibit
conditional mean independence), but remarkably, all three designs e§ectively
identify unconditional ATT . Not surprisingly as conditional mean independence
is violated by the DGP, design three does not identify the conditional average
treatment e§ects for X = 1, 3. Nonetheless, apparently balanced covariates can
overcome other identification pitfalls regarding unconditional average treatment
e§ects.6

Example 6 (heterogeneous outcome with unbalanced covariates) Suppose

6This result is due to covariate balance and not symmetry of the covariate, Xj , distrib-
utions. For instance, replacing Xj = 3 with Xj = 6 for j = 0, 1, such that Xj is evenly
distributed between 1, 2, and 6 – clearly asymmetric and E [X] = 3, yields similar identifica-
tion results.
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the DGP is

t D X1 U1 Y1 X0 U0 Y0 X Y
0 0 1 1 0 1 1 2 1 2
0 0 1 1 2 1 1 0 1 0
0 0 3 0 3 3 0 3 3 3
0 0 1 1 2 1 1 2 1 2
0 0 1 1 0 1 1 0 1 0
0 0 3 0 3 3 0 3 3 3
1 1 3 1 2 1 1 2 3 2
1 1 1 0 1 1 1 0 1 1
1 1 3 1 4 3 0 3 3 4
1 0 1 1 2 1 1 2 1 2
1 0 1 1 0 1 1 0 1 0
1 0 3 0 3 3 0 3 3 3

means 0.5 0.25 1 56 0 1 56 1 23 0 1 23 1 56  2
3

Conditional average treatment e§ects vary with the covariate.

X = 1 X = 3
E [Y1 | X1, D = 1]
E [Y0 | X0, D = 1]

1 (1) = 2 3 (3) = 6

E [Y1 | X1, D = 0]
E [Y0 | X0, D = 0]

1 (1) = 2 3 (3) = 6

E [Y1 | X1] E [Y0 | X0] 1 (1) = 2 3 (3) = 6

Unconditional average treatment e§ects indicate outcome heterogeneity.

ATT = EX1 [E [Y1 | X1, D = 1]] EX0 [E [Y0 | X0, D = 1]]

=
1

3
(1) +

2

3
(3)


2

3
(1) +

1

3
(3)


= 4

ATUT = EX1
[E [Y1 | X1, D = 0]] EX0

[E [Y0 | X0, D = 0]]

=
2

3
(1) +

1

3
(3)


2

3
(1) +

1

3
(3)


= 3

1

3

ATE = EX1
[E [Y1 | X1]] EX0

[E [Y0 | X0]]

=
7

12
(1) +

5

12
(3)


2

3
(1) +

1

3
(3)



= Pr (D = 1)ATT + Pr (D = 0)ATUT

=
1

4
(4) +

3

4


3
1

3


= 3

1

2

Regression parameters are expected to be unbiased (and asymptotically consis-
tent) as unobservables in each subpopulation regression are conditionally unbi-
ased.

Xj = 1 Xj = 2 Xj = 3 t = 0 t = 1
E [U1 | X1,t] 0 0 0 0 0
E [U0 | X0,t] 0 0 0 0 0
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Further, conditional mean independence is satisfied for both Y0 or Y1.

D = 1 D = 0
E [Y1 | X1 = 1, D] 1 1
E [Y1 | X1 = 3, D] 3 3
E [Y0 | X0 = 1, D] 1 1
E [Y0 | X0 = 3, D] 3 3

Design one yields
Y = 1 23 + 0t+ 4D + "1,
suggested ATT = 4

(1)

Design two yields
Y =  5

6 + 0t+ 4
1
3D 

1
2X + "2,

suggested ATT = 4 13
(2)

Design three yields7

Y = 0 + 0t+ 0D  1X + 2X D + "3,
suggested ATT (X = 1) = 0 + 2 1 = 2
suggested ATT (X = 3) = 0 + 2 3 = 6
suggested ATT = 0 + 2 1 56 = 3

2
3

(3)

The parameters are consistent with the DGP, but because of covariate imbalance
only design one e§ectively identifies the unconditional ATT . However, design
three identifies the conditional average treatment e§ects for X = 1, 3. Appar-
ently, a d-i-d design typically does not e§ectively identify average treatment
e§ects for a DGP with unbalanced covariates.

7Here suggested ATT involves iteration of X over the entire observed sample. If we employ
only the D = 1 subsample suggested ATT is 0 + 2 2 1

3
= 4 2

3
6= 4.
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