
9
Treatment effects: ignorability

First, we describe a prototypical selection setting. Then, we identify some typical
average treatment effects followed by a review of various identification conditions
assuming ignorable treatment (sometimes called selection on observables). Ignor-
able treatment approaches are the simplest to implement but pose the strongest
conditions for the data. That is, when the data don’t satisfy the conditions it makes
it more likely that inferences regarding properties of the DGP are erroneous.

9.1 A prototypical selection setting

Suppose the DGP is
outcome equations:1

Yj = µj (X) + Vj , j = 0, 1

selection equation:2

D! = µD (Z)! VD

observable response:
Y = DY1 + (1!D)Y0

1Sometimes we’ll find it convenient to write the outcome equations as a linear response

Yj = µj +X!j + Vj

2We’ll stick with binary choice for simplicity, though this can be readily generalized to the multino-
mial case (as discussed in the marginal treatment effects chapter).
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158 9. Treatment effects: ignorability

where

D =
1 D! > 0
0 otherwise

and Y1 is (potential) outcome with treatment and Y0 is outcome without treatment.
In the binary case, the treatment effect is the effect on outcome of treatment

compared with no treatment, ! = Y1 ! Y0. Some typical treatment effects in-
clude: ATE, ATT, and ATUT. ATE refers to the average treatment effect, by iterated
expectations

ATE = EX [ATE (X)]

= EX [E [! | X = x]] = E [Y1 ! Y0]

In other words, the average effect on outcome of treatment for a random draw
from the population. ATT refers to the average treatment effect on the treated,

ATT = EX [ATT (X)]

= EX [E [! | X = x,D = 1]] = E [Y1 ! Y0 | D = 1]

In other words, the average effect on outcome of treatment for a random draw from
the subpopulation selecting (or assigned) treatment. ATUT refers to the average
treatment effect on the untreated,

ATUT = EX [ATUT (X)]

= EX [E [! | X = x,D = 0]] = E [Y1 ! Y0 | D = 0]

In other words, the average effect on outcome of treatment for a random draw
from the subpopulation selecting (or assigned) no treatment.
The remainder of this chapter is devoted to simple identification and estimation

strategies. These simple strategies pose strong conditions for the data that may
lead to logically inconsistent inferences.

9.2 Exogenous dummy variable regression

The simplest strategy (strongest data conditions) is exogenous dummy variable
regression. Suppose D is independent of (Y1, Y0) conditional on X , response is
linear, and errors are normally distributed, then ATE is identified via exogenous
dummy variable (OLS) regression.3 For instance, suppose the DGP is

Y = ! + "D +X#0 +DX (#1 ! #0) + $

Since Y1 and Y0 are conditionally mean independent of D givenX

E [Y1 | X,D = 1] = E [Y1 | X]

= ! + " +X#0 +X (#1 ! #0)

3These conditions are stronger than necessary as we can get by with conditional mean indepen-
dence in place of conditional stochastic independence.
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and

E [Y0 | X,D = 0] = E [Y0 | X]

= ! +X#0

then

ATE (X) = E [Y1 | X]! E [Y0 | X]
= " +X (#1 ! #0)

Then, by iterated expectations,ATE = "+E [X] (#1 ! #0). ATE can be directly
estimated via % if we rewrite the response equation as

Y = ! + %D +X#0 +D (X ! E [X]) (#1 ! #0) + $

which follows from rewriting the DGP as

Y = ! + (" + E [X] (#1 ! #0))D +X#0
+D [X (#1 ! #0)! E [X] (#1 ! #0)] + $

9.3 Tuebingen-style examples

To illustrate ignorable treatment, we return to the Tuebingen-style examples of
chapter 8 and add regressors to the mix. For each case, we compare treatment ef-
fect analyses when the analyst observes the states with when the analyst observes
only the regressor,X . The setup involves simple discrete probability and outcome
structure. Identification of counterfactuals is feasible if outcome distributions are
not affected by treatment selection. Hence, outcomes Y0 and Y1 vary only between
states (and not by D within a state).

Case 1

The first case depicted in table 9.1 involves extreme homogeneity (no variation
in Y0 and Y1). Suppose the states are observable to the analyst. Then, we have

Table 9.1: Tuebingen example case 1: extreme homogeneity

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 0 1 0 1
Y0 0 0 0 0 0 0
Y1 1 1 1 1 1 1
X 1 1 1 1 0 0

a case of perfect regressors and no residual uncertainty. Consequently, we can
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identify treatments effects by states. The treatment effect for all three states is
homogeneously one.
Now, suppose the states are unobservable but the analyst observes X . Then,

conditional average treatment effects are

E [Y1 ! Y0 | X = 1] = E [Y1 ! Y0 | X = 0] = 1

Key components, unconditional average (integrating outX) treatment effects, and
any bias for case 1 are reported in table 9.2. Case 1 exhibits no endogeneity bias.

Table 9.2: Tuebingen example case 1 results: extreme homogeneity

Results Key components
ATE = E [Y1 ! Y0]

= 1.0
p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= 1.0

E [Y1 | D = 1] = 1.0

ATUT = E [Y1 ! Y0 | D = 0]
= 1.0

E [Y1 | D = 0] = 1.0

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = 1.0

E [Y1] = 1.0

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = 0.0

E [Y0 | D = 1] = 0.0

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = 0.0

E [Y0 | D = 0] = 0.0

biasATE = pbiasATT
+(1! p) biasATUT = 0.0

E [Y0] = 0.0

Extreme homogeneity implies stochastic independence of (Y0, Y1) and D condi-
tional on X .

Case 2

Case 2 adds variation in outcomes but maintains treatment effect homogeneity as
displayed in table 9.3. Suppose the states are observable to the analyst. Then, we

Table 9.3: Tuebingen example case 2: homogeneity

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 2 2 3
Y0 0 0 1 1 2 2
Y1 1 1 2 2 3 3
X 1 1 1 1 0 0

can identify treatments effects by states. The treatment effect for all three states is
homogeneously one.
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Now, suppose the states are unobservable but the analyst observes X . Then,
conditional average treatment effects are

E [Y1 ! Y0 | X = 1] = E [Y1 ! Y0 | X = 0] = 1

which follows from

EX [E [Y1 | X]] = 0.36 (1.889) + 0.64 (3) = 2.6

EX [E [Y0 | X]] = 0.36 (0.889) + 0.64 (2) = 1.6

but OLS (or, for that matter, nonparametric regression) estimates

EX [E [Y1 | X,D = 1]] = 0.68 (1.882) + 0.32 (3) = 2.24

and
EX [E [Y0 | X,D = 0]] = 0.299 (0.892) + 0.701 (2) = 1.669

Clearly, outcomes are not conditionally mean independent of treatment given X
(2.6 "= 2.24 for Y1 and 1.6 "= 1.669 for Y0). Key components, unconditional aver-
age (integrating out X) treatment effects, and any bias for case 2 are summarized
in table 9.4. Hence, homogeneity does not ensure exogenous dummy variable (or

Table 9.4: Tuebingen example case 2 results: homogeneity

Results Key components
ATE = E [Y1 ! Y0]

= 1.0
p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= 1.0

E [Y1 | D = 1] = 2.24

ATUT = E [Y1 ! Y0 | D = 0]
= 1.0

E [Y1 | D = 0] = 2.669

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = 0.571

E [Y1] = 2.6

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = !0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = !0.429 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1! p) biasATUT = !0.429

E [Y0] = 1.6

nonparametric) identification of average treatment effects.

Case 3

Case 3 slightly perturbs outcomes with treatment, Y1, to create heterogeneous
response as depicted in table 9.5. Suppose the states are observable to the analyst.
Then, we can identify treatments effects by states. The treatment effect for all
three states is homogeneously one.
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Table 9.5: Tuebingen example case 3: heterogeneity

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 2 2 2 2
X 1 1 1 1 0 0

But, suppose the states are unobservable and the analyst observes X . Then,
conditional average treatment effects are heterogeneous

E [Y1 ! Y0 | X = 1] = 1

E [Y1 ! Y0 | X = 0] = 0

This follows from

EX [E [Y1 | X]] = 0.36 (1.889) + 0.64 (2) = 1.96

EX [E [Y0 | X]] = 0.36 (0.889) + 0.64 (2) = 1.6

but OLS (or nonparametric regression) estimates

EX [E [Y1 | X,D = 1]] = 0.68 (1.882) + 0.32 (2) = 1.92

and
EX [E [Y0 | X,D = 0]] = 0.299 (0.892) + 0.701 (2) = 1.669

Clearly, outcomes are not conditionally mean independent of treatment given X
(1.96 "= 1.92 for Y1 and 1.6 "= 1.669 for Y0). Key components, unconditional av-
erage (integrating outX) treatment effects, and any bias for case 3 are summarized
in table 9.6. A modest change in outcomes with treatment produces endogeneity
bias in all three average treatment effects (ATT , ATE, and ATUT ). Average
treatment effects are not identified by dummy variable regression (or nonparamet-
ric regression) in case 3.

Case 4

Case 4, described in table 9.7, maintains the probability structure of case 3 but al-
ters outcomes with treatment, Y1, to produce a Simpson’s paradox result. Suppose
the states are observable to the analyst. Then, we can identify treatments effects
by states. The treatment effect for all three states is homogeneously one. But, sup-
pose the states are unobservable and the analyst observes X . Then, conditional
average treatment effects are heterogeneous

E [Y1 ! Y0 | X = 1] = 0.111

E [Y1 ! Y0 | X = 0] = 0.3
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Table 9.6: Tuebingen example case 3 results: heterogeneity

Results Key components
ATE = E [Y1 ! Y0]

= 0.36
p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= 0.68

E [Y1 | D = 1] = 1.92

ATUT = E [Y1 ! Y0 | D = 0]
= 0.299

E [Y1 | D = 0] = 1.968

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = 0.251

E [Y1] = 1.96

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = !0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = !0.048 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1! p) biasATUT = !0.109

E [Y0] = 1.6

Table 9.7: Tuebingen example case 4: Simpson’s paradox

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 1 2 2.3
Y0 0 0 1 1 2 2
Y1 1 1 1 1 2.3 2.3
X 1 1 1 1 0 0

This follows from

EX [E [Y1 | X]] = 0.36 (1.0) + 0.64 (2.3) = 1.832

EX [E [Y0 | X]] = 0.36 (0.889) + 0.64 (2) = 1.6

but OLS (or nonparametric regression) estimates

EX [E [Y1 | X,D = 1]] = 0.68 (1.0) + 0.32 (2.3) = 1.416

and
EX [E [Y0 | X,D = 0]] = 0.299 (0.892) + 0.701 (2) = 1.669

Clearly, outcomes are not conditionally mean independent of treatment given X
(1.932 "= 1.416 for Y1 and 1.6 "= 1.669 for Y0). Key components, unconditional
average (integrating outX) treatment effects, and any bias for case 4 are summa-
rized in table 9.8. Case 4 is particularly noteworthy as dummy variable regression
(or nonparametric regression) indicates a negative treatment effect, while all three
standard average treatment effects, ATE, ATT ,and ATUT , are positive. Hence,
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Table 9.8: Tuebingen example case 4 results: Simpson’s paradox

Results Key components
ATE = E [Y1 ! Y0]

= 0.232
p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= 0.176

E [Y1 | D = 1] = 1.416

ATUT = E [Y1 ! Y0 | D = 0]
= 0.243

E [Y1 | D = 0] = 1.911

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = !0.253 E [Y1] = 1.832

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = !0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = !0.495 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1! p) biasATUT = !0.485

E [Y0] = 1.6

average treatment effects are not identified by exogenous dummy variable regres-
sion (or nonparametric regression) for case 4.
How do we proceed when ignorable treatment (conditional mean independence)

fails? A common response is to look for instruments and apply IV approaches to
identify average treatment effects. Chapter 10 explores instrumental variable ap-
proaches. The remainder of this chapter surveys some other ignorable treatment
approaches and applies them to the asset revaluation regulation problem intro-
duced in chapter 2.

9.4 Nonparametric identification

Suppose treatment is ignorable or, in other words, treatment is conditionally mean
independent of outcome,

E [Y1 | X,D] = E [Y1 | X]

and
E [Y0 | X,D] = E [Y0 | X]

This is also called "selection on observables" as the regressors are so powerful that
we can ignore choice D. For binary treatment, this implies

E [Y1 | X,D = 1] = E [Y1 | X,D = 0]

and
E [Y0 | X,D = 1] = E [Y0 | X,D = 0]
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The condition is difficult to test directly as it involves E [Y1 | X,D = 0] and
E [Y0 | X,D = 1], the counterfactuals. Let p (X) = Pr (D = 1 | X). Ignorable
treatment implies the average treatment effect is nonparametrically identified.

ATE (X) = E [! | X] = E [Y1 ! Y0 | X]
= E [Y1 | X]! E [Y0 | X]

By Bayes’ theorem we can rewrite the expression as

p (X)E [Y1 | X,D = 1] + (1! p (X))E [Y1 | X,D = 0]

!p (X)E [Y0 | X,D = 1]! (1! p (X))E [Y0 | X,D = 0]

conditional mean independence allows simplification to

E [Y1 | X]! E [Y0 | X] = ATE (X)

Consider a couple of ignorable treatment examples which distinguish between
exogenous dummy variable and nonparametric identification.

Example 9.1 The first example posits a simple case of stochastic independence

between treatment D and response (Y1, Y0) conditional on X . The DGP is de-

picted in table 9.9 (values of D, Y1, and Y0 vary randomly at each level of X).
4

Clearly, if the response variables are stochastically independent ofD conditional

Table 9.9: Exogenous dummy variable regression example

probability 1
6

1
6

1
6

1
6

1
6

1
6 E [·]

(Y1 | X,D = 1) 0 1 0 2 0 3 1
(Y1 | X,D = 0) 0 1 0 2 0 3 1
(Y0 | X,D = 1) !1 0 !2 0 !3 0 !1
(Y0 | X,D = 0) !1 0 !2 0 !3 0 !1

X 1 1 2 2 3 3 2
(D | X) 0 1 0 1 0 1 0.5

on X

Pr (Y1 = y1 | X = x,D = 1) = Pr (Y1 = y1 | X = x,D = 0)

and

Pr (Y0 = y0 | X = x,D = 1) = Pr (Y0 = y0 | X = x,D = 0)

4The columns in the table are not states of nature but merely indicate the values the response Yj
and treatmentD variables are allowed to take and their likelihoods. Conditional onX , the likelihoods
for Yj andD and independent.
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then they are also conditionally mean independent

E [Y1 | X = 1, D = 1] = E [Y1 | X = 1, D = 0] = 0.5

E [Y1 | X = 2, D = 1] = E [Y1 | X = 2, D = 0] = 1

E [Y1 | X = 3, D = 1] = E [Y1 | X = 3, D = 0] = 1.5

and

E [Y0 | X = 1, D = 1] = E [Y0 | X = 1, D = 0] = !0.5
E [Y0 | X = 2, D = 1] = E [Y0 | X = 2, D = 0] = !1
E [Y0 | X = 3, D = 1] = E [Y0 | X = 3, D = 0] = !1.5

Conditional average treatment effects are

ATE (X = 1) = 0.5! (!0.5) = 1

ATE (X = 2) = 1! (!1) = 2

ATE (X = 3) = 1.5! (!1.5) = 3

and unconditional average treatment effects are

ATE = E [Y1 ! Y0] = 1! (!1) = 2

ATT = E [Y1 ! Y0 | D = 1] = 1! (!1) = 2

ATUT = E [Y1 ! Y0 | D = 0] = 1! (!1) = 2

Exogenous dummy variable regression

Y = ! + %D +X#0 +D (X ! E [X]) (#1 ! #0) + $

consistently estimates ATE via %. Based on a saturated "sample" of size 384 re-
flecting the DGP, dummy variable regression results are reported in table 9.10.

Table 9.10: Exogenous dummy variable regression results

parameter coefficient se t-statistic
! 0.000 0.207 0.000
% 2.000 0.110 18.119
#0 !0.500 0.096 !5.230

#1 ! #0 1.000 0.135 7.397

The conditional regression estimates of average treatment effects

ATE (X = 1) = 2 + 1 (1! 2) = 1

ATE (X = 2) = 2 + 1 (2! 2) = 2

ATE (X = 3) = 2 + 1 (3! 2) = 3

correspond well with the DGP. In this case, exogenous dummy variable regression

identifies the average treatment effects.
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Example 9.2 The second example relaxes the DGP such that responses are con-

ditionally mean independent but not stochastically independent and, importantly,

the relations between outcomes and X are nonlinear. The DGP is depicted in ta-

ble 9.11 (values of D, Y1, and Y0 vary randomly at each level of X).
5 Again,

Table 9.11: Nonparametric treatment effect regression

probability 1
6

1
6

1
6

1
6

1
6

1
6 E [·]

(Y1 | X,D = 1) 0 1 0 2 0 3 1
(Y1 | X,D = 0) 0.5 0.5 1 1 1.5 1.5 1
(Y0 | X,D = 1) !1 0 !2 0 !3 0 !1
(Y0 | X,D = 0) !0.5 !0.5 !1 !1 !1.5 !1.5 !1

X !1 !1 !2 !2 3 3 0
(D | X) 0 1 0 1 0 1 0.5

population average treatment effects are

ATE = E [Y1 ! Y0] = 1! (!1) = 2

ATT = E [Y1 ! Y0 | D = 1] = 1! (!1) = 2

ATUT = E [Y1 ! Y0 | D = 0] = 1! (!1) = 2

Further, the average treatment effects conditional onX are

ATE (X = !1) = 0.5! (!0.5) = 1

ATE (X = !2) = 1! (!1) = 2

ATE (X = 3) = 1.5! (!1.5) = 3

Average treatment effects are estimated in two ways. First, exogenous dummy vari-

able regression

Y = ! + %D +X#0 +D (X ! E [X]) (#1 ! #0) + $

consistently estimates ATE via %. A saturated "sample" of 48 observations reflect-
ing the DGP produces the results reported in table 9.12. However, the regression-

estimated average treatment effects conditional onX are

ATE (X = !1) = 1.714

ATE (X = !2) = 1.429

ATE (X = 3) = 2.857

5Again, the columns of the table are not states of nature but merely indicate the values the variables
can take conditional onX .
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Table 9.12: Nonparametrically identified treatment effect: exogenous dummy
variable regression results

parameter coefficient se t-statistic
! !1.000 0.167 !5.991
% 2.000 0.236 8.472
#0 !0.143 0.077 !1.849

#1 ! #0 0.286 0.109 2.615

Hence, the conditional average treatment effects are not identified by exogenous

dummy variable regression for this case. Second, let #x be an indicator variable
for X = x. ANOVA is equivalent to nonparametric regression sinceX is sparse.

Y = %D + &1#"1 + &2#"2 + &3#3 + &4D#"1 + &5D#"2 + $

ANOVA results are reported in table 9.13. The ANOVA-estimated conditional av-

Table 9.13: Nonparametric treatment effect regression results

parameter coefficient se t-statistic
% 3.000 0.386 7.774
&1 !0.500 0.273 !1.832
&2 !1.000 0.273 !3.665
&3 !1.500 0.273 !5.497
&4 !2.000 0.546 !3.665
&5 !1.000 0.546 !1.832

erage treatment effects are

ATE (X = !1) = 3! 2 = 1

ATE (X = !2) = 3! 1 = 2

ATE (X = 3) = 3

and the unconditional average treatment effect is

ATE =
1

3
(1 + 2 + 3) = 2

Therefore, even though the estimated average treatment effects for exogenous

dummy variable regression are consistent with the DGP, the average treatment

effects conditional onX do not correspond well with the DGP. Further, the treat-

ment effects are not even monotonic in X . However, the ANOVA results prop-

erly account for the nonlinearity in the data and correspond nicely with the DGP

for both unconditional and conditional average treatment effects. Hence, average

treatment effects are nonparametrically identified for this case but not identified

by exogenous dummy variable regression.
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9.5 Propensity score approaches

Suppose the data are conditionally mean independent

E [Y1 | X,D] = E [Y1 | X]

E [Y0 | X,D] = E [Y0 | X]

so treatment is ignorable,and common X support leads to nondegenerate propen-
sity scores

0 < p (X) = Pr (D = 1 | X) < 1 for all X

then average treatment effect estimands are

ATE = E

!
(D ! p (X))Y
p (X) (1! p (X))

"

ATT = E

!
(D ! p (X))Y
(1! p (X))

"
/Pr (D = 1)

ATUT = E

!
(D ! p (X))Y

p (X)

"
/Pr (D = 0)

The econometric procedure is to first estimate the propensity for treatment or
propensity score, p (X), via some flexible model (e.g., nonparametric regression;
see chapter 6), then ATE, ATT, and ATUT are consistently estimated via sample
analogs to the above.

9.5.1 ATE and propensity score

ATE = E
#
(D"p(X))Y
p(X)(1"p(X))

$
is identified as follows. Observed outcome is

Y = DY1 + (1!D)Y0

Substitution for Y and evaluation of the conditional expectation produces

E [(D ! p (X))Y | X]
= E [DDY1 +D (1!D)Y0 ! p (X)DY1 ! p (X) (1!D)Y0 | X]
= E [DY1 + 0! p (X)DY1 ! p (X) (1!D)Y0 | X]

Lettingmj (X) $ E [Yj | X] and recognizing

p (X) $ Pr (D = 1 | X)

= E [D = 1 | X]

gives

E [DY1 ! p (X)DY1 ! p (X) (1!D)Y0 | X]
= p (X)m1 (X)! p2 (X)m1 (X)! p (X) (1! p (X))m0 (X)

= p (X) (1! p (X)) (m1 (X)!m0 (X))
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This leads to the conditional average treatment effect

E

!
p (X) (1! p (X)) (m1 (X)!m0 (X))

p (X) (1! p (X))
| X

"
= m1 (X)!m0 (X)

= E [Y1 ! Y0 | X]

The final connection to the estimand is made by iterated expectations,

ATE = E [Y1 ! Y0]
= EX [Y1 ! Y0 | X]

9.5.2 ATT, ATUT, and propensity score

Similar logic identifies the estimand for the average treatment effect on the treated

ATT = E

!
(D ! p (X))Y
(1! p (X))

"
/Pr (D = 1)

Utilize

E [(D ! p (X))Y | X] = p (X) (1! p (X)) (m1 (X)!m0 (X))

from the propensity score identification of ATE. Eliminating (1! p (X)) and
rewriting gives

p (X) (1! p (X)) (m1 (X)!m0 (X))

(1! p (X))
= p (X) (m1 (X)!m0 (X))

= Pr (D = 1 | X) (E [Y1 | X]! E [Y0 | X])

Conditional mean independence implies

Pr (D = 1 | X) (E [Y1 | X]! E [Y0 | X])
= Pr (D = 1 | X) (E [Y1 | D = 1, X]! E [Y0 | D = 1, X])

= Pr (D = 1 | X)E [Y1 ! Y0 | D = 1, X]

Then, by iterated expectations, we have

EX [Pr (D = 1 | X)E [Y1 ! Y0 | D = 1, X]]

= Pr (D = 1)E [Y1 ! Y0 | D = 1]

Putting it all together produces the estimand

ATT = EX

!
(D ! p (X))Y
(1! p (X))

"
/Pr (D = 1)

= E [Y1 ! Y0 | D = 1]
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For the average treatment effect on the untreated estimand

ATUT = E

!
(D ! p (X))Y

p (X)

"
/Pr (D = 0)

identification is analogous to that for ATT. Eliminating p (X) from

E [(D ! p (X))Y | X] = p (X) (1! p (X)) (m1 (X)!m0 (X))

and rewriting gives

p (X) (1! p (X)) (m1 (X)!m0 (X))

p (X)

= (1! p (X)) (m1 (X)!m0 (X))

= Pr (D = 0 | X) (E [Y1 | X]! E [Y0 | X])

Conditional mean independence implies

Pr (D = 0 | X) (E [Y1 | X]! E [Y0 | X])
= Pr (D = 0 | X) (E [Y1 | D = 0, X]! E [Y0 | D = 0, X])

= Pr (D = 0 | X)E [Y1 ! Y0 | D = 0, X]

Iterated expectations yields

EX [Pr (D = 0 | X)E [Y1 ! Y0 | D = 0, X]]

= Pr (D = 0)E [Y1 ! Y0 | D = 0]

Putting everything together produces the estimand

ATUT = E

!
(D ! p (X))Y

p (X)

"
/Pr (D = 0)

= E [Y1 ! Y0 | D = 0]

Finally, the average treatment effects are connected as follows.

ATE = Pr (D = 1)ATT + Pr (D = 0)ATUT

= Pr (D = 1)E

!
(D ! p (X))Y
(1! p (X))

"
/Pr (D = 1)

+Pr (D = 0)E

!
(D ! p (X))Y

p (X)

"
/Pr (D = 0)

= E

!
(D ! p (X))Y
(1! p (X))

"
+ E

!
(D ! p (X))Y

p (X)

"

= EX [Pr (D = 1 | X) (E [Y1 | X]! E [Y0 | X])]
+EX [Pr (D = 0 | X) (E [Y1 | X]! E [Y0 | X])]

= Pr (D = 1)E [Y1 ! Y0] + Pr (D = 0)E [Y1 ! Y0]
= E [Y1 ! Y0]
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9.5.3 Linearity and propensity score

If we add the condition E [Y0 | p (X)] and E [Y1 | p (X)] are linear in p (X) then
% in the expression below consistently estimates ATE

E [Y | X,D] = "0 + %D + "1p̂+ "2D
%
p̂! µ̂p

&

where µ̂p is the sample average of the estimated propensity score p̂.

9.6 Propensity score matching

Rosenbaum and Rubin’s [1983] propensity score matching is a popular propen-
sity score approach. Rosenbaum and Rubin suggest selecting a propensity score
at random from the sample, then matching two individuals with this propen-
sity score — one treated and one untreated. The expected outcome difference
E [Y1 ! Y0 | p (X)] is ATE conditional on p (X). Hence, by iterated expecta-
tions

ATE = Ep(X) [E [Y1 ! Y0 | p (X)]]

ATE identification by propensity score matching poses strong ignorability. That
is, outcome (Y1, Y0) independence of treatment D given X (a stronger condition
than conditional mean independence) and, as before, common X support leads to
nondegenerate propensity scores p (X) $ Pr (D = 1 | X)

0 < Pr (D = 1 | X) < 1 for all X

As demonstrated by Rosenbaum and Rubin, strong ignorability implies index suf-
ficiency. In other words, outcome (Y1, Y0) independence of treatment D given
p (X) and

0 < Pr (D = 1 | p (X)) < 1 for all p (X)

The latter (inequality) condition is straightforward. SinceX is finer than p(X),
the first inequality (for X) implies the second (for p(X)). The key is conditional
stochastic independence given the propensity score

Pr (D = 1 | Y1, Y0, p (X)) = Pr (D = 1 | p (X))

This follows from

Pr (D = 1 | Y1, Y0, p (X)) = E [Pr (D = 1 | Y1, Y0, X) | Y1, Y0, p (X)]

= E [p (X) | Y1, Y0, p (X)] = p (X)

= E [D | p (X)]

= Pr (D = 1 | p (X))

For a general matching strategy on X , Heckman, Ichimura, and Todd [1998]
point out that for ATT, strong ignorability can be relaxed to conditional mean
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independence for outcomes without treatment and full support S for the treated
subsample. This allows counterfactuals to be related to observables

E [Y0 | D = 1, X] = E [Y0 | D = 0, X] for X % S

so that ATT(X) can be expressed in terms of observables only

ATT (X) = E [Y1 | D = 1, X]! E [Y0 | D = 1, X]

= E [Y1 | D = 1, X]! E [Y0 | D = 0, X]

Iterated expectations gives the unconditional estimand

ATT = EX#S [E [Y1 | D = 1, X]! E [Y0 | D = 1, X]]

= E [Y1 ! Y0 | D = 1]

For ATUT the analogous condition applies to outcomes with treatment

E [Y1 | D = 0, X] = E [Y1 | D = 1, X] for X % S$

so that the counterfactual mean can be identified from observables.

ATUT (X) = E [Y1 | D = 0, X]! E [Y0 | D = 0, X]

= E [Y1 | D = 1, X]! E [Y0 | D = 0, X]

Again, iterated expectations gives

ATUT = EX#S! [E [Y1 | D = 0, X]! E [Y0 | D = 0, X]]

= E [Y1 ! Y0 | D = 0]

Heckman, et al relate this general matching strategy to propensity score match-
ing by the following arguments.6 Partition X into two (not necessarily mutually
exclusive) sets of variables, (T,Z), where the T variables determine outcomes
and outcomes are additively separable

Y0 = g0 (T ) + U0

Y1 = g1 (T ) + U1

and the Z variables determine selection.

P (X) $ Pr (D = 1 | X) = Pr (D = 1 | Z) $ P (Z)

ATT is identified via propensity score matching if the following conditional mean
independence condition for outcomes without treatment is satisfied

E [U0 | D = 1, P (Z)] = E [U0 | D = 0, P (Z)]

6Heckman, Ichimura, and Todd [1998] also discuss trade-offs between general matching onX and
propensity score matching.
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Then, the counterfactual E [Y0 | D = 1, P (Z)] can be replaced with the mean of
the observable

ATT (P (Z)) = E [Y1 ! Y0 | D = 1, P (Z)]

= g1 (T ) + E [U1 | D = 1, P (Z)]

! {g0 (T ) + E [U0 | D = 1, P (Z)]}

= g1 (T ) + E [U1 | D = 1, P (Z)]

! {g0 (T ) + E [U0 | D = 0, P (Z)]}

Iterated expectations over P (Z) produces the unconditional estimand

ATT = EP (Z) [ATT (P (Z))]

Also, ATUT is identified if

E [U1 | D = 1, P (Z)] = E [U1 | D = 0, P (Z)]

is satisfied for outcomes with treatment. Analogous to ATT, the counterfactual
E [Y1 | D = 0, P (Z)] can be replaced with the mean of the observable

ATUT (P (Z)) = E [Y1 ! Y0 | D = 0, P (Z)]

= g1 (T ) + E [U1 | D = 0, P (Z)]

! {g0 (T ) + E [U0 | D = 0, P (Z)]}

= g1 (T ) + E [U1 | D = 1, P (Z)]

! {g0 (T ) + E [U0 | D = 0, P (Z)]}

Iterated expectations over P (Z) produces the unconditional estimand

ATUT = EP (Z) [ATUT (P (Z))]

Interestingly, the original strategy of Rosenbaum and Rubin implies homoge-
neous response while the relaxed approach of Heckman, et al allows for heteroge-
neous response. To see this, notice the above conditions say nothing about

E [U0 | D,P (Z)] = E [U0 | P (Z)] = 0

or
E [U1 | D,P (Z)] = E [U1 | P (Z)] = 0

so individual effects (heterogeneity) are identified by conditional mean indepen-
dence along with additive separability.
A strength of propensity score matching is that it makes the importance of over-

laps clear. However, finding matches can be difficult. Heckman, Ichimura, and
Todd [1997] discuss trimming strategies in a nonparametric context and derive
asymptotically-valid standard errors. Next, we revisit our second example from
chapter 2 to explore ignorable treatment implications in a richer accounting set-
ting.
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9.7 Asset revaluation regulation example

Our second example from chapter 2 explores the ex ante impact of accounting
asset revaluation policies on owners’ welfare through their investment decisions
(a treatment effect) in an economy of, on average, price protected buyers.7 Prior
to investment, an owner evaluates both investment prospects from asset retention
and the market for resale in the event the owner becomes liquidity stressed. The
payoff from investment I is distributed uniformly and centered at x̂ = !

"
I" where

%,# > 0 and % < 1. That is, support for investment payoff is x : x̂±f = [x, x]. A
potential problem with the resale market is the owner will have private information
— knowledge of the asset value. However, since there is some positive probability
the owner becomes distressed ' (as in Dye [1985]) the market will not collapse.
The equilibrium price is based on distressed sellers marketing potentially healthy
assets combined with non-distressed sellers opportunistically marketing impaired
assets. Regulators may choose to prop-up the price to support distressed sellers by
requiring certification of assets at cost k 8 with values below some cutoff xc.9 The
owner’s ex ante expected payoff from investment I and certification cutoff xc is

E [V | I, xc] = '
1

2f

!
1

2

%
x2c ! x

2
&
! k (xc ! x) + P (x! xc)

"

+(1! ')
1

2f

!
1

2

%
x2c ! x

2
&
+ P (P ! xc) +

1

2

%
x2 ! P 2

&"

!I

The equilibrium uncertified asset price is

P =
xc +

&
'x

1 +
&
'

This follows from the equilibrium condition

P =
1

4fq

'
'
%
x2 ! x2c

&
+ (1! ')

%
P 2 ! x2c

&(

where

q =
1

2f
[' (x! xc) + (1! ') (P ! xc)]

is the probability that an uncertified asset is marketed. When evaluating the wel-
fare effects of their policies, regulators may differentially weight the welfare,

7This example draws heavily from Demski, Lin, and Sappington [2008].
8This cost is incremental to normal audit cost. As such, even if audit fee data is available, k may

be difficult for the analyst to observe.
9Owners never find it ex ante beneficial to commit to any certified revaluation because of the

certification cost. We restrict attention to targeted certification but certification could be proportional
rather than targeted (see Demski, et al [2008] for details). For simplicity, we explore only targeted
certification.



176 9. Treatment effects: ignorability

W (I, xc), of distressed sellers and non-distressed sellers. Specifically, regulators
may value distressed seller’s net gains dollar-for-dollar but value non-distressed
seller’s gains at a fraction w on the dollar.

W (I, xc) = '
1

2f

!
1

2

%
x2c ! x

2
&
! k (xc ! x) + P (x! xc)

"

+w (1! ')
1

2f

!
1

2

%
x2c ! x

2
&
+ P (P ! xc) +

1

2

%
x2 ! P 2

&"

!I [' + (1! ')w]

9.7.1 Numerical example

Consider the following parameters

)
% =

1

2
,# = 10,' = 0.7, k = 2, f = 100

*

Owners will choose to never certify asset values. No certification (xc = x) re-
sults in investment I = 100, owner’s expected payoff E [V | I, xc] = 100, and
equilibrium uncertified asset price P ' 191.1. However, regulators may favor
distressed sellers and require selective certification. Continuing with the same
parameters, if regulators give zero consideration (w = 0) to the expected pay-
offs of non-distressed sellers, then the welfare maximizing certification cutoff

xc = x!
(1+

%
#)k

(1"
%
#)(1"w)

' 278.9. This induces investment I =
#
!(2f+#k)

2f

$ 1
1"!

'

101.4, owner’s expected payoff approximately equal to 98.8, and equilibrium
uncertified asset price P ' 289.2 (an uncertified price more favorable to dis-
tressed sellers). To get a sense of the impact of certification, we tabulate invest-
ment choices and expected payoffs for no and selective certification regulations
and varied certification costs in table 9.14 and for full certification regulation and
varied certification costs and stress likelihood in table 9.15.

Table 9.14: Investment choice and payoffs for no certification and selective
certification

xc = x,
k = 2

xc = x,
k = 20

xc = 200,
k = 2

xc = 200,
k = 20

' 0.7 0.7 0.7 0.7
I 100 100 101.4 114.5
P 191.1 191.1 246.2 251.9

E [x! k] 200 200 200.7 208
E [V ] 100 100 99.3 93.5
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Table 9.15: Investment choice and payoffs for full certification

xc = x,
k = 2

xc = x,
k = 20

xc = x,
k = 2

xc = x,
k = 20

' 0.7 0.7 1.0 1.0
I 100 100 100 100
P NA NA NA NA

E [x! k] 198.6 186 198 180
E [V ] 98.6 86 98 80

9.7.2 Full certification

The base case involves full certification xc = x and all owners market their as-
sets, ' = 1. This setting ensures outcome data availability (excluding investment
cost) which may be an issue when we relax these conditions. There are two firm
types: one with low mean certification costs +kL = 2 and the other with high mean
certification costs +kH = 20.
Full certification doesn’t present an interesting experiment if owners anticipate

full certification10 but suppose owners choose their investment levels anticipating
selective certification with xc = 200 and forced sale is less than certain ' = 0.7.
Then, ex ante optimal investment levels for a selective certification environment
are IL = 101.4 (for low certification cost type) and IH = 114.5 (for high cer-
tification cost type), and expected asset values including certification costs are
E
'
xL ! kL

(
= 199.4 and E

'
xH ! kH

(
= 194. Treatment (investment level)

is chosen based on ex ante beliefs of selective certification. As a result of two
certification cost types, treatment is binary and the analyst observes low or high
investment but not the investment level.11 Treatment is denoted D = 1 when
IL = 101.4 while non-treatment is denoted D = 0 when IH = 114.5. For this
base case, outcome is ex post value in an always certify, always trade environment
Yj = x

j ! kj .
To summarize, the treatment effect of interest is the difference in outcome with

treatment and outcome without treatment. For the base case, outcome with treat-
ment is defined as realized value associated with the (ex ante) equilibrium invest-
ment choice when certification cost type is low (IL). And, outcome with no treat-
ment is defined as realized value associated with (ex ante) equilibrium investment
choice when certification cost type is high (IH ). Variations from the base case
retain the definition for treatment (low versus high investment) but alter outcomes
based on data availability given the setting (e.g., assets are not always traded so
values may not be directly observed).

10As seen in the table, for full certification there is no variation in equilibrium investment level.
11If the analyst observes the investment level, then outcome includes investment cost and we work

with a more complete measure of the owner’s welfare.
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Since the equilibrium investment choice for low certification cost type is treat-
ment (IL), the average treatment effect on the treated is

ATT = E [Y1 ! Y0 | D = 1]

= E
'
xL ! kL | D = 1

(
! E

'
xH ! kL | D = 1

(

= E
'
xL ! xH | D = 1

(

= 201.4! 214 = !12.6

Similarly, the equilibrium investment choice for high certification cost type is no
treatment (IH ). Therefore, the average treatment effect on the untreated is

ATUT = E [Y1 ! Y0 | D = 0]

= E
'
xL ! kH | D = 0

(
! E

'
xH ! kH | D = 0

(

= E
'
xL ! xH | D = 0

(

= 201.4! 214 = !12.6

The above implies outcome is homogeneous,12 ATE = ATT = ATUT =
!12.6. With no covariates and outcome not mean independent of treatment, the
OLS estimand is13

OLS = E [Y1 | D = 1]! E [Y0 | D = 0]

= E
'
xL ! kL | D = 1

(
! E

'
xH ! kH | D = 0

(

= 5.4

The regression is
E [Y | D] = #0 + #1D

where Y = D
%
xL ! kL

&
+ (1!D)

%
xH ! kH

&
(ex post payoff), #1 is the esti-

mand of interest, and
D = 1 IL = 101.4

0 IH = 114.5

A simple experiment supports the analysis above. We simulate 200 samples of
2, 000 draws where traded market values are

xj ( uniform
%
+xj ! 100, +xj + 100

&

certification costs are

kj ( uniform
,
+kj ! 1,+kj + 1

-

12If k is unobservable, then outcome Y may be measured by x only (discussed later) and treatment
effects represent gross rather than gains net of certification cost. In any case, we must exercise care in
interpreting the treatment effects because of limitations in our outcome measure — more to come on
the importance of outcome observability.
13Notice the difference in the treatment effects and what is estimated via OLS is kL ! kH =

2! 20 = !18 = !12.6! 5.4.
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and assignment of certification cost type is

L! type ( Bernoulli (0.5)

Simulation results for the above OLSmodel including the estimated average treat-
ment effect are reported in table 9.16. As simulation allows us to observe both
the factual data and counterfactual data in the experiment, the sample statistics
described in table 9.17 are "observed" average treatment effects.

Table 9.16: OLS results for full certification setting

statistics #0 #1 (estATE)
mean 193.8 5.797
median 193.7 5.805
stand.dev. 1.831 2.684
minimum 188.2 !1.778
maximum 198.9 13.32

E [Y | D] = #0 + #1D

Table 9.17: Average treatment effect sample statistics for full certification setting

statistics ATE ATT ATUT
mean !12.54 !12.49 !12.59
median !12.55 !12.44 !12.68
stand.dev. 1.947 2.579 2.794
minimum !17.62 !19.53 !21.53
maximum !7.718 !6.014 !6.083

OLS clearly produces biased estimates of the treatment effect in this simple
base case. This can be explained as low or high certification cost type is a perfect
predictor of treatment. That is, Pr

%
D = 1 | kL

&
= 1 and Pr

%
D = 1 | kH

&
= 0.

Therefore, the common support condition for identifying counterfactuals fails and
standard approaches (ignorable treatment or even instrumental variables) don’t
identify treatment effects.14

14An alternative analysis tests the common support condition. Suppose everything remains as above
except kH " uniform (1, 19) and sometimes the owners perceive certification cost to be low when
it is high, hence Pr (D = 1 | type = H) = 0.1. This setup implies observed outcome is

Y = D [(Y1 | type = L) + (Y1 | type = H)] + (1!D) (Y0 | type = H)

such that

E [Y ] = 0.5E
!
xL ! kL

"
+ 0.5

#
0.1E

!
xL ! kH

"
+ 0.9E

!
xH ! kH

"$

Suppose the analyst ex post observes the actual certification cost type and let T = 1 if type = L. The
common support condition is satisfied and the outcome mean is conditionally independent of treatment
given T implies treatment is ignorable. OLS simulation results are tabulated below.
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Adjusted outcomes

However, from the above we can manipulate the outcome variable to identify the
treatment effects via OLS. Observed outcome is

Y = D
%
xL ! kL

&
+ (1!D)

%
xH ! kH

&

=
%
xH ! kH

&
+D

%
xL ! xH

&
!D

%
kL ! kH

&

Applying expectations, the first term is captured via the regression intercept and
the second term is the average treatment effect. Therefore, if we add the last term
DE

'
kL ! kH

(
to Y we can identify the treatment effect from the coefficient on

D. If the analyst observes k = DkL+(1!D) kH , then we can utilize a two-stage
regression approach. The first stage is

E [k | D] = %0 + %1D

where %0 = E
'
kH
(
and %1 = E

'
kL ! kH

(
. Now, the second stage regression

employs the sample statistic for %1, +%1 = k
L
! k

H
.

Y $ = Y +D+%1
= Y +D

,
k
L
! k

H
-

and estimate the treatment effect via the analogous regression to the above15

E [Y $ | D] = #0 + #1D

OLS parameter estimates with common support for full certification setting

statistics !0 !1 !2 (estATE)
mean 196.9 7.667 !5.141
median 196.9 7.896 !5.223
stand.dev. 1.812 6.516 6.630
minimum 191.5 !10.62 !23.54
maximum 201.6 25.56 14.25

E [Y | T,D] = !0 + !1T + !2D

Average treatment effects sample statistics with common support for full certification setting

statistics ATE ATT ATUT

mean !5.637 !5.522 !5.782
median !5.792 !5.469 !5.832
stand.dev. 1.947 2.361 2.770

minimum !9.930 !12.05 !12.12
maximum 0.118 0.182 0.983

The estimated average treatment effect is slightly attenuated and has high variability that may compro-
mise its finite sample utility. Nevertheless, the results are a dramatic departure and improvement from
the results above where the common support condition fails.
15This is similar to a regression discontinuity design (for example, see Angrist and Lavy [1999]

and Angrist and Pischke [2009]). However, the jump in cost of certification kj violates the regression
continuity inX condition (assuming k = DkL+(1!D) kH is observed and included inX). If the
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Simulation results for the adjusted outcome OLS model are reported in table
9.18. With adjusted outcomes,OLS estimates correspond quite well with the treat-

Table 9.18: Adjusted outcomes OLS results for full certification setting

statistics #0 #1 (estATE)
mean 193.8 !12.21
median 193.7 !12.21
stand.dev. 1.831 2.687
minimum 188.2 !19.74
maximum 198.9 !64.691

E [Y $ | D] = #0 + #1D

ment effects. Next, we explore propensity score approaches.

Propensity score

Based on adjusted outcomes, the data are conditionally mean independent (i.e.,
satisfy ignorability of treatment). Therefore average treatment effects can be es-
timated via the propensity score as discussed earlier in chapter 9. Propensity
score is the estimated probability of treatment conditional on the regressorsmj =
Pr (Dj = 1 | Zj). For simulation purposes, we employ an imperfect predictor in
the probit regression

Zj = z1jDj + z0j (1!Dj) + $j

support of kL and kH is adjacent, then the regression discontinuity design

E [Y | X,D] = !0 + !1k + !2D

effectively identifies the treatment effects but fails with the currentDGP. Typical results for the current
DGP (where ATE is the average treatment effect sample statistic for the simulation) are tabulated
below.

OLS parameter estimates with jump in support for full certification setting

statistics !0 !1 !2 (estATE) ATE
mean 218.4 !1.210 !16.59 !12.54
median 213.2 !0.952 !12.88 !12.55
stand.dev. 42.35 2.119 38.26 1.947
minimum 122.9 !6.603 !115.4 !17.62
maximum 325.9 3.573 71.56 !7.718

E [Y | k,D] = !0 + !1k + !2D

The coefficient on D represents a biased and erratic estimate of the average treatment effect. Given
the variability of the estimates, a regression discontinuity design has limited small sample utility for
this DGP. However, we later return to regression discontinuity designs when modified DGPs are con-
sidered. For the current DGP, we employ the approach discussed above, which is essentially restricted
least squares.
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where

z1j ( Bernoulli (0.99)

z0j ( Bernoulli (0.01)

$j ( N (0, 1)

Some average treatment effects estimated via propensity score are

estATE = n"1
n.

j=1

(Dj !mj)Y
$
j

mj (1!mj)

estATT =

n"1
n/
j=1

(Dj"mj)Y
!
j

(1"mj)

n"1
n/
j=1

Dj

estATUT =

n"1
n/
j=1

(Dj"mj)Y
!
j

mj

n"1
n/
j=1

(1!Dj)

Propensity score estimates of average treatment effects are reported in table
9.19. The estimates are somewhat more variable than we would like but they are

Table 9.19: Propensity score treatment effect estimates for full certification
setting

statistics estATE estATT estATUT
mean !12.42 !13.96 !10.87
median !12.50 !13.60 !11.40
stand.dev. 5.287 6.399 5.832
minimum !31.83 !45.83 !25.61
maximum !1.721 0.209 10.56

consistent with the sample statistics on average. Further, we cannot reject homo-
geneity even though the treatment effect means are not as similar as we might
expect.

Propensity score matching

Propensity score matching is a simple and intuitively appealing approach where
we match treated and untreated on propensity score then compute the average
treatment effect based on the matched-pair outcome differences.We follow Sekhon
[2008] by employing the "Matching" library for R.16 We find optimal matches of

16We don’t go into details regarding matching since we employ only one regressor in the propen-
sity score model. Matching is a rich study in itself. For instance, Sekhon [2008] discusses a genetic
matching algorithm. Heckman, Ichimura, and Todd [1998] discuss nonparametric kernel matching.
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treated with untreated (within 0.01) using replacement sampling. Simulation re-
sults for propensity score matching average treatment effects are reported in table
9.20.17 The matched propensity score results correspond well with the sample sta-

Table 9.20: Propensity score matching average treatment effect estimates for full
certification setting

statistics estATE estATT estATUT
mean !12.46 !12.36 !12.56
median !12.54 !12.34 !12.36
stand.dev. 3.530 4.256 4.138
minimum !23.49 !24.18 !22.81
maximum !3.409 !2.552 !0.659

tistics. In this setting, the matched propensity score estimates of causal effects are
less variable than the previous propensity score results. Further, they are more uni-
form across treatment effects (consistent with homogeneity). Next, we turn to the
more interesting, but potentially more challenging, selective certification setting.

9.7.3 Selective certification

Suppose the owners’ ex ante perceptions of the certification threshold, xc = 200,
and likelihood of stress, ' = 0.7, are consistent with ex post outcomes. Then,
if outcomes x, kj , and P j for j = L or H are fully observable to the analyst,
expected outcome conditional on asset revaluation experience is18

E [Y | X] = 251.93Pr
%
PH

&
! 5.740Pr

%
PL
&
D ! 94.93Pr

%
#Hc
&
#Hc

!95.49Pr
%
#Lc
&
#Lc ! 20Pr

%
#Hck

&
#Hck

!2Pr
%
#Lck

&
#Lck + 31.03Pr

%
#Hu
&
#Hu + 27.60Pr

%
#Lu
&
#Lu

E [Y | X] = 251.93 (0.477)! 5.740 (0.424)D ! 94.93 (0.129)#Hc
!95.49 (0.148)#Lc ! 20 (0.301)#

H
ck ! 2 (0.345)#

L
ck

+31.03 (0.093)#Hu + 27.60 (0.083)#
L
u

17ATE, ATT, and ATUT may be different because their regions of common support may differ. For
example, ATT draws on common support only in the D = 1 region and ATUT draws on common
support only in theD = 0 region.
18The probabilities reflect likelihood of the asset condition rather than incremental likelihood and

hence sum to one for each investment level (treatment choice).
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where the equilibrium price of traded, uncertified, high investment assets, PH , is
the reference outcome level, andX denotes the matrix of regressors

D =
1 low investment, IL

0 high investment, IH

#jc =
1 certified range, x < xc
0 otherwise

#jck =
1 certified traded
0 otherwise

#ju =
1 untraded asset, x > P j % {L,H}
0 otherwise

This implies the average treatment effect estimands are

ATT $ E
'
Y L ! Y H | D = 1

(
= !12.7

ATUT $ E
'
Y L ! Y H | D = 0

(
= !13.5

and

ATE $ E
'
Y L ! Y H

(

= Pr (D = 1)ATT + Pr (D = 0)ATUT = !13.1

Hence, in the selective certification setting we encounter modest heterogeneity.
Why don’t we observe self-selection through the treatment effects? Remember,
we have a limited outcome measure. In particular, outcome excludes investment
cost. If we include investment cost, then self-selection is supported by the average
treatment effect estimands. That is, low investment outcome is greater than high
investment outcome for low certification cost firms

ATT = !12.7! (101.4! 114.5) = 0.4 > 0

and high investment outcome is greater than low investment outcome for high
certification cost firms

ATUT = !13.5! (101.4! 114.5) = !0.4 < 0

With this background for the selective certification setting, it’s time to revisit
identification. Average treatment effect identification is somewhat more challeng-
ing than the base case. For instance, the average treatment effect on the treated,
ATT, is the difference between the mean of outcome with low investment and the
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mean of outcome with high investment for low certification cost firms.
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The average treatment effect on the untreated, ATUT, is the difference between
the mean of outcome with low investment and the mean of outcome with high
investment for high certification cost firms.
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But the OLS estimand is the difference between the mean of outcome with low
investment for firms with low certification cost and the mean of outcome with
high investment for firms with high certification cost.
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As in the full certification setting, the key differences revolve around the costly
certification terms. The costly certification term for the ATT estimand simplifies
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as

!'
1

2f

'
kL
%
xc ! xL

&
! kL

%
xc ! xH

&(

= !'
%
xH ! xL

&

2f
kL

and the costly certification term for the ATUT estimand simplifies as
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While the costly certification term in the estimand for OLS is

!'
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kL
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xc ! xL
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Adjusted outcomes

Similar to our approach in the full certification setting, we eliminate the costly
certification term for OLS by adding this OLS bias to observed outcomes

Y $ = Y +D'
1

2f

'
kL
%
xc ! xL

&
! kH

%
xc ! xH

&(

However, now we add back the terms to recover the average treatment effects

ATT = E
#
Y

!

1 ! Y
!

0 | D = 1
$
! '
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ATUT = E
#
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!
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ATE = Pr (D = 1)ATT + Pr (D = 1)ATUT
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These terms account for heterogeneity in this asset revaluation setting but are
likely to be much smaller than the OLS selection bias.19

19In our running numerical example, the certification cost term for ATT is !0.0882 and for ATUT
is !0.882, while the OLS selection bias is 5.3298.
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Conditional as well as unconditional average treatment effects can be identified
from the following regression.

E [Y $ | X] = #0 + #1D + #2#
H
c + #3#

L
c

+#4#
H
ck + #5#

L
ck + #6#

H
u + #7#

L
u

where
Y $ = Y +D'

#
#Lckk

L !#
H

ckk
H
$

#
H

ck and k
H
are sample averages taken from theD = 0 regime.20 The incremental

impact on mean value of assets in the certification region is reflected in #2 for high
investment and #3 for low investment firms, while the mean incremental impact
of costly certification of assets, kj , is conveyed via #4 and #5 for high and low
investment firms, respectively. Finally, the mean incremental impact of untraded
assets with values greater than the equilibrium price are conveyed via #6 and #7
for high and low investment firms, respectively.
Simulation results for the OLS model are reported in table 9.21 and sample

treatment effect statistics are reported in table 9.22. OLS effectively estimates
the average treatment effects (ATE, ATT, ATUT) in this (modestly heterogeneous)
case. However, we’re unlikely to be able to detect heterogeneity when the various
treatment effect differences are this small. Note in this setting, while outcome is
the ex post value net of certification cost, a random sample allows us to assess the
owner’s ex ante welfare excluding the cost of investment.21

Model-estimated treatment effects are derived in a non-standard manner as the
regressors are treatment-type specific and we rely on sample evidence from each
regime to estimate the probabilities associated with different ranges of support22

estATT = #1 ! #2#
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20Sample averages of certification cost, k
H
, and likelihood that an asset is certified and traded,#Hck ,

forD = 0 (high investment) are employed as these are counterfactuals in theD = 1 (low investment)
regime.
21Investment cost may also be observed or estimable by the analyst.
22Expected value of indicator variables equals the event probability and probabilities vary by treat-

ment. Since there is no common support (across regimes) for the regressors, we effectively assume the
analyst can extrapolate to identify counterfactuals (that is, from observed treated to unobserved treated
and from observed untreated to unobserved untreated).
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Table 9.21: OLS parameter estimates for selective certification setting

statistics #0 #1 #2 #3
mean 251.9 !11.78 !94.78 !93.81
median 251.9 !11.78 !94.70 !93.85
stand.dev. 0.000 0.157 2.251 2.414
minimum 251.9 !12.15 !102.7 !100.9
maximum 251.9 !11.41 !88.98 !86.90
statistics #4 #5 #6 #7
mean !20.12 !2.087 31.20 27.66
median !20.15 !2.160 31.23 27.72
stand.dev. 2.697 2.849 1.723 1.896
minimum !28.67 !9.747 26.91 22.44
maximum !12.69 8.217 37.14 32.81

statistics estATE estATT estATUT
mean !12.67 !12.29 !13.06
median !12.73 !12.33 !13.10
stand.dev. 2.825 2.686 2.965
minimum !21.25 !20.45 !22.03
maximum !3.972 !3.960 !3.984

E [Y $ | X] = #0 + #1D + #2#Hc + #3#Lc
+#4#Hck + #5#

L
ck + #6#

H
u + #7#Lu

where

#
L

j =

/
Di#Lji/
Di

and

#
H

j =

/
(1!Di)#Hji/
(1!Di)

for indicator j.
We can say a bit more about conditional average treatment effects from the

above analysis. On average, owners who select high investment and trade the as-
sets at their equilibrium price sell the assets for 11.78more than owners who select
low investment. Owners who select high investment and retain their assets earn
31.20 ! 27.66 = 3.54 higher proceeds, on average, than owners who select low
investment. On the other hand, owners who select high investment and are forced
to certify and sell their assets receive lower net proceeds by 20.12!2.09 = 18.03,
on average, than owners who select low investment. Recall all outcomes exclude
investment cost which, of course, is an important component of owner’s welfare.
As we can effectively randomize over the indicator variables, for simplicity, we

focus on identification and estimation of unconditional average treatment effects
and the remaining analyses are explored without covariates. Next, we demonstrate
the above randomization claim via a reduced (no covariates except treatment)OLS
model, then we explore propensity score approaches applied to selective certifica-
tion.
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Table 9.22: Average treatment effect sample statistics for selective certification
setting

statistics ATE ATT ATUT OLS
mean !13.01 !12.57 !13.45 !6.861
median !13.08 !12.53 !13.46 !6.933
stand.dev. 1.962 2.444 2.947 2.744
minimum !17.90 !19.52 !22.46 !15.15
maximum !8.695 !5.786 !6.247 1.466

Reduced OLS model

We estimate unconditional average treatment effects via a reduced OLS model.

E [Y $ | D] = #0 + #1D

Results from the simulation, reported in table 9.23, indicate that reduced OLS,
with the adjustments discussed above to recover the treatment effect, effectively
recovers unconditional average treatment effects in the selective certification set-
ting.

Table 9.23: Reduced OLS parameter estimates for selective certification setting

statistics #0 #1
mean 207.7 !12.21
median 207.50 !12.24
stand.dev. 1.991 2.655
minimum 202.8 !20.28
maximum 212.8 !3.957
statistics estATE estATT estATUT
mean !12.67 !12.29 !13.06
median !12.73 !12.33 !13.10
stand.dev. 2.825 2.686 2.965
minimum !21.25 !20.45 !22.03
maximum !3.972 !3.960 !3.984

E [Y $ | D] = #0 + #1D

Propensity score

As in the full certification setting, propensity score, Pr (D = 1 | Z), is estimated
via probit with predictor Z. Propensity score estimates, based on adjusted out-
comes and treatment effect adjustments as discussed for OLS, of average treat-
ment effects in the selective certification setting are reported in table 9.24. As in
the full certification setting, the estimates are more variable than we prefer but,
on average, correspond with the sample statistics. Again, homogeneity cannot be
rejected but estimated differences in treatment effects do not correspond well with
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Table 9.24: Propensity score average treatment effect estimates for selective
certification setting

statistics estATE estATT estATUT
mean !12.84 !14.18 !11.47
median !13.09 !13.71 !11.87
stand.dev. 5.680 6.862 6.262
minimum !33.93 !49.88 !25.06
maximum !0.213 1.378 13.80

the sample statistics (e.g., estimated ATT is the largest in absolute value but ATT
is the smallest sample statistic as well as estimand).

Propensity score matching

Simulation results, based on outcome and treatment effect adjustments, for propen-
sity score matching estimates of average treatment effects in the selective certifi-
cation setting are reported in table 9.25. Again, propensity score matching results

Table 9.25: Propensity score matching average treatment effect estimates for
selective certification setting

statistics estATE estATT estATUT
mean !12.90 !12.54 !13.27
median !13.20 !12.89 !13.09
stand.dev. 3.702 4.478 4.335
minimum !25.87 !25.54 !26.20
maximum !4.622 !2.431 !2.532

correspond well with the sample statistics and are less variable than the propensity
score approach above but cannot reject outcome homogeneity.

9.7.4 Outcomes measured by value x only

Now, we revisit selective certification when the analyst cannot observe the incre-
mental cost of certification, k, but only asset value, x. Consequently, outcomes
and therefore treatment effects reflect only Y = x. For instance, the DGP now
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yields
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'
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The apparent advantage to high investment is even more distorted because not only
are investment costs excluded but now also the incremental certification costs are
excluded. In other words, we have a more limited outcome measure. We briefly
summarize treatment effect analyses similar to those reported above but for the
alternative, data limited, outcome measure Y = x. Notice, no outcome adjustment
is applied.

OLS results

Simulation results for theOLSmodel are reported in table 9.26 and sample average
treatment effect statistics are reported in table 9.27.

Table 9.26: OLS parameter estimates for Y=x in selective certification setting

statistics #0 #1 (estATE)
mean 214.0 !12.70
median 214.1 !12.70
stand.dev. 1.594 2.355
minimum 209.3 !18.5
maximum 218.11 !5.430

E [Y | D] = #0 + #1D

OLS effectively estimates the treatment effects and outcome homogeneity is
supported.

Propensity score

Propensity score estimates for average treatment effects are reported in table 9.28.
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Table 9.27: Average treatment effect sample statistics for Y = x in selective
certification setting

statistics ATE ATT ATUT
mean !12.73 !12.72 !12.75
median !12.86 !12.78 !12.62
stand.dev. 1.735 2.418 2.384
minimum !17.26 !19.02 !18.96
maximum !7.924 !5.563 !6.636

Table 9.28: Propensity score average treatment effect for Y = x in selective
certification setting

statistics estATE estATT estATUT
mean !13.02 !14.18 !11.86
median !13.49 !13.96 !11.20
stand.dev. 5.058 5.764 5.680
minimum !27.00 !34.39 !24.25
maximum 2.451 0.263 7.621

Similar to previous propensity score analyses, the limited outcome propensity
score results are more variable than we’d like but generally correspond with aver-
age treatment effect sample statistics.

Propensity score matching

Propensity score matching simulation results are reported in table 9.29. Propen-

Table 9.29: Propensity score matching average treatment effect for Y = x in
selective certification setting

statistics estATE estATT estATUT
mean !12.61 !12.43 !12.76
median !12.83 !12.40 !13.10
stand.dev. 3.239 3.727 4.090
minimum !20.57 !21.79 !24.24
maximum !4.025 0.558 !1.800

sity score matching results are generally consistent with other results. For Y = x,
matching effectively identifies average treatment effects, supports homogeneous
outcome, and is less variable than the (immediately) above propensity score re-
sults.
Since outcome based on x only is more limited than Y = x!k, for the remain-

ing discussion of this asset revaluation regulation example we refer to the broader
outcome measure Y = x! k.
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9.7.5 Selective certification with missing "factual" data

It is likely the analyst will not have access to ex post values when the assets are
not traded. Then, the only outcome data observed is when assets are certified or
when traded at the equilibrium price. In addition to not observing counterfactuals,
we now face missing factual data. Missing outcome data produces a challenging
treatment effect identification problem. The treatment effects are the same as the
above observed data case but require some creative data augmentation to recover.
We begin our exploration by examining model-based estimates if we ignore the
missing data problem.
If we ignore missing data but adjust outcomes and treatment effects (as dis-

cussed earlier) and estimate the model via OLS we find the simulation results
reported in table 9.30. The average model-estimated treatment effects are biased

Table 9.30: OLS parameter estimates ignoring missing data for selective
certification setting

statistics #0 #1
mean 207.2 !9.992
median 207.2 !9.811
stand.dev. 2.459 3.255
minimum 200.9 !18.30
maximum 213.2 !2.627
statistics estATE estATT estATUT
mean !10.45 !10.07 !10.81
median !9.871 !5.270 !14.92
stand.dev. 3.423 3.285 3.561
minimum !19.11 !18.44 !19.75
maximum !2.700 !2.640 !2.762

E [Y $ | D] = #0 + #1D

toward zero due to the missing outcome data.

Data augmentation

The above results suggest attending to the missing data. The observed data may
not, in general, be representative of the missing factual data. We might attempt to
model the missing data process and augment the observed data. Though, data aug-
mentation might introduce more error than do the missing data and consequently
generate poorer estimates of the average treatment effects. The observed data are

Y o1 = #
L
ck

%
xL ! kL

&
+ #LpP

L

and

Y o0 = #
H
ck

%
xH ! kH

&
+ #Hp P

H
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where

#jp = 1 asset traded at uncertified, equilibrium price for choice j
0 otherwise

and #jck refers to assets certified and traded for choice j, as before.
For the region x < xc, we have outcome data for firms forced to sell, xj ! kj ,

but we are missing untraded asset values, xj . Based on the DGP for our contin-
uing example, the contribution to treatment effects from this missing quantity is
22.289!20.253 = 2.036. If we know kj or can estimate it, we can model the miss-
ing data for this region. Since IH > IL, E

'
xH | xH < xc

(
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(
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The other untraded assets region, xj > P j , is more delicate as we have no direct
evidence, the conditional expectation over this region differs by investment choice,
and PH > PL, it is likely E

'
xH | xH > PH

(
> E

'
xL | xL > PL

(
. Based on

the DGP for our continuing example, the contribution to treatment effects from
this missing quantity is 22.674! 26.345 = !3.671.
How do we model missing data in this region? This is not a typical censoring

problem as we don’t observe the sample size for either missing data region. Miss-
ing samples make estimating the probability of each mean level more problematic
— recall this is important for estimating average treatment effects in the data ob-
served, selective certification case.23 Conditional expectations and probabilities of
mean levels are almost surely related which implies any augmentation errors will
be amplified in the treatment effect estimate.
We cannot infer the probability distribution for x by nonparametric methods

since x is unobserved. To see this, recall the equilibrium pricing of uncertified
assets satisfies

P =
'Pr (xc < x < x)E [x | xc < x < x]

'Pr (xc < x < x) + (1! ') Pr (xc < x < P )

+
(1! ') Pr (xc < x < P )E [x | xc < x < P ]
'Pr (xc < x < x) + (1! ') Pr (xc < x < P )

For instance, if all the probability mass in these intervals for x is associated with
P , then the equilibrium condition is satisfied. But the equilibrium condition is

23As is typical, identification and estimation of average treatment effects is more delicate than iden-
tification and estimation of model parameters in this selective certification setting.
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satisfied for other varieties of distributions for x as well. Hence, the distribu-
tion for x cannot be inferred when x is unobserved. If ' is known we can es-
timate Pr (xc < x < x) from certification frequency scaled by '. However, this
still leaves much of the missing factual data process unidentified when x is unob-
served or the distribution for x is unknown.
On the other hand, consistent probability assignment for x allows ' to be in-

ferred from observable data, P and xc as well as the support for x: x < x < x.
Further, consistent probability assignment for x enables us to model the DGP
for the missing factual data. In particular, based on consistent probability as-
signment for x we can infer ' and identify Pr (x < x < xc), E [x | x < x < xc],
Pr (P < x < x), and E [x | P < x < x].
To model missing factual data, suppose ' is known and kj is observed, consis-

tent probability assignment suggests

Pr (P < x < x) = Pr (xc < x < P )

and

E [x | P < x < x] = P +
P ! xc
2

=
3P ! xc
2

are reasonable approximations. Then, our model for missing factual data suggests
the following adjustments to estimate average treatment effects (TE).

estTE = TE estimated based on missing factual data
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Results adjusted by the augmented factual missing data based on the previous
OLS parameter estimates are reported in table 9.31. These augmented-OLS results

Table 9.31: Treatment effect OLS model estimates based on augmentation of
missing data for selective certification setting

statistics estATE estATT estATUT
mean !11.80 !11.43 !12.18
median !11.76 !11.36 !12.06
stand.dev. 3.165 3.041 3.290
minimum !20.37 !19.58 !21.15
maximum !2.375 !2.467 !2.280

E [Y $ | D] = #0 + #1D
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are less biased, on average, than results that ignore missing factual data. Thus, it
appears data augmentation has modestly aided our analysis of this asset revalua-
tion with selective certification setting.

9.7.6 Sharp regression discontinuity design

Suppose the DGP is altered only in that

kL ( uniform (1, 3)

and
kH ( uniform (3, 37)

The means for k remain 2 and 20 but we have adjacent support. There is a crisp
break at k = 3 but the regression function excluding the treatment effect (the
regression as a function of k) is continuous. That is, the treatment effect fully
accounts for the discontinuity in the regression function. This is a classic "sharp"
regression discontinuity design (Trochim [1984] and Angrist and Pischke [2009])
where #2 estimates the average treatment effect via OLS.

E [Y | k,D] = #0 + #1k + #2D

With the previousDGP, there was discontinuity as a function of both the regressor
k and treatment D. This creates a problem for the regression as least squares is
unable to distinguish the treatment effect from the jump in the outcome regression
and leads to poor estimation results. In this revised setting, we anticipate substan-
tially improved (finite sample) results.

Full certification setting

Simulation results for the revised DGP in the full certification setting are reported
in table 9.32 and average treatment effect sample statistics are reported in table

Table 9.32: Sharp RD OLS parameter estimates for full certification setting

statistics #0 #1 #2 (estATE)
mean 214.2 !1.007 !12.93
median 214.5 !1.019 !13.04
stand.dev. 4.198 0.190 4.519
minimum 203.4 !1.503 !26.18
maximum 226.3 !0.539 !1.959

E [Y | k,D] = #0 + #1k + #2D

9.33.
Unlike the previous DGP, sharp regression discontinuity (RD) design effec-

tively identifies the average treatment effect and OLS produces reliable estimates
for the (simple) full certification setting. Next, we re-evaluate RD with the same
adjacent support DGP but in the more challenging selective certification setting.
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Table 9.33: Average treatment effect sample statistics for full certification setting

statistics ATE ATT ATUT
mean !12.54 !12.49 !12.59
median !12.55 !12.44 !12.68
stand.dev. 1.947 2.579 2.794
minimum !17.62 !19.53 !21.53
maximum !7.718 !6.014 !6.083

Selective certification setting

To satisfy the continuity condition for the regression, suppose cost of certifica-
tion k = DkL + (1!D) kH is always observed whether assets are certified or
not in the regression discontinuity analysis of selective certification. Simulation
results for the revised DGP in the selective certification setting are reported in
table 9.34.24 In the selective certification setting, RD again identifies the average

Table 9.34: Sharp RD OLS parameter estimates for selective certification setting

statistics #0 #1 #2 (estATE)
mean 214.2 !0.299 !13.00
median 214.5 !0.324 !12.89
stand.dev. 4.273 0.197 4.546
minimum 202.0 !0.788 !25.81
maximum 225.5 0.226 !1.886

E [Y | k,D] = #0 + #1k + #2D

treatment effect and OLS provides effective estimates. Next, we employ RD in the
missing factual data setting.

Missing factual data

If some outcome data are unobserved by the analyst, it may be imprudent to ig-
nore the issue. We employ the same missing data model as before and estimate
the average treatment effect ignoring missing outcome data (#2) and the average
treatment effect adjusted for missing outcome data (#

!

2). Simulation results for
the revised DGP (with adjacent support) analyzed via a sharp RD design in the
selective certification setting with missing outcome data are reported in table 9.35.

24We report results only for the reduced model. If the analyst knows where support changes (i.e.,
can identify the indicator variables) for the full model, the results are similar and the estimates have
greater precision.
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Table 9.35: Sharp RD OLS parameter estimates with missing data for selective
certification setting

statistics #0 #1 #2 #
!

2 (estATE)
mean 214.4 !0.342 !11.35 !12.22
median 214.5 !0.336 !11.50 !12.47
stand.dev. 4.800 0.232 5.408 5.237
minimum 201.3 !0.928 !25.92 !26.50
maximum 227.9 0.325 2.542 1.383

E [Y | k,D] = #0 + #1k + #2D

9.7.7 Fuzzy regression discontinuity design

Now, suppose the DGP is altered only in that support is overlapping as follows:

kL ( uniform (1, 3)

and
kH ( uniform (1, 39)

The means for k remain 2 and 20 but we have overlapping support. There is a crisp
break in E [D | k] at k = 3 but the regression function excluding the treatment
effect (the regression as a function of k) is continuous. This leads to a fuzzy dis-
continuity regression design (van der Klaauw [2002]). Angrist and Lavy [1999]
argue that 2SLS-IV consistently estimates a local average treatment effect in such
cases where

T =
1 k ) 3
0 k > 3

serves as an instrument for treatment. In the first stage, we estimate the propensity
score25

+D $ E [D | k, T ] = &0 + &1k + &2T

The second stage is then

E [Y | k,D] = &0 + &1k + &2 +D

Full certification setting

First, we estimate RD via OLS then we employ 2SLS-IV. Simulation results for
the overlapping support DGP in the full certification setting are reported in table
9.36.
Perhaps surprisingly, OLS effectively estimates the average treatment effect in

this fuzzy RD setting. Recall the selection bias is entirely due to the expected dif-
ference in certification cost, E

'
kH ! kL

(
. RD models outcome as a (regression)

25In this asset revaluation setting, the relations are linear. More generally, high order polynomial
or nonparametric regressions are employed to accommodate nonlinearities (see Angrist and Pischke
[2009]).
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Table 9.36: Fuzzy RD OLS parameter estimates for full certification setting

statistics #0 #1 #2 (estATE)
mean 214.3 !1.012 !12.79
median 214.2 !1.011 !12.56
stand.dev. 3.634 0.163 3.769
minimum 204.9 !1.415 !23.51
maximum 222.5 !0.625 !3.001

E [Y | k,D] = #0 + #1k + #2D

function of k, E [Y | k]; hence, the selection bias is eliminated from the treatment
effect. Next, we use 2SLS-IV to estimate LATE.26

Binary instrument

Now, we utilize T as a binary instrument. Simulation results for the overlapping
support DGP in the full certification setting are reported in table 9.37. As ex-

Table 9.37: Fuzzy RD 2SLS-IV parameter estimates for full certification setting

statistics #0 #1 #2 (estLATE)
mean 214.5 !1.020 !13.07
median 214.6 !1.021 !13.27
stand.dev. 4.139 0.181 4.456
minimum 202.7 !1.461 !27.60
maximum 226.0 !0.630 !1.669

E [Y | k,D] = #0 + #1k + #2 +D

pected, 2SLS-IV effectively identifies LATE in this fuzzy RD, full certification
setting. Next, we revisit selective certification with this overlapping supportDGP.

9.7.8 Selective certification setting

First, we estimate RD via OLS then we employ 2SLS-IV. Simulation results for
the overlapping support DGP in the selective certification setting are reported in
table 9.38. Since RD effectively controls the selection bias (as discussed above),
OLS effectively estimates the average treatment effect.

Binary instrument

Using T as a binary instrument, 2SLS-IV simulation results for the overlapping
support DGP in the selective certification setting are reported in table 9.39. In the
selective certification setting, 2SLS-IV effectively estimates LATE, as anticipated.

26LATE is developed more fully in chapter 10.
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Table 9.38: Fuzzy RD OLS parameter estimates for selective certification setting

statistics #0 #1 #2 (estATE)
mean 214.3 !0.315 !12.93
median 214.1 !0.311 !12.73
stand.dev. 3.896 0.179 3.950
minimum 202.5 !0.758 !24.54
maximum 223.3 0.078 !3.201

E [Y | k,D] = #0 + #1k + #2D

Table 9.39: Fuzzy RD 2SLS-IV parameter estimates for selective certification
setting

statistics #0 #1 #2 (estLATE)
mean 214.4 !0.321 !13.09
median 214.5 !0.317 !13.03
stand.dev. 4.438 0.200 4.631
minimum 201.1 !0.805 !27.23
maximum 225.6 !0.131 1.742

E [Y | k,D] = #0 + #1k + #2 +D

Missing factual data

Continue with the overlapping support DGP and employ the same missing data
model as before to address unobserved outcomes (by the analyst) when the assets
are untraded. First, we report OLS simulation results in table 9.40 then we tab-
ulate 2SLS-IV simulation results where #2 is the estimated for the local average
treatment effect ignoring missing outcome data and #

!

2 is the local average treat-
ment effect adjusted for missing outcome data. This OLS RD model for missing

Table 9.40: Fuzzy RD OLS parameter estimates with missing data for selective
certification setting

statistics #0 #1 #2 #
!

2 (estATE)
mean 215.9 !0.426 !12.74 !13.60
median 216.2 !0.424 !12.63 !13.52
stand.dev. 4.765 0.223 4.792 4.612
minimum 201.9 !1.132 !24.20 !23.85
maximum 226.3 0.117 0.119 !0.817

E [Y | k,D] = #0 + #1k + #2D

outcome data does not offer any clear advantages. Rather, the results seem to be
slightly better without the missing data adjustments.
2SLS-IV with T as a binary instrument and missing outcome data adjustments

are considered next. Simulation results for the overlapping support DGP in the
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selective certification, missing outcome data setting are reported in table 9.41.

Table 9.41: Fuzzy RD 2SLS-IV parameter estimates with missing data for
selective certification setting

statistics #0 #1 #2 #
!

2 (estLATE)
mean 217.7 !0.428 !12.80 !13.67
median 214.8 !0.425 !13.12 !14.30
stand.dev. 25.50 0.256 5.919 5.773
minimum 139.2 !1.147 !25.24 !25.97
maximum 293.9 0.212 6.808 6.010

E [Y | k,D] = #0 + #1k + #2 +D

Again, modeling the missing outcome data offers no apparent advantage in this
fuzzy RD, 2SLS-IV setting. In summary, when we have adjacent or overlapping
support, sharp or fuzzy regression discontinuity designs appear to be very effective
for controlling selection bias and identifying average treatment effects in this asset
revaluation setting.

9.7.9 Common support

Standard identification conditions associated with ignorable treatment (and IV ap-
proaches as well) except for regression discontinuity designs include common
support 0 < Pr (D = 1 | X) < 1. As indicated earlier, this condition fails in the
asset revaluation setting as certification cost type is a perfect predictor of treat-
ment Pr (D = 1 | T = 1) = 1 and Pr (D = 1 | T = 0) = 0 where T = 1 if type
is L and zero otherwise. The foregoing discussion has addressed this issue in two
ways. First, we employed an ad hoc adjustment of outcome to eliminate selection
bias. This may be difficult or impractical to implement. Second, we employed a
regression discontinuity design. The second approach may be unsatisfactory as the
analyst needs full support access to adjacent or overlapping regressor k whether
assets are certified or not.
However, if there is some noise in the relation between certification cost type

and treatment (perhaps, due to nonpecuniary cost or benefit), then a third option
may be available. We briefly illustrate this third possibility for the full certification
setting.
Suppose everything remains as in the original full certification setting except

kH ( uniform (1, 19) and some owners select treatment (lower investment)
when certification cost is high, hence Pr (D = 1 | type = H) = 0.1. This setup
implies observed outcome is

Y = D [(Y1 | T = 1) + (Y1 | T = 0)] + (1!D) (Y0 | T = 0)

such that

E [Y ] = 0.5E
'
xL ! kL

(
+ 0.5

8
0.1E

'
xL ! kH

(
+ 0.9E

'
xH ! kH

(9
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Suppose the analyst ex post observes the actual certification cost type. The com-
mon support condition is satisfied as 0 < Pr (D = 1 | T = 0) < 1 and if out-
comes are conditionally mean independent of treatment given T then treatment
is ignorable. The intuition is the type variable, T , controls the selection bias and
allowsD to capture the treatment effect. This involves a delicate balance as T and
D must be closely but imperfectly related.
OLS common support results are reported in table 9.42 and simulation results

for average treatment effect sample statistics are reported in table 9.43. The esti-

Table 9.42: Fuzzy RD OLS parameter estimates for full certification setting

statistics #0 #1 #2 (estATE)
mean 196.9 7.667 !5.141
median 196.9 7.896 !5.223
stand.dev. 1.812 6.516 6.630
minimum 191.5 !10.62 !23.54
maximum 201.6 25.56 14.25

E [Y | T,D] = #0 + #1T + #2D

Table 9.43: Average treatment effect sample statistics for full certification setting

statistics ATE ATT ATUT
mean !5.637 !5.522 !5.782
median !5.792 !5.469 !5.832
stand.dev. 1.947 2.361 2.770
minimum !9.930 !12.05 !12.12
maximum 0.118 0.182 0.983

mated average treatment effect is slightly attenuated and has high variability that
may compromise its finite sample utility. Nevertheless, the results are a dramatic
departure and improvement from the results above where the common support
condition fails and is ignored.

9.7.10 Summary

Outcomes at our disposal in this asset revaluation setting limit our ability to as-
sess welfare implications for the owners. Nonetheless, the example effectively
points to the importance of recognizing differences in data available to the ana-
lyst compared with information in the hands of the economic agents whose ac-
tions and welfare is the subject of study. To wit, treatment effects in this setting
are uniformly negative. This is a product of comparing net gains associated with
equilibrium investment levels, but net gains exclude investment cost. The benefits
of higher investment when certification costs are low are not sufficient to over-
come the cost of investment but this latter feature is not reflected in our outcome
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measure. Hence, if care is not exercised in interpreting the results we might draw
erroneous conclusions from the data.

9.8 Control function approaches

Our final stop in the world of ignorable treatment involves the use of control
functions. Control functions are functions that capture or control selection so ef-
fectively as to overcome the otherwise omitted, correlated variable concern cre-
ated by endogenous selection. Various approaches can be employed. The simplest
(strongest for the data) conditions employ conditional mean independence

E [Y1 | X,D] = E [Y1 | X]

and

E [Y0 | X,D] = E [Y0 | X]

and no expected individual-specific gain, E [V1 | X] = E [V0 | X]. Then,

E [Y | X,D] = µ0 + %D + g0 (X)

where g0 (X) = E [V0 | X] is a control function and % = ATE = ATT =
ATUT .

9.8.1 Linear control functions

If we add the condition E [V0 | X] = g0 (X) = (0 + h0 (X)#0 for some vector
control function h0 (X), then

E [Y | X,D] = µ0 + (0 + %D + h0 (X)#0

That is, when the predicted individual-specific gain given X , E [V1 ! V0 | X],
is zero and the control function is linear in its parameters, we can consistently
estimate ATE via standard (linear) regression.

9.8.2 Control functions with expected individual-specific gain

Suppose we relax the restriction to allow expected individual specific-gain, that is
allow E [V1 | X] "= E [V0 | X], then

E [Y | X,D] = µ0 + %D + g0 (X) +D [g1 (X)! g0 (X)]

where g0 (X) = E [V0 | X] and g1 (X) = E [V1 | X] and ATE = % (but not
necessarily equal to ATT ).
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9.8.3 Linear control functions with expected individual-specific

gain

Continue with the idea that we allow expected individual specific-gain,E [V1 | X]
"= E [V0 | X] and add the condition that the control functions are linear in para-
meters E [V0 | X] = g0 (X) = (0 + h0 (X)#0 and E [V1 | X] = g1 (X) =
(1 + h1 (X)#1 for some vector control functions h0 (X) and h1 (X). Hence,

E [Y | X,D] = )+ %D +X#0 +D (X ! E [X]) !

Now, conditional onX the average treatment effect,ATE (X), is a function ofX

%+ (X ! E [X]) !

When we average over all X , the second term is integrated out and ATE = %.
By similar reasoning, the average treatment effect on the treated can be estimated
by integrating over theD = 1 subsample

ATT = %+

6
n.

i=1

Di

7"1 6 n.

i=1

Di
%
Xi !X

&
!

7

and the average treatment effect on the untreated can be estimated by integrating
over theD = 0 subsample

ATUT = %!

6
n.

i=1

(1!Di)

7"1 6 n.

i=1

Di
%
Xi !X

&
!
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9.9 Summary

The key element for ignorable treatment identification of treatment effects is out-
comes are conditionally mean independent of treatment given the regressors. How
do we proceed when ignorable treatment (conditional mean independence) fails?
A common response is to look for instruments and apply IV strategies to iden-
tify average treatment effects. Chapter 10 surveys some instrumental variable ap-
proaches and applies a subset of IV identification strategies in an accounting set-
ting — report precision regulation.

9.10 Additional reading

Amemiya [1985] and Wooldridge [2002] provide extensive reviews of the econo-
metrics of selection. Wooldridge [2002] discusses estimating average treatment
effects in his chapter 18 (and sample selection earlier). Amemiya [1985] discusses
qualitative response models in his chapter 9. Recent volumes of the Handbook of
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Econometrics are filled with economic policy evaluation and treatment effects.
Dawid [2000] offers an alternative view on causal inference.
Heckman, Ichimura, Smith, and Todd [1998] utilize experimental (as well as

non-experimental) data to evaluate non-experimental methods (matching, differ-
ences - in - differences, and inverse-Mills selection models) for program eval-
uation. Their results indicate selection bias is mitigated, but not eliminated, by
non-experimental methods that invoke common support and common weighting.
In fact, they decompose conventional bias into (a) differences in the support of
the regressors between treated and untreated, (b) differences in the shape of the
distributions of regressors for the two groups in the region of common support,
and (c) selection bias at common values of the regressors for both groups. Further,
they find that matching cannot eliminate selection bias27 but their data support
the index sufficiency condition underlying standard control function models and a
conditional version of differences-in-differences. Heckman and Navarro-Lozano
[2004] succinctly review differences amongst matching, control function, and in-
strumental variable (the latter two are discussed in chapter 10 and the various
strategies are compared in chapter 12) approaches to identification and estima-
tion of treatment effects. In addition, they identify the bias produced by matching
when the analyst’s data fail to meet in the minimally sufficient information for
ignorable treatment and when and how other approaches may be more robust to
data omissions than matching. They also demonstrate that commonly-employed
ad hoc "fixes" such as adding information to increase the goodness of fit of the
propensity score model (when minimal information conditions are not satisfied)
do not, in general, produce lower bias but rather may increase bias associated with
matching.

27Heckman, Ichimura, and Todd [1997] find that matching sometimes increases selection bias, at
least for some conditioning variables.


