
6
Nonparametric regression

Frequently in econometric analysis of accounting data, one is concerned with de-
partures from standard parametric model probability assignments. Semi- and non-
parametric methods provide an alternative means to characterize data and assess
parametric model robustness or logical consistency. Here, we focus on regression.
That is, we examine the conditional relation between Y and X . The most flexible
fit of this conditional relation is nonparametric regression where flexible fit refers
to the degree of distributional or structural form restrictions imposed on the data
in estimating the relationship.

6.1 Nonparametric (kernel) regression

Nonparametric regression is motivated by at least the following four objectives:
(1) it provides a versatile method for exploring a general relation between vari-
ables, (2) it give predictions without reference to a fixed parametric model, (3) it
provides a tool for identifying spurious observations, and (4) it provides a method
for ‘fixing’ missing values or interpolating between regressor values (see Hardle
[1990, p 6-7]).
A nonparametric (kernel) regression can be represented as follows (Hardle [1990]).

E [Y |X] = m (X)

wherem (X) =
n!1h!d

n!
i=1

K(X!xi
h )yi

n!1h!d
n!
i=1

K(X!xi
h )

, yi (xi) is the ith observation for Y (X),

n is the number of observations, d is the dimension (number of regressors) of X ,
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98 6. Nonparametric regression

K (·) is any well-defined (multivariate) kernel, and h is the smoothing parameter
or bandwidth (see GCV below for bandwidth estimation). Notice as is the case
with linear regression each predictor is constructed by regressor-based weights of
each observed value of the response variableM (h)Y where

M (h) =

!
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To fix ideas, compare this with liner regression. For linear regression, the predic-
tions are (Y = PXY , where

PX = X
)
XTX

*!1
XT

the projection matrix (into the columns of X), again a linear combination (based
on the regressors) of the response variable.
A multivariate kernel is constructed, row by row, by computing the product

of marginal densities for each variable in the matrix of regressors X .1 That is,

h!dK
)
X!xi
h

*
=

d+
j=1

h!1K
,
xj!xji
h

-
, where xj is the jth column vector in the

regressors matrix. Typically, we employ leave-one-out kernels. That is, the cur-
rent observation is excluded in the kernel construction to avoid overfitting — the
principal diagonal inM (h) is zeroes. Since nonparametric regression simply ex-
ploits the explanatory variables to devise a weighting scheme for Y , assigning
no weight to the current observation of Y is an intuitively appealing means of
avoiding overfitting.
Nonparametric (kernel) regression is the most flexible model that we employ

and forms the basis for many other kernel density estimators. While nonparametric
regression models provide a very flexible fit of the relation between Y andX , this
does not come at zero cost. In particular, it is more difficult to succinctly describe
this relation, especially when X is a high dimension matrix. Also, nonparametric
regressions typically do not achieve parametric rates of convergence (i.e., they
converge more slowly than square root n).2 Next, we turn to models that retain

1As we typically estimate one bandwidth for all regressors, the variables are first scaled by their
estimated standard deviation.

2It can be shown that optimal rates of convergence for nonparametric models are n! r, 0 < r <

1/2. More specifically, r = (!+"!k)/(2[!+"]!d), where ! is the number of times the smoothing
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some of the flexibility of nonparametric regression but enhance interpretability
(i.e., semiparametric models).

6.2 Semiparametric regression models

6.2.1 Partial linear regression

Frequently, we are concerned about the relation between Y and X but troubled
that the analysis is plagued by omitted, correlated variables. One difficulty is that
we do not know the functional form of the relation between our variables of inter-
est and these other control variables. That is, we envision a DGP where

E [Y | X,Z] = X! + " (Z)

Provided that we can observe these control variables, Robinson [1988] suggests
a two-stage approach analogous to FWL (see chapter 3) which is called partial
linear regression. Partial linear regression models nonparametrically fit the rela-
tion between the dependent variable, Y , and the control variables, Z, and also
the experimental regressors of interest,X , and the control variables Z. The resid-
uals from each nonparametric regression are retained, eY = Y ! E [Y |Z] and
eX = X ! E [X|Z], in standard double residual regression fashion.
Next, we simply employ no-intercept OLS regression of the dependent vari-

able residuals on the regressor residuals, eY = eX!. The parameter estimator
for ! fully captures the influence of the otherwise omitted, control variables and
is accordingly, asymptotically consistent. Of course, we now have parameters to
succinctly describe the relation between Y and X conditional on Z. Robinson
demonstrates that this estimator converges at the parametric (square-root n) rate.

6.2.2 Single-index regression

The partial linear model discussed above imposes distributional restrictions on the
relation between Y andX in the second stage. One (semiparametric) approach for
relaxing this restriction and retaining ease of interpretability is single-index re-
gression. Single-index regression follows from the idea that the average derivative
of a general function with respect to the regressor is proportional to the parameters
of the index. Suppose the DGP is

E [Y |X] = G (X!)

then define # = $E [Y |X] /$X = dG/d (X!)! = %!. Thus, the derivative with
respect to X is proportional to ! for all X , and likewise the average derivative
E [dG/d (X!)]! = %!, for % "= 0, is proportional to !.

function is differentiable, k is the order of the derivative of the particular estimate of interest (k " !),
" is the characteristic or exponent for the smoothness class, and d is the order of the regressors (Hardle
[1990, p. 93]).
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Our applications employ the density-weighted average derivative single-index
model of Powell, Stock, and Stoker [1989].3 That is,

#̂ = !2n!1
n$

i=1

$f̂i (Xi)

$X
Yi

exploiting the U statistic structure (see Hoeffding [1948])

= !2 [n (n! 1)]!1
n!1$

i=1

n$

j=i+1

h!(d+1)K "
.
Xi !Xj

h

/
(Yi ! Yj)

For a Gaussian kernel,K, notice thatK# (u) = !uK (u). Thus,

#̂ = 2 [n (n! 1)]!1
n!1$
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.
Xi !Xj
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/.
Xi !Xj
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/
(Yi ! Yj)

where K (u) = (2&)!1/2 exp
0
!u2

2

1
. The asymptotic covariance matrix for the

parameters !
!̂
is estimated as

(!
!̂
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T ! 4(#(#

T

where

r̂ (Zi) = (!n! 1)
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h

/
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The above estimator is proportional to the index parameters. Powell, et al also
proposed a properly-scaled instrumental variable version of the density-weighted

average derivative. We refer to this estimator as d̂ = #̂
!1
X #̂, where

#̂X = !2n!1
n$

i=1

$f̂i (Xi)

$X
XT
i

=

2
n!12
i=1

n2
j=i+1

h!(d+1)K
,
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h

-,
Xi!Xj

h

-
(Xi !Xj)

T

n (n! 1)

3Powell et al’s description of the asymptotic properties of their average derivative estimator ex-
ploits a ‘leave-one-out’ approach, as discussed for nonparametric regression above. This estimator
also achieves the parametric (square-root n) rate of convergence.
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rescales #̂. The asymptotic covariance estimator for the parameters!d̂ is estimated

as !̂d̂ = 4n
!1

n2
i=1

r̂d (Zi) r̂d (Zi)
T , where

r̂d (Zi) = #̂
!1
x

n2
j=1
i"=j

h!(d+1)K
,
Xi!Xj

h

-,
Xi!Xj

h

-,
(Ui ! (Uj

-

!n! 1

(Ui = Yi !Xid̂

The optimal bandwidth is estimated similarly to that described for nonpara-
metric regression. First, d̂ (and its covariance matrix) is estimated (for various
bandwidths). Then, the bandwidth that produces minimum mean squared error is
identified from the leave-one out nonparametric regression of Y on the index X (d
(the analog to regressing Y on X in fully nonparametric regression). This yields
a readily interpretable, flexibly fit set of index parameters, the counterpart to the
slope parameter in OLS (linear) regression.

6.2.3 Partial index regression models

Now, we put together the last two sets of ideas. That is, nonparametric estimates
for potentially omitted, correlated (control) variables as in the partial linear model
are combined with single index model parameter estimates for the experimental
regressors. That is, we envision a DGP where

E [Y | X,Z] = G (X!) + " (Z)

Following Stoker [1991], these are called partial index models. As with partial
linear models, the relation between Y and Z (the control variables) and the re-
lation between X and Z are estimated via nonparametric regression. As before,
separate bandwidths are employed for the regression of Y on Z and X on Z.
Again, residuals are computed, eY and eX . Now, single index regression of eY on
eX completes the partial index regression. Notice, that a third round of bandwidth
selection is involved in the second stage.

6.3 Specification testing against a general
nonparametric benchmark

Specification or logical consistency testing lies at the heart of econometric analy-
sis. Borrowing from conditional moment tests (Ruud [1984], Newey [1985], Pa-
gan and Vella [1989]) and the U statistic structure employed by Powell et al,
Zheng [1996] proposed a specification test of any parametric model f (X, ")
against a general nonparametric benchmark g (X).
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Let 'i $ Yi ! f (Xi, ") and p (•) denote the density function of Xi. The null
hypothesis is that the parametric model is correct (adequate for summarizing the
data)

H0 : PrE [Yi|Xi] = f (Xi, "0) = 1 for some "0 % "

where "0 = argmin"#!E [Yi ! f (Xi, "0)]
2. The alternative is the null is false,

but there is no specific alternative model

H0 : PrE [Yi|Xi] = f (Xi, ") < 1 for all " % "

The idea is under the null, E ['i|Xi] = 0. Therefore, we have

E ['iE ['i|Xi] p (Xi)] = 0

while under the alternative we have

E ['iE ['i|Xi] p (Xi)] = E
3
{E ['i|Xi]}

2
p (Xi)

4

since E ['i|Xi] = g (Xi)! f (Xi, ")

E ['iE ['i|Xi] p (Xi)] = E
3
{g (Xi)! f (Xi, ")}

2
p (Xi)

4
> 0

The sample analog of E ['iE ['i|Xi] p (Xi)] is used to form a test statistic. In
particular, kernel estimators of the components are employed. A kernel estimator
of the density function p is

p̂ (xi) = (!n! 1)
!1

n$

j=1
i"=j

h!dK

.
Xi !Xj

h

/

and a kernel estimator of the regression function E ['i|Xi] is

E ['i|Xi] = (!n! 1)
!1
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h!d
K
,
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h

-
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The sample analog to E ['iE ['i|Xi] p (Xi)] is completed by replacing 'i with

ei $ Yi ! f
,
Xi, "̂

-
and we have

Vn $ (!n! 1)
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.
Xi !Xj
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/
eiej

Under the null, Zheng shows that the statistic nhd/2Vn is consistent asymptotic
normal (CAN; see appendix) with mean zero and variance !. Also, the variance
can be consistently estimated by

!̂ = 2 (n (!n! 1))!1
n$

i=1

n$

j=1
i"=j

h!dK2

.
Xi !Xj

h

/
e2i e

2
j
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Consequently, a standardized test statistic is

Tn $

5
n! 1
n

nhd/2Vn6
!̂

=
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2
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8<

8=

1/2

Since Vn is CAN under the null, the standardized test statistic converges in distri-

bution to a standard normal, Tn
d!& N (0, 1) (see the appendix for discussion of

convergence in distribution).

6.4 Locally linear regression

Another local method, locally linear regression, produces smaller bias (especially
at the boundaries of X) and no greater variance than regular kernel regression.4

Hence, it produces smaller MSE.
Regular kernel regression solves

min
g

n$

i=1

(yi ! g)
2
h!dK

.
X ! xi
h

/

while locally linear regression solves

min
g,#

n$

i=1

,
yi ! g ! (X ! xi)

T
!
-2
h!dK

.
X ! xi
h

/

Effectively, kernel regression is a constrained version of locally linear regression
with ! = 0. Both are regressor-based weighted averages of Y .
Newey [2007] shows the asymptoticMSE for locally linear regression is

MSELLR =
1

nh
(0
)2 (X)

f0 (X)
+
h4

4
g
##

0 (X)µ
2
2

while for kernel regression we have

MSEKR =
1

nh
(0
)2 (X)

f0 (X)
+
h4

4

>
g
##

0 (X) + 2g
#

0 (X)
f
#

0 (X)

f0 (X)

?
µ22

4This section draws heavily from Newey [2007].
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where f0 (X) is the density function forX = [x1, . . . , xn]
T with variance )2 (X),

g0 (X) = E [Y |X] ,

u =
X !Xi
h

µ2 =

@
K (u)u2du, (0 =

@
K (u)

2
du

and kernel regression bias is

biasKR =

A
1

2
g
##

0 (X) + g
#

0 (X)
f
#

0 (X)

f0 (X)

B
µ2h

2

Hence, locally linear regression has smaller bias and smallerMSE everywhere.

6.5 Generalized cross-validation (GCV)

The bandwidth h is frequently chosen via generalized cross validation (GCV)
(Craven and Wahba [1979]). GCV utilizes principles developed in ridge regres-
sion for addressing computational instability problems in a regression context.

GCV (h) =
n!1 ||y ! m̂ (h)||2

[1! n!1tr (M (h))]
2

where m̂ (h) = M (h)Y is the nonparametric regression of Y on X given band-
width h, ||·||2 is the squared norm or vector inner product, and tr (·) is the trace
of the matrix.
Since the properties of this statistic are data specific and convergence at a uni-

form rate cannot be assured, we evaluate a dense grid of values for h to numer-
ically find the minimum MSE. Optimal bandwidths are determined by trading
off a ‘good approximation’ to the regression function (reduction in bias) and a
‘good reduction’ of observational noise (reduction in noise). The former (latter) is
increasing (decreasing) in the bandwidth (Hardle [1990, p. 29-30, 149]).
For leave-one-out nonparametric regression estimator, GCV chooses the band-

width h that minimizes the mean squared errors

min
h
n!1 ||Y ! m̂!t (h)||

2

That is, the penalty function in GCV is avoided (as tr (M!t (h)) = 0, the denom-
inator is 1) and GCV effectively chooses the bandwidth to minimize the model



6.6 Additional reading 105

mean square error.
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As usual, the mean squared error is composed of squared bias and variance.

MSE
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The leading term is the variance of "̂ and the trailing term is the squared bias.

6.6 Additional reading

There is a burgeoning literature on nonparametric regression and its semiparamet-
ric cousins. Hardle [1990] and Stoker [1991] offer eloquent overviews. Newey and
Powell [2003] discuss instrumental variable estimation of nonparametric models.
Powell et al’s average derivative estimator assumes the regressors are continuous.
Horowitz and Hardle [1996] proposed a semiparametric model that accommodates
some discrete as well as continuous regressors.
When estimating causal effects in a selection setting, the above semiparametric

methods are lacking as the intercept is suppressed by nonparametric regression.
Andrews and Schafgans [1998] suggested a semiparametric selection model to
remedy this deficiency. Variations on these ideas are discussed in later chapters.


