
8
Overview of endogeneity

"A government study today revealed that 83% of statistics are misleading."
- Ziggy by Tom Wilson

As discussed in chapter 2, managers actively make production-investment, fi-
nancing, and accounting choices. These choices are intertwined and far from in-
nocuous. Design of accounting (like other information systems) is highly depen-
dent on the implications and responses to accounting information in combination
with other information. As these decisions are interrelated, their analysis is inher-
ently endogenous (Demski [2004]). Endogeneity presents substantial challenges
for econometric analysis. The behavior of unobservable (to the analyst) compo-
nents and omitted, correlated variables are continuing themes.
In this chapter, we briefly overview econometric analysis of endogeneity, ex-

plore some highly stylized examples that motivate its importance, and lay some
ground work for exploring treatment effects in the following chapters. A theme
for this discussion is that econometric analysis of endogeneity is a three-legged
problem: theory, data, and model specification (or logically consistent discovery
of the DGP). Failure to support any leg and the entire inquiry is likely to collapse.
Progress is impeded when authors fail to explicitly define the causal effects of in-
terest or state what conditions are perceived for identification of the estimand of
interest. As Heckman and Vytlacil [2007] argue in regards to the economics litera-
ture, this makes it difficult to build upon past literature and amass a coherent body
of evidence. We explore various identifying conditions in the ensuing discussions
of endogenous causal effects.
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124 8. Overview of endogeneity

8.1 Overview

Many, perhaps all, endogeneity concerns can be expressed in the form of an omit-
ted, correlated variable problem. We remind the reader (see chapter 3) that stan-
dard parameter estimators (such as OLS) are not asymptotically consistent in the
face of omitted, correlated variables.

8.1.1 Simultaneous equations

When many of us think of endogeneity, simultaneous equations is one of the first
settings that comes to mind. That is, when we have multiple variables whose be-
havior are interrelated such that they are effectively simultaneously determined,
endogeneity is a first-order consideration. For instance, consider a simple exam-
ple where the DGP is expressed as the following structural equations1

Y1 = !1X1 + !2Y2 + "1

Y2 = #1X2 + #2Y1 + "2

Clearly, little can be said about either Y1 or Y2 without including the other (a form
of omitted variable). It is not possible to speak of manipulation of only Y1 or Y2.
Perhaps, this is most readily apparent if we rewrite the equations in reduced form:
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which can be rewritten as

Y1 = $11X1 + $12X2 + %1

Y2 = $21X1 + $22X2 + %2

where V ar

!
%1
%2

"
=

!
v11 v12
v12 v22

"
. Since rank and order conditions are satisfied

(assuming !2#2 "= 1), the structural parameters can be recovered from the reduced

1Goldberger [1972, p. 979] defines structural equations as an approach that employs “stochastic
models in which each equation represents a causal link, rather than a mere empirical association.”
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form parameters as follows.
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$11

V ar ["1] = v11 +
$12 (v22$12 ! 2v12$22)

$222

V ar ["2] = v22 +
$21 (v11$21 ! 2v12$11)

$211

Cov ["1, "2] =
v12 ($12$21 + $11$22)! v11$21$22 ! v22$11$12
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Suppose the causal effects of interest are !1 and #1. Examination of the reduced
form equations reveals that ignoring simultaneity produces inconsistent estimates
of !1 and #1 even ifX1 and X2 are uncorrelated (unless !2 or #2 = 0).
More naively, suppose we attempt to estimate the structural equations directly

(say, via OLS). Since the response variables are each a function of the other re-
sponse variable, the regressors are correlated with the errors and the fundamental
condition of regression E

%
XT "

&
= 0 is violated and OLS parameter estimates

are inconsistent. A couple of recursive substitutions highlight the point. For illus-
trative purposes, we work with Y1 but the same ideas obviously apply to Y2.

Y1 = !1X1 + !2Y2 + "1

= !1X1 + !2 (#1X2 + #2Y1 + "2) + "1

Of course, if E
%
"T2 "1

&
"= 0 then we’ve demonstrated the point; notice this is

a standard endogenous regressor problem. Simultaneity bias (inconsistency) is
illustrated with one more substitution.

Y1 = !1X1 + !2 (#1X2 + #2 (!1X1 + !2Y2 + "1) + "2) + "1

Since Y2 is a function of Y1, inclusion of Y2 as a regressor produces a clear viola-
tion of E

%
XT "

&
= 0 as we have E

%
"T1 "1

&
"= 0.

Notice, we can think of simultaneity problems as arising from omitted, cor-
related unobservable variables. Hence, this simple example effectively identifies
the basis — omitted, correlated unobservable variables— for most (perhaps all)
endogeneity concerns. Further, this simple structural example readily connects to
estimation of causal effects.

Definition 8.1 Causal effects are the ceteris paribus response to a change in vari-

able or parameter (Marshall [1961] and Heckman [2000]).

As the simultaneity setting illustrates, endogeneity often makes it infeasible to
“turn one dial at a time.”
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8.1.2 Endogenous regressors

Linear models with endogenous regressors are commonplace (see Larcker and
Rusticus [2004] for an extensive review of the accounting literature). Suppose the
DGP is

Y1 = X1!1 + Y2!2 + "1

Y2 = #1X2 + "2

where E
%
XT "1

&
= 0 and E

%
XT
2 "2

&
= 0 but E

%
"T2 "1

&
"= 0. In other words,

Y1 = !1X1 + !2 (#1X2 + "2) + "1. Of course, OLS produces inconsistent es-
timates. Instrumental variables (IV) are a standard remedy. Suppose we observe
variables X2. Variables X2 are clearly instruments as they are unrelated to "1 but
highly correlated with the endogenous regressors Y2 (assuming #1 "= 0).
Two-stage least squares instrumental variable (2SLS-IV) estimation is a stan-

dard approach for dealing with endogenous regressors. In the first stage, project
all of the regressors (endogenous plus exogenous) onto the instruments plus all
other exogenous regressors (see chapter 3 on overidentifying restrictions and IV).
Let X =
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In the second stage, replace the regressors with the predicted values from the first
stage regression.
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To see this, recall the inverse of the partitioned matrix
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via block "rank-one" LDLT representation (see FWL in chapter 3) is

)!
I 0
A I

" !
Y T2 PZY2 0

0 XT
1 PZMPZY2PZX1

" !
I AT

0 I

"*!1



8.1 Overview 127

where A = XT
1 PZY2

'
Y T2 PZY2

(!1
. Simplification gives

!
I !AT
0 I

" ! '
Y T2 PZY2

(!1
0

0 B

" !
I 0
!A I

"

=

! '
Y T2 PZY2

(!1
+ATBA !ATB

!BA B

"

where
B =

'
XT
1 PZMPZY2PZX1

(!1

and
MPZY2 = I ! PZY2

'
Y T2 PZY2

(!1
Y T2 PZ

Now, focus on the second equation.
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Since PZMPZY2 = PZMPZY2PZ , the second equation can be rewritten as

'
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Since MPZY2PZY2 = 0 (by orthogonality) and p lim 1
nPZ"1 = 0, the estimator

for !1 is consistent. The derivation is completed by reversing the order of the
variables in the equations again to show that !2 is consistent.

2

8.1.3 Fixed effects

Fixed effects models allow for time and/or individual differences in panel data.
That is, separate regressions, say for m firms in the sample, are estimated with
differences in intercepts but pooled slopes as illustrated in figure 8.1.

Y = X! + Z# +

m/

j=1

&jDj + "

2Of course, we could simplify the first equation but it seems very messy so why not exploit the
effort we’ve already undertaken.
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Figure 8.1: Fixed effects regression curves

where Dj is a firm indicator variable, X represents the experimental regressors
and Z the control variables.3 Geometrically, it’s instructive to think of FWL (see
chapter 3) where we condition on all control variables, then the experimental ex-
planatory variables of interest are evaluated conditional on the control variables.4

MZY =MZX! +

m/

j=1

&jMZDj + '

Of course, we can also consider semi- and non-parametric fixed effects regres-
sions as well if we think of the nonparametric analog to FWL initiated by Robin-
son [1988] in the form of partial linear models and Stoker’s [1991] partial index
models (see chapter 6).
Causal effects are identified via a fixed effects model when there are constant,

unobserved (otherwise they could be included as covariates) individual character-
istics that because they are related to both outcomes and causing variables would
be omitted, correlated variables if ignored. Differencing approaches such as fixed
effects are simple and effective so long as individual fixed effects do not vary
across periods and any correlation between treatment and unobserved outcome
potential is described by an additive time-invariant covariate. Since this condition

3Clearly, time fixed effects can be accommodated in analogous fashion with time subscripts and
indicator variables replacing the firm or individual variables.

4Of course, if an intercept is included in the fixed effects regression then the summation index is
overm! 1 firms or individuals instead ofm.
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doesn’t usually follow from economic theory or institutionally-relevant informa-
tion, the utility of the fixed effects approach for identifying causal effects is lim-
ited.5

Nikolaev and Van Lent [2005] study variation through time in a firm’s dis-
closure quality and its impact on the marginal cost of debt. In their setting, un-
observable cross-firm heterogeneity, presumed largely constant through time, is
accommodated via firm fixed effects. That is, firm-by-firm regressions that vary in
intercept but have the same slope are estimated. Nikolaev and Van Lent argue that
omitted variables and endogeneity plague evaluation of the impact of disclosure
quality on cost of debt capital and the problem is mitigated by fixed effects.
Robinson [1989] concludes that fixed effects analysis more effectively copes

with endogeneity than longitudinal, control function, or IV approaches in the
analysis of the differential effects of union wages. In his setting, endogeneity is
primarily related to worker behavior and measurement error. Robinson suggests
that while there is wide agreement that union status is not exogenous, there is little
consistency in teasing out the effect of union status on wages. While longitudi-
nal analysis typically reports smaller effects than OLS, cross-sectional approaches
such as IV or control function approaches (inverse Mills ratio) typically report
larger effects than OLS. Robinson concludes that a simple fixed effects analysis of
union status is a good compromise. (Also, see Wooldridge [2002], p. 581-590.)
On the other hand, Lalonde [1986] finds that regression approaches (including

fixed effects) perform poorly compared with "experimental" methods in the analy-
sis of the National Supported Work (NSW) training program. Dehejia and Wahba
[1995] reanalyze the NSW data via propensity score matching and find similar re-
sults to Lalonde’s experimental evidence. Once again we find no single approach
works in all settings and the appropriate method depends on the context.

8.1.4 Differences-in-differences

Differences-in-differences (DID) is a close cousin to fixed effects. DID is a panel
data approach that identifies causal effects when certain groups are treated and
other groups are not. The treated are exposed to sharp changes in the causing
variable due to shifts in the economic environment or changes in (government)
policy. Typically, potential outcomes, in the absence of the change, are composed
of the sum of a time effect that is common to all groups and a time invariant
individual fixed effect, say,

E [Y0 | t, i] = !t + #i

Then, the causal effect ( is simply the difference between expected outcomes with
treatment and expected outcomes without treatment

E [Y1 | t, i] = E [Y0 | t, i] + (

5It is well-known that fixed effects yield inconsistent parameter estimates when the model involves
lagged dependent variables (see Chamberlain [1984] and Angrist and Krueger [1998]).
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The key identifying condition forDID is the parameters associated with (treatment
time and treatment group) interaction terms are zero in the absence of intervention.
Sometimes apparent interventions are themselves terminated and provide op-

portunities to explore the absence of intervention. Relatedly, R. A. Fisher (quoted
in Cochran [1965]) suggested the case for causality is stronger when the model has
many implications supported by the evidence. This emerges in terms of robustness
checks, exploration of sub-populations in which treatment effects should not be
observed (because the subpopulation is insensitive or immune to treatment or did
not receive treatment), and comparison of experimental and non-experimental re-
search methods (Lalonde [1986]). However, general equilibrium forces may con-
found direct evidence from such absence of intervention analyses. As Angrist and
Krueger [1998, p. 56] point out, "Tests of refutability may have flaws. It is possi-
ble, for example, that a subpopulation that is believed unaffected by the interven-
tion is indirectly affected by it."

8.1.5 Bivariate probit

A variation on a standard self-selection theme is when both selection and outcome
equations are observed as discrete responses. If the unobservables are jointly nor-
mally distributed a bivariate probit accommodates endogeneity in the same way
that a standard Heckman (inverse Mills ratio) control function approach works
with continuous outcome response. Endogeneity is reflected in nonzero correla-
tion among the unobservables. Dubin and Rivers [1989] provide a straightforward
overview of this approach.

UD = Z) + V , D =
1 if UD > 0
0 otherwise

Y " = X! + ", Y =
1 if Y " > 0
0 otherwise
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"

Following the shorthand of Greene [1997], let qi1 = 2UiD!1 and qi2 = 2Yi!1,
so that qij = 1 or !1. The bivariate normal cumulative distribution function is

Pr (X1 < x1, X2 < x2) = "2 (z1, z2, *) =
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denotes the bivariate normal (unit variance) density. Now let

zi1 = )
TZi wi1 = qi1zi1

zi2 = !
TXi wi2 = qi2zi2



8.1 Overview 131

*i" = qi1qi2*

With this setup, the log-likelihood function can be written in a simple form where
all the sign changes associated with D and Y equal to 0 and 1 are accounted for

lnL =

n/

i=1

"2 (wi1, wi2, *i")

and maximization proceeds in the usual manner (see, for example, Greene [1997]
for details).6

8.1.6 Simultaneous probit

Suppose we’re investigating a discrete choice setting where an experimental vari-
able (regressor) is endogenously determined. An example is Bagnoli, Liu, and
Watts [2006] (BLW). BLW are interested in the effect of family ownership on
the inclusion of covenants in debt contracts. Terms of debt contracts, such as
covenants, are likely influenced by interest rates and interest rates are likely de-
termined simultaneously with terms such as covenants. A variety of limited in-
formation approaches7 have been proposed for estimating these models - broadly
referred to as simultaneous probit models (see Rivers and Vuong [1988]). BLW
adopted two stage conditional maximum likelihood estimation (2SCML; discussed
below).
The base model involves a structural equation

y" = Y # +X1! + u

where discrete D is observed

Di = 1 if y"i > 0
0 if y"i # 0

The endogenous explanatory variables have reduced form

Y = #X + V

where exogenous variableX and X1 are related via matrix J , X1 = JX , Y is an
n$mmatrix of endogenous variables,X1 is n$k, andX is n$p. The following
conditions are applied to all variations:

Condition 8.1 (Xi, ui, Vi) is iid with Xi having finite positive definite variance
matrix !XX , and (ui, Vi | Xi) are jointly normally distributed with mean zero

and finite positive definite variance matrix $ =

!
-uu !uV

!V u !V V

"
.

6Evans and Schwab [1995] employ bivariate probit to empirically estimate causal effects of school-
ing.

7They are called limited information approaches in that they typically focus on one equation at a
time and hence ignore information in other equations.
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Condition 8.2 rank(#, J) = m+ k.

Condition 8.3 (#,!,#,$) lie in the interior of a compact parameter space %.

Identification of the parameters in the structural equation involves normaliza-
tion. A convenient normalization is

V ar [y"i | Xi, Yi] = -uu ! .
T
!V V . = 1,

where . = !!1V V !V u, the structural equation is rewritten as

y" = Y # +X1! + V .+ %

and %i = ui ! V Ti . % N
-
0,-uu ! .T!V V . = 1

.
.

Limited information maximum likelihood (LIML)

A limited information maximum likelihood (LIML) approach was adopted by
Godfrey and Wickens [1982]. The likelihood function is
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where ci = !
'
Y Ti # !XT

1i!
(
. Following some manipulation, estimation involves

maximizing the log-likelihood with respect to (#,!,.,#,!V V ). As LIML is com-
putationally difficult in large models, it has received little attention except as a
benchmark case.

Instrumental variables probit (IVP)

Lee [1981] proposed an instrumental variables probit (IVP). Lee rewrites the struc-
tural equation in reduced form

y"i =
'
#
TXi

(
# +X1i! + Vi.+ %i

The log-likelihood forD givenX is
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where " (·) denotes a standard normal cdf and

#" =
!
"

!" =
#
"
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$2 = V ar
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Consistent estimates for #, #̂, are obtained via OLS. Then, utilizing #̂ in place of
#, maximization of the log-likelihood with respect to #" and !" is computed via
m regressions followed by a probit estimation.

Generalized two-stage simultaneous probit (G2SP)

Amemiya [1978] suggested a general method for obtaining structural parameter
estimates from reduced form estimates (G2SP). Heckman’s [1978] two-stage en-
dogenous dummy variable model is a special case of G2SP. Amemiya’s proposal
is a variation on IVP where the unconstrained log-likelihood is maximized with
respect to /"

n/
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Di log"
'
XT
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(
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1! "
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i /"
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In terms of the sample estimates we have the regression problem
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.
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= Ĥ

!
#"
!"

"
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where e = (/̂" ! /")!
-
#̂!#

.
#".OLS provides consistent estimates of #" and

!" but GLS is more efficient. Let V̂ denote an asymptotic consistent estimator for
the variance e. Then Amemiya’s G2SP estimator is

!
#̂"
!̂"

"
=
-
ĤT V̂ !1Ĥ

.!1
ĤT V̂ !1/̂"

This last step constitutes one more computational step (in addition to the m re-
duced form regressions and one probit) than required for IVP (and 2SCML de-
scribed below).

Two-stage conditional maximum likelihood (2SCML)

Rivers and Vuong [1988] proposed two-stage conditional maximum likelihood
(2SCML). Vuong [1984] notes when the joint density for a set of endogenous
variables can be factored into a conditional distribution for one variable and a
marginal distribution for the remaining variables, estimation can often be sim-
plified by using conditional maximum likelihood methods. In the simultaneous
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probit setting, the joint density forDi and Yi factors into a probit likelihood and a
normal density.

h (Di, Yi | Xi; #,!,.,#,!V V )

= f (Di | Yi, Xi; #,!,.,#) g (Yi | Xi;#,!V V )
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Two steps are utilized to compute the 2SCML estimator. First, the marginal log-
likelihood for Yi is maximized with respect to #̂ and !̂V V . This is computed
by m reduced form regressions of Y on X to obtain #̂. Let the residuals be

V̂i = Yi ! #̂Xi, then the standard variance estimator is !̂V V = n!1
n/

i=1

V̂iV̂
T
i .

Second, replacing # with #̂, the conditional log-likelihood for Di is maximized

with respect to
-
#̂, !̂, .̂

.
. This is computed via a probit analysis of Di with re-

gressors Yi, X1i, and V̂i.
2SCML provides several convenient tests of endogeneity. When Yi and ui are

correlated, standard probit produces inconsistent estimators for # and !. However,
if !V u = 0, or equivalently, . = 0, the Yis are effectively exogenous. A modified
Wald statistic is
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-
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with Zi =

!
Yi
X1i

"
, ( =

!
#

!

"
, and + (·) is the standard normal density. Notice

the modified Wald statistic draws from the variance estimator under the null. The
conditional score statistic is
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1
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0L
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0.T
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where
-
#̃, !̃

.
are the standard probit maximum likelihood estimators. The condi-

tional likelihood ratio statistic is

CLR = 2
6
L
-
#̂, !̂, .̂, #̂

.
! L

-
#̂, !̂, 0, #̂

.7

As is typical (see chapter 3), the modifiedWald, conditional score, and conditional
likelihood ratio statistics have the same asymptotic properties.8

8.1.7 Strategic choice model

Amemiya [1974] and Heckman [1978] suggest resolving identification problems
in simultaneous probit models by making the model recursive. Bresnahan and
Reiss [1990] show that this approach rules out interesting interactions in strate-
gic choice models. Alternatively, they propose modifying the error structure to
identify unique equilibria in strategic, multi-person choice models.
Statistical analysis of strategic choice extends random utility analysis by adding

game structure and Nash equilibrium strategies (Bresnahan and Reiss [1990, 1991]
and Berry [1992]). McKelvey and Palfrey [1995] proposed quantal response equi-
librium analysis by assigning extreme value (logistic) distributed random errors to
players’ strategies. Strategic error by the players makes the model amenable to sta-
tistical analysis as the likelihood function does not degenerate. Signorino [2003]
extends the idea to political science by replacing extreme value errors with as-
signment of normally distributed errors associated with analyst uncertainty and/or
private information regarding the players’ utility for outcomes. Since analyst er-
ror due to unobservable components is ubiquitous in business and economic data
and private information problems are typical in settings where accounting plays
an important role, we focus on the game setting with analyst error and private
information.
A simple two player, sequential game with analyst error and private information

(combined as ,) is depicted in figure 8.2. Player A moves first by playing either
left (l) or right (r). Player B moves next but player A’s choice depends on the
anticipated response of player B to player A’s move. For simplicity, assume ,i %
N
'
0,-2I

(
where

,Ti =
%
,AlLi ,BlLi ,AlRi ,BlRi ,ArLi ,BrLi ,ArRi ,BrRi

&

8Rivers and Vuong also identify three Hausman-type test statistics for endogeneity but their simu-
lations suggest the modifiedWald, conditional score, and conditional likelihood ratio statistics perform
at least as well and in most cases better.
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Figure 8.2: Strategic choice game tree

Since choice is scale-free (see chapter 5) maximum likelihood estimation proceeds
with -2 normalized to 1.
The log-likelihood is

n/

i=1

YlLi log (PlLi) + YlRi log (PlRi) + YrLi log (PrLi) + YrRi log (PrRi)

where Yjki = 1 if strategy j is played by A and k is played by B for sam-
ple i, and Pjki is the probability that strategy j is played by A and k is played
by B for sample i. The latter requires some elaboration. Sequential play yields
Pjk = P(k|j)Pj . Now, only the conditional and marginal probabilities remain to
be identified. Player B’s strategy depends on player A’s observed move. Hence,

P(L|l) = "

)
UlL ! UlR&

2-2

*

P(R|l) = 1! P(L|l)
P(R|r) = 1! P(L|r)

P(L|r) = "

)
UrL ! UrR&

2-2

*

Player A’s strategy however depends on B’s response to A’s move. Therefore,

Pl = "

8

99:
P(L|l)UlL ! P(L|r)UrL + P(R|l)UlR ! P(R|r)UrR;-

P 2(L|l) + P
2
(L|r) + P

2
(R|l) + P

2
(R|r)

.
-2

<

==>
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and
Pr = 1! Pl

Usually, the observable portion of expected utility is modeled as an index func-
tion; for Player B we have

Ujk ! Ujk! = U
B
j =

-
Xjk !Xjk!

.
!Bjk = X

B
j !

B
j

Since Player B moves following Player A, stochastic analysis of Player B’s utility
is analogous to the simple binary discrete choice problem. That is,

P(L|l) = "

)
UlL ! UlR&

2-2

*

= "

+
XB
l !

B
l&
2

,

and

P(L|r) = "

+
XB
r !

B
r&
2

,

However, stochastic analysis of Player A’s utility is a little more subtle. Player
A’s expected utility depends on Player B’s response to Player A’s move. Hence,
Player A’s utilities are weighted by the conditional probabilities associated with
Player B’s strategies. That is, from an estimation perspective the regressors X
interact with the conditional probabilities to determine the coefficients in Player
A’s index function.

Ujk ! Uj!k = Xjk!
A
jk !Xj!k!

A
j!k

Consequently, Player A’s contribution to the likelihood function is a bit more com-
plex than that representing Player B’s utilities.9 Stochastic analysis of Player A’s
strategy is

Pl = "

8

99:
P(L|l)UlL ! P(L|r)UrL + P(R|l)UlR ! P(R|r)UrR;-

P 2(L|l) + P
2
(L|r) + P

2
(R|l) + P

2
(R|r)

.
-2

<

==>

= "

8

999:

P(L|l)XlL!
A
lL ! P(L|r)XrL!

A
rL

+P(R|l)XlR!
A
lR ! P(R|r)XrR!

A
rR;-

P 2(L|l) + P
2
(L|r) + P

2
(R|l) + P

2
(R|r)

.

<

===>

9Recall the analysis is stochastic because the analyst doesn’t observe part of the agents’ utilities.
Likewise, private information produces agent uncertainty regarding the other player’s utility. Hence,
private information produces a similar stochastic analysis. This probabilistic nature ensures that the
likelihood doesn’t degenerate even in a game of pure strategies.
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Example 8.1 Consider a simple experiment comparing a sequential strategic choice

model with standard binary choice models for each player. We generated 200 sim-
ulated samples of size n = 2, 000 with uniformly distributed regressors and stan-
dard normal errors. In particular,

XB
l % U (!2, 2)

XB
r % U (!5, 5)

XA
lL, X

A
lR, X

A
rL, X

A
rR % U (!3, 3)

and

!Bl =
%
!0.5 1

&T

!Br =
%
0.5 !1

&T

!A =
%
0.5 1 1 !1 !1

&T

where the leading element of each vector is an intercept !0.
10 Results (means,

standard deviations, and the 0.01 and 0.99 quantiles) are reported in tables 8.1
and 8.2. The standard discrete choice (DC) estimates seem to be more systemati-

Table 8.1: Strategic choice analysis for player B

!Bl0 !Bl !Br0 !Br
parameter !0.5 1 0.5 !1
SC mean !0.482 0.932 0.460 !0.953
DC mean !0.357 0.711 0.354 !0.713
SC std dev 0.061 0.057 0.101 0.059
DC std dev 0.035 0.033 0.050 0.030

SC

!
0.01,
0.99

"

quantiles

!
!0.62,
!0.34

" !
0.80,
1.10

" !
0.22,
0.69

" !
!1.10,
0.82

"

DC

!
0.01,
0.99

"

quantiles

!
!0.43,
!0.29

" !
0.65,
0.80

" !
0.23,
0.47

" !
!0.79,
!0.64

"

cally biased towards zero. Tables 8.3 and 8.4 expressly compare the parameter es-

timate differences between the strategic choice model (SC) and the discrete choice

models (DC). Hence, not only are the standard discrete choice parameter esti-

mates biased toward zero but also there is almost no overlap with the (0.01, 0.99)
interval estimates for the strategic choice model.

As in the case of conditionally-heteroskedastic probit (see chapter 5), marginal
probability effects of regressors are likely to be nonmonotonic due to cross agent

10The elements of !A correspond to
!
intercept !AlL !AlR !ArL !ArR

"
where the inter-

cept is the mean difference in observed utility (conditional on the regressors) between strategies l and
r.
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Table 8.2: Strategic choice analysis for player A

!A0 !AlL !AlR
parameter 0.5 1 1
SC mean 0.462 0.921 0.891
DC mean 0.304 0.265 0.360
SC std dev 0.044 0.067 0.053
DC std dev 0.032 0.022 0.021

SC

)
0.01,
0.99

*

quantiles

)
0.34,
0.56

* )
0.78,
1.08

* )
0.78,
1.01

*

DC

)
0.01,
0.99

*

quantiles

)
0.23,
0.38

* )
0.23,
0.32

* )
0.31,
0.41

*

!ArL !ArR
parameter !1 !1
SC mean !0.911 !0.897
DC mean !0.352 !0.297
SC std dev 0.053 0.058
DC std dev 0.022 0.023

SC

)
0.01,
0.99

*

quantiles

)
!1.04,
!0.79

* )
!1.05,
!0.78

*

DC

)
0.01,
0.99

*

quantiles

)
!0.40,
!0.30

* )
!0.34,
!0.25

*

probability interactions. Indeed, comparison of marginal effects for strategic pro-
bit with those of standard binary probit helps illustrate the contrast between statis-
tical analysis of strategic and single person decisions. For the sequential strategic
game above, the marginal probabilities for player A’s regressors include

0PlLj
0XA

ikj

= P(L|l)jflj (signj)P(k|i)j!
A
ikDen

! 1
2

0PlRj
0XA

ikj

= P(R|l)jflj (signj)P(k|i)j!
A
ikDen

! 1
2

0PrLj
0XA

ikj

= P(L|r)jfrj (signj)P(k|i)j!
A
ikDen

! 1
2

0PrRj
0XA

ikj

= P(R|r)jfrj (signj)P(k|i)j!
A
ikDen

! 1
2

where signj is the sign of the Xikj term in Pmnj , fij and f(k|i)j is the standard
normal density function evaluated at the same arguments as Pij and P(k|i)j ,

Den =
-
P 2(L|l)j + P

2
(L|r)j + P

2
(R|l)j + P

2
(R|r)j

.
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Table 8.3: Parameter differences in strategic choice analysis for player B

SC-DC !Bl0 !Bl !Br0 !Br
parameter !0.5 1 0.5 !1
mean !0.125 0.221 0.106 !0.241
std dev 0.039 0.041 0.079 0.049!
0.01,
0.99

"

quantiles

!
!0.22,
!0.03

" !
0.13,
0.33

" !
!0.06,
0.29

" !
!0.36,
!0.14

"

Table 8.4: Parameter differences in strategic choice analysis for player A

SC-DC !A0 !AlL !AlR
parameter 0.5 1 1
mean 0.158 0.656 0.531
std dev 0.027 0.056 0.044

(0.01, 0.99)
quantiles

(0.10, 0.22) (0.54, 0.80) (0.43, 0.62)

SC-DC !ArL !ArR
parameter !1 !1
mean !0.559 !0.600
std dev 0.045 0.050

(0.01, 0.99)
quantiles

(!0.67,!0.46) (!0.73,!0.49)

and

Num =

+
P(L|l)jX

A
lLj!

A
lL ! P(L|r)jXA

rLj!
A
rL

+P(R|l)jX
A
lRj!

A
lR ! P(R|r)jXA

rRj!
A
rR

,

Similarly, the marginal probabilities with respect to player B’s regressors include

0PlLj
0XB

lj

= f(L|l)j
!Bl&
2
Plj + P(L|l)jfljf(L|l)j

!Bl&
2

$

? -
XA
lLj!

A
lL !XA

lRj!
A
lR

.
Den!

1
2

!NumDen!
3
2

'
P(L|l)j ! P(R|l)j

(

@

0PlLj
0XB

rj

= P(L|l)jfljf(L|r)j
!Br&
2

$

?
!
-
XA
rLj!

A
rL !XA

rRj!
A
rR

.
Den!

1
2

!NumDen!
3
2

'
P(L|r)j ! P(R|r)j

(

@
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0PlRj
0XB

lj

= f(R|l)j
!!Bl&
2
Plj + P(R|l)jfljf(R|l)j

!Bl&
2

$

? -
XA
lLj!

A
lL !XA

lRj!
A
lR

.
Den!

1
2

!NumDen!
3
2

'
P(L|l)j ! P(R|l)j

(

@

0PlRj
0XB

rj

= P(R|l)jfljf(R|r)j
!!Bl&
2

$

? -
XA
rLj!

A
rL !XA

rRj!
A
rR

.
Den!

1
2

+NumDen!
3
2

'
P(L|r)j ! P(R|r)j

(

@

0PrLj
0XB

lj

= P(L|r)jfrjf(L|l)j
!Bl&
2

$

?
!
-
XA
lLj!

A
lL !XA

lRj!
A
lR

.
Den!

1
2

+NumDen!
3
2

'
P(L|l)j ! P(R|l)j

(

@

0PrLj
0XB

rj

= f(L|r)j
!Br&
2
Prj + P(L|r)jfrjf(L|r)j

!Br&
2

$

? -
XA
rLj!

A
rL !XA

rRj!
A
rR

.
Den!

1
2

+NumDen!
3
2

'
P(L|r)j ! P(R|r)j

(

@

0PrRj
0XB

lj

= P(R|r)jfrjf(R|l)j
!!Bl&
2

$

? -
XA
lLj!

A
lL !XA

lRj!
A
lR

.
Den!

1
2

!NumDen!
3
2

'
P(L|l)j ! P(R|l)j

(

@

0PrRj
0XB

rj

= f(R|r)j
!!Br&
2
Prj + P(R|r)jfrjf(R|r)j

!Br&
2

$

? -
XA
rLj!

A
rL !XA

rRj!
A
rR

.
Den!

1
2

+NumDen!
3
2

'
P(L|r)j ! P(R|r)j

(

@

Clearly, analyzing responses to anticipated moves by other agents who themselves
are anticipating responses changes the game. In other words, endogeneity is fun-
damental to the analysis of strategic play.
Multi-person strategic choice models can be extended in a variety of ways in-

cluding simultaneous move games, games with learning, games with private infor-
mation, games with multiple equilibria, etc. (Bresnahan and Reiss [1990], Tamer
[2003]). The key point is that strategic interaction is endogenous and standard
(single-person) discrete choice models (as well as simultaneous probit models)
ignore this source of endogeneity.
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8.1.8 Sample selection

A common problem involves estimation of ! for the model

Y " = X! + "

however sample selection results in Y being observed only for individuals receiv-
ing treatment (when D = 1). The data are censored but not at a fixed value (as
in a Tobit problem; see chapter 5). Treating sample selection D as an exogenous
variable is inappropriate if the unobservable portion of the selection equation, say
VD, is correlated with unobservables in the outcome equation ".
Heckman [1974, 1976, 1979] addressed this problem and proposed the classic

two stage approach. In the first stage, estimate the selection equation via probit.
Identification in this model does not depend on an exclusion restriction (Z need
not include variables appropriately excluded fromX) but if instruments are avail-
able they’re likely to reduce collinearity issues.
To fix ideas, identification conditions include

Condition 8.4 (X,D) are always observed, Y1 is observed when D = 1 (D" >
1),

Condition 8.5 (", VD) are independent ofX with mean zero,

Condition 8.6 VD % N (0, 1),

Condition 8.7 E [" | VD] = #1VD.
11

The two-stage procedure estimates ) from a first stage probit.

D" = Z) ! VD

These estimates A) are used to construct the inverse Mills ratio .i =
$(Zi!%)
!(Zi!%)

which

is utilized as a covariate in the second stage regression.

Y1 = X! + #.+ %

where E [% | X,.] = 0. Given proper specification of the selection equation (in-
cluding normality of VD), Heckman shows that the two-step estimator is asymp-
totically consistent (if not efficient) for !, the focal parameter of the analysis.12

11Bivariate normality of (", VD) is often posed, but strictly speaking is not required for identifica-
tion.
12It should be noted that even though Heckman’s two stage approach is commonly employed to

estimate treatment effects (discussed later), treatment effects are not the object of the sample selection
model. In fact, since treatment effects involve counterfactuals and we have no data from which to
identify population parameters for the counterfactuals, treatment effects in this setting are unassailable.
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A semi-nonparametric alternative

Concern over reliance on normal probability assignment to unobservables in the
selection equation as well as the functional form of the outcome equation, has
resulted in numerous proposals to relax these conditions. Ahn and Powell [1993]
provide an alternative via their semi-nonparametric two stage approach. However,
nonparametric identification involves an exclusion restriction or, in other words, at
least one instrument. That is, (at least) one variable included in the selection equa-
tion is properly omitted from the outcome equation. Intuitively, this is because the
selection equation could be linear and the second stage would then involve colin-
ear regressors. Ahn and Powell propose a nonparametric selection model coupled
with a partial index outcome (second stage) model. The first stage selection index
is estimated via nonparametric regression

Agi =

n/

j=1

K
-
wi!wj
h1

.
Dj

n/

j=1

K
-
wi!wj
h1

.

The second stage uses instruments Z, which are functions ofW , and the estimated
selection index.

A! =
6
ASXX

7!1 ASXY

where

ASXX =

)
n

2

*!1 n!1/

i=1

n/

j=i+1

A$ij (zi ! zj) (xi ! xj)T

ASXY =

)
n

2

*!1 n!1/

i=1

n/

j=i+1

A$ij (zi ! zj) (yi ! yj)

and

A$ij =
1

h2
K

)
Agi ! Agj
h2

*
DiDj

Ahn and Powell show the instrumental variable density-weighted average deriva-
tive estimator for ! achieves root-n convergence (see the discussion of nonpara-
metric regression and Powell, Stock, and Stoker’s [1989] instrumental variable
density-weighted average derivative estimator in chapter 6).

8.1.9 Duration models

Sometimes the question involves how long to complete a task. For instance, how
long to complete an audit (internal or external), how long to turn around a dis-
tressed business unit or firm, how long to complete custom projects, how long will
a recession last, and so on. Such questions can be addressed via duration models.
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The most popular duration models are proportional hazard models. Analysis of
such questions can be plagued by the same challenges of endogeneity and unob-
servable heterogeneity as other regression models.
We’ll explore a standard version of the model and a couple of relaxations.

Namely, we’ll look at Horowitz’s [1999] semiparametric proportional hazard (clas-
sical) model with unobserved heterogeneity and Campolieti’s [2001] Bayesian
semiparametric duration model with unobserved heterogeneity.

Unconditional hazard rate

The probability that an individual leaves a state during a specified interval given
the individual was previously in the particular state is

Pr (t < T < t+ h | T > t)

The hazard function, then is . (t) = lim
h$0

Pr(t<T<t+h|T>t)
h , the instantaneous rate

of leaving per unit of time. To relate this to the hazard function write

Pr (t < T < t+ h | T > t) =
Pr (t < T < t+ h)

Pr (T > t)

=
F (t+ h)! F (t)

1! F (t)

where F is the probability distribution function and f is the density function for
T . When F is differentiable, the hazard rate is seen as the limit of the right hand
side divided by h as h approaches 0 (from above)

. (t) = lim
h$0

F (t+ h)! F (t)
h

1

1! F (t)

=
f (t)

1! F (t)

To move this closer to a version of the model that is frequently employed define
the integrated hazard function as13

& (t) '
t0

0

. (s) ds

Now,

d

t0

0

. (s) ds

dt
= . (t)

13The lower limit of integration is due to F (0) = 0.
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and

. (t) =
f (t)

1! F (t)
=
f (t)

S (t)
= !

d lnS (t)

dt

Hence, ! lnS (t) =
t0

0

. (s) ds and the survivor function is

S (t) = exp

B

C!
t0

0

. (s) ds

D

E

Since S (t) = 1! F (t), the distribution function can be written

F (t) = 1! exp

B

C!
t0

0

. (s) ds

D

E

and the density function (following differentiation) can be written

f (t) = . (t) exp

B

C!
t0

0

. (s) ds

D

E

And all probabilities can conveniently be expressed in terms of the hazard func-
tion. For instance,

Pr (T ( t2 | T ( t1) =
1! F (t2)
1! F (t1)

= exp

B

C!
t20

t1

. (s) ds

D

E

for t2 > t1. The above discussion focuses on unconditional hazard rates but fre-
quently we’re interested in conditional hazard rates.

Regression (conditional hazard rate) models

Conditional hazard rate models may be parametric or essentially nonparametric
(Cox [1972]). Parametric models focus on . (t | x) where the conditional distrib-
ution is known (typically, Weibull, exponential, or lognormal). Much conditional
duration analysis is based on the proportional hazard model. The proportional haz-
ard model relates the hazard rate for an individual with characteristics x to some
(perhaps unspecified) baseline hazard rate by some positive function of x. Since,
as seen above, the probability of change is an exponential function it is convenient
to also express this positive function as an exponential function. The proportional
hazard model then is

. (t | x, u) = .0 (t) exp [! (x! + u)]
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where . is the hazard that T = t conditional on observablesX = x and unobserv-
ables U = u, .0 is the baseline hazard function, and ! is a vector of (constant)
parameters.
A common parameterization follows from a Weibull (&, #) distribution. Then,

the baseline hazard rate is

.0 (t) =
&

#

)
t

#

*&!1

and the hazard rate is

. (t | x1) =
&

#

)
t

#

*&!1
exp [!x1!1]

The latter is frequently rewritten by adding a vector of ones to x1 (denote this x)
and absorbing # (denote the augmented parameter vector !) so that

. (t | x) = &t&!1 exp [!x!]

This model can be estimated in standard fashion via maximization of the log-
likelihood.
Since Cox’s [1972] method doesn’t require the baseline hazard function to be

estimated, the method is essentially nonparametric in nature. Heterogeneity stems
from observable and unobservable components of

exp [! (x! + u)]

Cox’s method accommodates observed heterogeneity but assumes unobserved ho-
mogeneity. As usual, unobservable heterogeneity can be problematic as condi-
tional exchangeability is difficult to satisfy. Therefore, we look to alternative ap-
proaches to address unobservable heterogeneity.
Horowitz [1999] describes an approach for nonparametrically estimating the

baseline hazard rate .0 and the integrated hazard rate &. In addition, the distri-
bution function F and density function f for U , the unobserved source of het-
erogeneity with time-invariant covariates x, are nonparametrically estimated. The
approach employs kernel density estimation methods similar to those discussed in
chapter 6. As the estimators for F and f are slow to converge, the approach calls
for large samples.
Campolieti [2001] addresses unobservable heterogeneity and the unknown error

distribution via an alternative tack - Bayesian data augmentation (similar to that
discussed in chapter 7). Discrete duration is modeled as a sequence of multi-period
probits where duration dependence is accounted for via nonparametric estimation
of the baseline hazard. A Dirichlet process prior supplies the nonparametric nature
to the baseline hazard estimation.

8.1.10 Latent IV

Sometimes (perhaps frequently) it is difficult to identify instruments. Of course,
this makes instrumental variable (IV) estimation unattractive. However, latent IV
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methods may help to overcome this deficiency. If the endogenous data are nonnor-
mal (exhibit skewness and/or multi-modality) then it may be possible to decom-
pose the data into parts that are unrelated to the regressor error and the part that is
related. This is referred to as latent IV. Ebbes [2004] reviews the history of latent
IV related primarily to measurement error and extends latent IV via analysis and
simulation to various endogeneity concerns, including self selection.

8.2 Selectivity and treatment effects

This chapter is already much too long so next we only briefly introduce our main
thesis - analysis of treatment effects in the face of potential endogeneity. Treatment
effects are a special case of causal effects which we can under suitable conditions
address without a fully structural model. As such treatment effects are both simple
and challenging at the same time. Discussion of treatment effects occupies much
of our focus in chapters 9 through 12.
First, we describe a prototypical setting. Then, we identify some typical treat-

ment effects followed by a brief review of various identification conditions.
Suppose the DGP is

outcome equations:
Yj = µj (X) + Vj , j = 0, 1

selection equation:14

D" = µD (Z)! VD

observable response:
Y = DY1 + (1!D)Y0

where

D =
1 D" > 0
0 otherwise

In the binary case, the treatment effect is the effect on outcome of treatment
compared with no treatment, ' = Y1 ! Y0. Typical average treatment effects
include ATE, ATT, and ATUT.15 ATE refers to the average treatment effect,

ATE = E ['] = E [Y1 ! Y0]

In other words, the average effect on outcome of treatment for a random draw
from the population. ATT refers to the average treatment effect on the treated,

ATT = E [' | D = 1] = E [Y1 ! Y0 | D = 1]

14We’ll stick with binary choice for simplicity, though this can be readily generalized to the multino-
mial case.
15Additional treatment effects are discussed in subsequent chapters.
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In other words, the average effect on outcome of treatment for a random draw from
the subpopulation selecting (or assigned) treatment. ATUT refers to the average
treatment effect on the untreated,

ATUT = E [' | D = 0] = E [Y1 ! Y0 | D = 0]

In other words, the average effect on outcome of treatment for a random draw
from the subpopulation selecting (or assigned) no treatment.
The simplest approaches (strongest data conditions) involve ignorable treatment

(sometimes referred to as selection on observables). These approaches include ex-
ogenous dummy variable regression, nonparametric regression, propensity score,
propensity score matching, and control function methods. Various conditions and
relaxations are discussed in the next chapter.
Instrumental variables (IV) are a common treatment effect identification strat-

egy when ignorability is ill-suited to the data at hand. IV strategies accommo-
date homogeneous response at their simplest (strongest conditions) or unobserv-
able heterogeneity at their most challenging (weakest conditions). Various IV ap-
proaches including standard IV, propensity score IV, control function IV, local IV,
and Bayesian data augmentation are discussed in subsequent chapters. Heckman
and Vytlacil [2005] argue that each of these strategies potentially estimate differ-
ent treatment effects under varying conditions including continuous treatment and
general equilibrium treatment effects.

8.3 Why bother with endogeneity?

Despite great effort by analysts, experiments frequently fail to identify substan-
tive endogenous effects (Heckman [2000, 2001]). Why then do we bother? In this
section we present a couple of stylized examples that depict some of our con-
cerns regarding ignoring endogeneity. A theme of these examples is that failing to
adequately attend to the DGP may produce a Simpson’s paradox result.

8.3.1 Sample selection example

Suppose a firm has two production facilities, A and B. Facility A is perceived to
be more efficient (produces a higher proportion of non-defectives). Consequently,
production has historically been skewed in favor of facility A. The firm is in-
terested in improving production efficiency, and particularly, improving facility
B. Management has identified new production technology and is interested in
whether the new technology improves production efficiency. Production using the
new technology is skewed toward facility B. This “experiment” generates the data
depicted in table 8.5.
Is the new technology more effective than the old technology? What is the tech-

nology treatment effect? As management knows, the choice of facility is impor-
tant. The facility is a sufficiently important variable that its inclusion illuminates
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Table 8.5: Production data: Simpson’s paradox

Facility A Facility B Total
Technology New Old New Old New Old
Successes 10 120 133 25 143 145
Trials 10 150 190 50 200 200

% successes 100 80 70 50 71.5 72.5

the production technology treatment effect but its exclusion obfuscates the ef-
fect.16 Aggregate results reported under the "Total" columns are misleading. For
facility A, on average, there is a 20% improvement from the new technology. Like-
wise, for facility B, there is an average 20% improvement from the new technol-
ogy.
Now, suppose an analyst collects the data but is unaware that there are two

different facilities (the analyst only has the last two columns of data). What con-
clusion regarding the technology treatment effect is likely to be reached? This
level of aggregation results in a serious omitted variable problem that leads to in-
ferences opposite what the data suggest. This, of course, is a classic Simpson’s
paradox result produced via a sample selection problem. The data are not gen-
erated randomly but rather reflect management’s selective “experimentation” on
production technology.

8.3.2 Tuebingen-style treatment effect examples

Treatment effects are the focus of much economic self-selection analyses. When
we ask what is the potential outcome response (Y ) to treatment? — we pose a
treatment effect question. A variety of treatment effects may be of interest. To
setup the next example we define a few of the more standard treatment effects that
may be of interest.
Suppose treatment is binary (D = 1 for treatment, D = 0 for untreated), for

simplicity. As each individual is only observed either with treatment or without
treatment, the observed outcome is

Y = DY1 + (1!D)Y0

where
Y1 = µ1 + V1

is outcome response with treatment,

Y0 = µ0 + V0

is outcome response without treatment, µj is observed outcome for treatment j =
0 or 1, and Vj is unobserved (by the analyst) outcome for treatment j. Now, the

16This is an example of ignorable treatment (see ch. 9 for additional details).
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treatment effect is

' = Y1 ! Y0
= µ1 + V1 ! µ0 ! V0
= (µ1 ! µ0) + (V1 ! V0)

an individual’s (potential) outcome response to a change in treatment from regime
0 to regime 1. Note (µ1 ! µ0) is the population level effect (based on observables)
and (V1 ! V0) is the individual-specific gain. That is, while treatment effects focus
on potential gains for an individual, the unobservable nature of counterfactuals
often lead analysts to focus on population level parameters.
The average treatment effect

ATE = E ['] = E [Y1 ! Y0]

is the average response to treatment for a random sample from the population.
Even though seemingly cumbersome, we can rewrite ATE in a manner that illu-
minates connections with other treatment effects,

E [Y1 ! Y0] = E [Y1 ! Y0|D = 1]Pr (D = 1)

+E [Y1 ! Y0|D = 0]Pr (D = 0)

The average treatment effect on the treated

ATT = E ['|D = 1] = E [Y1 ! Y0|D = 1]

is the average response to treatment for a sample of individuals that choose (or
are assigned) treatment. Selection (or treatment) is assumed to follow some RUM
(random utility model; see chapter 5), D" = Z ! VD where D" is latent utility
index associated with treatment, Z is the observed portion, VD is the part unob-
served by the analyst, andD = 1 if D" > 0 or D = 0 otherwise.
The average treatment effect on the untreated

ATUT = E ['|D = 0] = E [Y1 ! Y0|D = 0]

is the average response to treatment for a sample of individuals that choose (or are
assigned) no treatment. Again, selection (or treatment) is assumed to follow some
RUM, D" = Z ! VD.
To focus attention on endogeneity, it’s helpful to identify what is estimated by

OLS (exogenous treatment). Exogenous dummy variable regression estimates

OLS = E [Y1|D = 1]! E [Y0|D = 0]

An important question is when and to what extent isOLS a biased measure of the
treatment effect.
Bias in the OLS estimate for ATT is

OLS = ATT + biasATT

= E [Y1|D = 1]! E [Y0|D = 0]

= E [Y1|D = 1]! E [Y0|D = 1] + {E [Y0|D = 1]! E [Y0|D = 0]}
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Hence,
biasATT = {E [Y0|D = 1]]! E [Y0|D = 0]}

Bias in the OLS estimate for ATUT is

OLS = ATUT + biasATUT

= E [Y1|D = 1]! E [Y0|D = 0]

= E [Y1|D = 0]! E [Y0|D = 0] + {E [Y1|D = 1]! E [Y1|D = 0]}

Hence,
biasATUT = {E [Y1|D = 1]! E [Y1|D = 0]}

Since

ATE = Pr (D = 1)E [Y1 ! Y0|D = 1] + Pr (D = 0)E [Y1 ! Y0|D = 0]

= Pr (D = 1)ATT + Pr (D = 0)ATUT

bias in theOLS estimate forATE can be written as a function of the bias in other
treatment effects

biasATE = Pr (D = 1) biasATT + Pr (D = 0) biasATUT

Now we explore some examples.

Case 1

The setup involves simple (no regressors), discrete probability and outcome struc-
ture. It is important for identification of counterfactuals that outcome distributions
are not affected by treatment selection. Hence, outcomes Y0 and Y1 vary only be-
tween states (and not by D within a state) as described, for instance, in table 8.6.
Key components, the treatment effects, and any bias for case 1 are reported in
table 8.7. Case 1 exhibits no endogeneity bias. This, in part, can be attributed to
the idea that Y1 is constant. However, even with Y1 constant, this is a knife-edge
result as the next cases illustrate.

Case 2

Case 2, depicted in table 8.8, perturbs the state two conditional probabilities only.
Key components, the treatment effects, and any bias for case 2 are reported in table
8.9. Hence, a modest perturbation of the probability structure produces endogene-
ity bias in both ATT and ATE (but of course not ATUT as Y1 is constant).

Table 8.6: Tuebingen example case 1: ignorable treatment

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.32 0.0 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1
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Table 8.7: Tuebingen example case 1 results: ignorable treatment

Results Key components
ATE = E [Y1 ! Y0]

= !0.6 p = Pr (D = 1) = 0.064

ATT = E [Y1 ! Y0 | D = 1]
= !0.6 E [Y1 | D = 1] = 1.0

ATUT = E [Y1 ! Y0 | D = 0]
= !0.6 E [Y1 | D = 0] = 1.0

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = !0.6 E [Y1] = 1.0

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = 0.0

E [Y0 | D = 1] = 1.6

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = 0.0

E [Y0 | D = 0] = 1.6

biasATE = pbiasATT
+(1! p) biasATUT = 0.0

E [Y0] = 1.6

Table 8.8: Tuebingen example case 2: heterogeneous response

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

Table 8.9: Tuebingen example case 2 results: heterogeneous response

Results Key components
ATE = E [Y1 ! Y0]

= !0.6 p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= !0.24 E [Y1 | D = 1] = 1.0

ATUT = E [Y1 ! Y0 | D = 0]
= !0.669 E [Y1 | D = 0] = 1.0

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = !0.669 E [Y1] = 1.0

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = !0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = 0.0

E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1! p) biasATUT = !0.069

E [Y0] = 1.6
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Table 8.10: Tuebingen example case 3: more heterogeneity

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 1 1 0 0

Table 8.11: Tuebingen example case 3 results: more heterogeneity

Results Key components
ATE = E [Y1 ! Y0]

= !1.24 p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= !0.56 E [Y1 | D = 1] = 0.68

ATUT = E [Y1 ! Y0 | D = 0]
= !1.370 E [Y1 | D = 0] = 0.299

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = !0.989 E [Y1] = 0.36

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = !0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = 0.381

E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1! p) biasATUT = 0.251

E [Y0] = 1.6

Case 3

Case 3, described in table 8.10, maintains the probability structure of case 2 but
alters the outcomes with treatment Y1. Key components, the treatment effects, and
any bias for case 3 are reported in table 8.11. A modest change in the outcomes
with treatment produces endogeneity bias in all three average treatment effects
(ATT , ATE, and ATUT ).

Case 4

Case 4 maintains the probability structure of case 3 but alters the outcomes with
treatment Y1 as described in table 8.12. Key components, the treatment effects,
and any bias for case 4 are reported in table 8.13. Case 4 is particularly noteworthy
as OLS indicates a negative treatment effect, while all standard treatment effects,
ATE, ATT ,and ATUT are positive. The endogeneity bias is so severe that it
produces a Simpson’s paradox result. Failure to accommodate endogeneity results
in inferences opposite the DGP. Could this DGP represent earnings management?
While these examples may not be as rich and deep as Lucas’ [1976] critique of
econometric policy evaluation, the message is similar — endogeneity matters!
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Table 8.12: Tuebingen example case 4: Simpson’s paradox

State (s) one two three

Pr (Y,D, s) 0.0272 0.0128 0.224 0.096 0.5888 0.0512
D 0 1 0 1 0 1
Y 0 1 1 1 2 2.3
Y0 0 0 1 1 2 2
Y1 1 1 1 1 2.3 2.3

Table 8.13: Tuebingen example case 4 results: Simpson’s paradox

Results Key components
ATE = E [Y1 ! Y0]

= 0.232
p = Pr (D = 1) = 0.16

ATT = E [Y1 ! Y0 | D = 1]
= 0.176

E [Y1 | D = 1] = 1.416

ATUT = E [Y1 ! Y0 | D = 0]
= 0.243

E [Y1 | D = 0] = 1.911

OLS = E [Y1 | D = 1]
!E [Y0 | D = 0] = !0.253 E [Y1] = 1.832

biasATT = E [Y0 | D = 1]
!E [Y0 | D = 0] = !0.429 E [Y0 | D = 1] = 1.24

biasATUT = E [Y1 | D = 1]
!E [Y1 | D = 0] = !0.495 E [Y0 | D = 0] = 1.669

biasATE = pbiasATT
+(1! p) biasATUT = !0.485

E [Y0] = 1.6
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8.4 Discussion and concluding remarks

"All models are wrong but some are useful."
- G. E. P. Box

It’s time to return to our theme. Identifying causal effects suggests close atten-
tion to the interplay between theory, data, and model specification. Theory frames
the problem so that economically meaningful effects can be deduced. Data sup-
plies the evidence from which inference is drawn. Model specification attempts
to consistently identify properties of the DGP. These elements are interdependent
and iteratively divined.
Heckman [2000,2001] criticizes the selection literature for periods of preoccu-

pation with devising estimators with nice statistical properties (e.g., consistency)
but little economic import. Heckman’s work juxtaposes policy evaluation impli-
cations of the treatment effects literature with the more ambitious structural mod-
eling of the Cowles commission. It is clear for policy evaluation that theory or
framing is of paramount importance.

"Every econometric study is incomplete."
- Zvi Griliches

In his discussion of economic data issues, Griliches [1986] reminds us that the
quality of the data depends on both its source and its use. This suggests that cre-
ativity is needed to embrace the data issue. Presently, it seems that creativity in the
address of omitted correlated variables, unobservable heterogeneity, and identifi-
cation of instruments is in short supply in the accounting and business literature.
Model specification receives more attention in these pages but there is little to

offer if theory and data are not carefully and creatively attended. With our current
understanding of econometrics it seems we can’t say much about a potential spec-
ification issue (including endogeneity) unless we accommodate it in the analysis.
Even so, it is typically quite challenging to assess the nature and extent of the
problem. If there is a mismatch with the theory or data, then discovery of (prop-
erties of) the DGP is likely hopelessly confounded. Logical consistency has been
compromised.

8.5 Additional reading

The accounting literature gives increasing attention to endogeneity issues. Larcker
and Rusticus [2004] review much of this work. Thought-provoking discussions of
accounting and endogeneity are reported in an issue of The European Account-
ing Review including Chenhall and Moers. [2007a,2007b], Larcker and Rusticus
[2007], and Van Lent [2007].
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Amemiya [1985], Wooldridge [2002], Cameron and Trivedi [2005], Angrist
and Krueger [1998], and the volumes of Handbook of Econometrics (especially
volumes 5 and 6b) offer extensive reviews of econometric analysis of endogeneity.
Latent IV traces back to Madansky [1959] and is resurrected by Lewbel [1997].
Heckman and Singer [1985,1986] discuss endogeneity challenges in longitudinal
studies or duration models. The treatment effect examples are adapted from Joel
Demski’s seminars at the University of Florida and Eberhard Karls University of
Tuebingen, Germany.


