
4
Loss functions and estimation

In the previous chapter we reviewed some results of linear (least squares) mod-
els without making the loss function explicit. In this chapter we remedy this and
extend the discussion to various other (sometimes referred to as "robust") ap-
proaches. That the loss function determines the properties of estimators is com-
mon to classical and Bayesian statistics (whether made explicit or not). We’ll re-
view a few loss functions and the associated expected loss minimizing estimators.
Then we briefly review maximum likelihood estimation (MLE) and nonlinear re-
gression.

4.1 Loss functions
Let the loss function associated with the estimator ̂ for  be C


̂, 

and the

posterior distribution function be f ( | y),1 then minimum expected loss is

min
̂
E
h
C

̂, 
i
=

Z
C

̂, 

f ( | y) d

Briefly, a symmetric quadratic loss function results in an estimator equal to the
posterior mean, a linear loss function results in an estimator equal to a quantile of
the posterior distribution f ( | y), and an all or nothing loss function results in an
estimator for  equal to the posterior mode.

1A source of controversy is whether the focus is the posterior distribution f ( | y) or the likelihood
function f (y | ); see Poirier [1995]. We initially focus on the posterior distribution then reviewMLE.
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60 4. Loss functions and estimation

4.1.1 Quadratic loss
The quadratic loss function is

C

̂, 

=

c1


̂  

2
̂  

c2


̂  

2
̂ > 

First order conditions are

d

d̂

8><>:
R1
̂
c1


̂  

2
f ( | y) d

+
R ̂
1 c2


̂  

2
f ( | y) d

9>=>; = 0

Rearrangement produces

d

d̂

8>><>>:
c1


1 F


̂

̂
2
 2c1̂

R1
̂
f ( | y) d

+c1
R1
̂
2f ( | y) d + c2F


̂

̂
2

2c2
R ̂
1 f ( | y) d + c2

R ̂
1 

2f ( | y) d

9>>=>>; = 0

where F

̂

is the cumulative posterior distribution function for  given the data

y evaluated at ̂. Differentiation reveals8>>>>>><>>>>>>:
c1

24 2̂

1 F


̂

 ̂

2
f

̂


2
R1
̂
f ( | y) d + 2̂

2
f

̂

 ̂

2
f

̂

35

+c2

24 2̂F

̂

+ ̂

2
f

̂


2
R ̂
1 f ( | y) d  2̂

2
f

̂

+ ̂

2
f

̂

35

9>>>>>>=>>>>>>;
= 0

Simplification yields

̂
h
c1


1 F


̂

+ c2F


̂
i

= c1


1 F


̂

E
h
 | y, ̂  

i
+ c2F


̂

E
h
 | y, ̂ > 

i
Or,

̂ =
c1


1 F


̂

E
h
 | y,   ̂

i
+ c2F


̂

E
h
 | y,  < ̂

i
c1


1 F


̂

+ c2F


̂


In other words, the quadratic expected loss minimizing estimator for  is a cost-
weighted average of truncated means of the posterior distribution. If c1 = c2
(symmetric loss), then ̂ = E [ | y], the mean of the posterior distribution.
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4.1.2 Linear loss
The linear loss function is

C

̂, 

=

c1

̂   ̂  

c2

̂   ̂ > 

First order conditions are

d

d̂

8<: 
R1
̂
c1


̂  


f ( | y) d

+
R ̂
1 c2


̂  


f ( | y) d

9=; = 0

Rearranging yields

d

d̂

8<: c1̂

1 F


̂

+ c1

R1
̂
f ( | y) d

+c2̂F

̂

 c2

R ̂
1 f ( | y) d

9=; = 0

Differentiation produces

0 = c1

h


1 F


̂

+ ̂f


̂

 ̂f


̂
i

+c2

h
F

̂

+ ̂f


̂

 ̂f


̂
i

Simplification reveals

c1


1 F


̂

= c2F


̂


Or
F

̂

=

c1
c1 + c2

The expected loss minimizing estimator is the quantile that corresponds to the
relative cost c1

c1+c2
. If c1 = c2, then the estimator is the median of the posterior

distribution.

4.1.3 All or nothing loss
The all or nothing loss function is

C

̂, 

=

c1 ̂ < 

0 ̂ = 

c2 ̂ > 

If c1 > c2, then we want to choose ̂ > , so ̂ is the upper limit of support for
f ( | y). If c1 < c2, then we want to choose ̂ < , so ̂ is the lower limit of
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support for f ( | y). If c1 = c2, then we want to choose ̂ to maximize f ( | y),
so ̂ is the mode of the posterior distribution.2

4.2 Nonlinear Regression
Many accounting and business settings call for analysis of data involving limited
dependent variables (such as discrete choice models discussed in the next chap-
ter).3 Nonlinear regression frequently complements our understanding of standard
maximum likelihood procedures employed for estimating such models as well as
providing a means for addressing alternative functional forms. Here we review
some basics of nonlinear least squares including Newton’s method of optimiza-
tion, Gauss-Newton regression (GNR), and artificial regressions.
Our discussion revolves around minimizing a smooth, twice continuously dif-

ferentiable function, Q (). It’s convenient to think Q () equals SSR (), the
residual sum of squares, but Q () might also refer to maximization of the log-
likelihood.

4.2.1 Newton’s method
A second order Taylor series approximation of Q () around some initial values
for , say (0) yields

Q () = Q

(0)


+ gT(0)


  (0)


+
1

2


  (0)

T
H(0)


  (0)


where g () is the k1 gradient ofQ ()with typical element @Q()@j

,H () is the

kk Hessian ofQ () with typical element @
2Q()
@j@i

, and for notational simplicity,

g(0)  g

(0)


and H(0)  H


(0)


. The first order conditions for a minimum

of Q () with respect to  are

g(0) +H(0)


  (0)


= 0

Solving for  yields a new value

(1) = (0) H
1
(0)g(0)

This is the core of Newton’s method. Successive values (1),(2), . . . lead to an
approximation of the global minimum of Q () at ̂. If Q () is approximately

2For a discrete probability mass distribution, the optimal estimator may be either the limit of sup-
port or the mode depending on the difference in cost. Clearly, large cost differentials are aligned with
the limits and small cost differences are aligned with the mode.

3This section draws heavily from Davidson and MacKinnon [1993].
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quadratic, as applies to sums of squares when sufficiently close to their minima,
Newton’s method usually converges quickly.4

4.2.2 Gauss-Newton regression
When minimizing a sum of squares function it is convenient to write the criterion
as

Q () =
1

n
SSR () =

1

n

nX
t=1

(yt  xt ())
2

Now, explicit expressions for the gradient and Hessian can be found. The gradient
for the ith element is

gi () = 
2

n

nX
t=1

Xti () (yt  xt ())

where Xti () is the partial derivative of xt () with respect to i. The more
compact matrix notation is

g ()= 
2

n
XT () (y  x ())

The Hessian H () has typical element

Hij () = 
2

n

nX
t=1

(yt  xt ())
@Xti ()

@j
Xti ()Xtj ()

Evaluated at 0, this expression is asymptotically equivalent to5

2

n

nX
t=1

Xti ()Xtj ()

In matrix notation this is

D () =
2

n
XT ()X ()

and D () is positive definite when X () is full rank. Now, writing Newton’s
method as

(j+1) = (j) D
1
(j)g(j)

4If Q () is strictly convex, as it is if and only if the Hessian is positive definite, then (1) is the
global minimum of Q (). Please consult other sources, such as Davidson and MacKinnon [2003,
ch. 6] and references therein, for additional discussion of Newton’s method including search direction,
step size, and stopping rules.

5Since yt = xt (0) + ut, the first term becomes  2
n

nX

t=1

@Xti()
@j

ut. By the law of large num-

bers this term tends to 0 as n!1.
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and substituting the above results we have the classic Gauss-Newton result

(j+1) = (j) 

2

n
XT
(j)X(j)

1

2

n
XT
(j)


y  x(j)



= (j) +

XT
(j)X(j)

1
XT
(j)


y  x(j)


Artificial regression

The second term can be readily estimated by an artificial regression. It’s called an
artificial regression because functions of the variables and model parameters are
employed. This artificial regression is referred to as a Gauss-Newton regression
(GNR)

y  x () = X () b+ residuals

To be clear, Gaussian projection (OLS) produces the following estimate

b̂ =

XT ()X ()

1
XT () (y  x ())

To appreciate the GNR, consider a linear regression where X is the matrix of
regressors. ThenX () is simply replaced by X , the GNR is

y X(0) = Xb+ residuals

and the artificial parameter estimates are

b̂ =

XTX

1
XT


y X(0)


= ̂  (0)

where ̂ is the OLS estimate. Rearranging we see that the Gauss-Newton estimate
replicates OLS, (1) = (0) + b̂ = (0) + ̂  (0) = ̂, as expected.

Covariance matrices

Return to the GNR above and substitute the nonlinear parameter estimates

y  x

̂

= X


̂

b+ residuals

The artificial regression estimate is

b̂ =

XT


̂

X

̂
1

XT

̂

y  x


̂


Since the first order or moment conditions require

XT

̂

y  x


̂

= 0

this regression cannot have any explanatory power, b̂ = 0. Though this may not
seem very interesting, it serves two useful functions. First, it provides a check on
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the consistency of the nonlinear optimization routine. Second, as it is the GNR
variance estimate, it provides a quick estimator of the covariance matrix for the
parameter estimates

dV ar hb̂i = s2 XT

̂

X

̂
1

and it is readily available from the artificial regression.
Further, this sameGNR readily supplies a heteroskedastic-consistent covariance

matrix estimator. If E

uuT


= , then a heteroskedastic-consistent covariance

matrix estimator is

dV ar hb̂i = XT

̂

X

̂
1

XT

̂

̂X


̂

XT


̂

X

̂
1

where ̂ is a diagonal matrix with tth element equal to the squared residual u2t .
Next, we turn to maximum likelihood estimation and exploit some insights gained
from nonlinear regression as they relate to typicalMLE settings.

4.3 Maximum likelihood estimation (MLE )
Maximum likelihood estimation (MLE) applies to a wide variety of problems.6
Since it is the most common method for estimating discrete choice models and
discrete choice models are central to the discussion of accounting choice, we focus
the discussion of MLE around discrete choice models.

4.3.1 Parameter estimation
The most common method for estimating the parameters of discrete choice mod-
els is maximum likelihood. Recall the likelihood is defined as the joint density for
the parameters of interest  conditional on the data Xt. For binary choice models
and Yt = 1 the contribution to the likelihood is F (Xt) , and for Yt = 0 the con-
tribution to the likelihood is 1  F (Xt) where these are combined as binomial
draws. Hence,

L (|X) =
nY
t=1

F (Xt)
Yt [1 F (Xt)]

1Yt

The log-likelihood is

` (|X)  logL (|X) =
nX
t=1

Ytlog (F (Xt)) + (1 Yt) log (1 F (Xt))

6This section draws heavily from Davidson and MacKinnon [1993], chapter 8.
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Since this function for binary response models like probit and logit is globally
concave, numerical maximization is straightforward. The first order conditions
for a maximum are

nP
t=1

Ytf(Xt)Xit

F (Xt)
 (1Yt)f(Xt)Xti

1F (Xt)
= 0 i = 1, . . . , k

where f (·) is the density function. Simplifying yields
nP
t=1

[YtF (Xt)]f(Xt)Xti

F (Xt)[1F (Xt)]
= 0 i = 1, . . . , k

For the logit model the first order conditions simplify to
nP
t=1
[Yt   (Xti)]Xti = 0 i = 1, . . . , k

since the logit density is  (Xti) =  (Xti) [1  (Xti)] where  (·) is the logit
(cumulative) distribution function.
Notice the above first order conditions look like the first order conditions for

weighted nonlinear least squares with weights given by [F (1 F )]1/2. This is
sensible because the error term in the nonlinear regression

Yt = F (Xt) + "t

has mean zero and variance

E

"2t

= E

h
{Yt  F (Xt)}

2
i

= Pr (Yt = 1) [1 F (Xt)]
2
+ Pr (Yt = 0) [0 F (Xt)]

2

= F (Xt) [1 F (Xt)]
2
+ [1 F (Xt)]F (Xt)

2

= F (Xt) [1 F (Xt)]

AsML is equivalent to weighted nonlinear least squares for binary response mod-
els, the asymptotic covariance matrix for n1/2


̂  


is

n1XTX

1 where
 is a diagonal matrix with elements f(Xt)

2

F (Xt)[1F (Xt)]
. In the logit case,  sim-

plifies to  (see Davidson and MacKinnon, p. 517-518).

4.3.2 Estimated asymptotic covariance for MLE of ̂
There are (at least) three common estimators for the variance of ̂MLE :7

(i)
h
H


̂
i1

the negative inverse of Hessian evaluated at ̂MLE ,

(ii)

g

̂

g

̂
T1

the outer product of gradient (OPG) or Berndt, Hall, Hall,

and Hausman (BHHH) estimator,

7This section draws heavily from Davidson and MacKinnon [1993], pp. 260-267.
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(iii)
h
=

̂
i1

inverse of information matrix or negative expected value of Hessian,
where the following definitions apply:

• MLE is defined as the solution to the first order conditions (FOC): g

Y, ̂

=

0 where gradient or score vector g is defined by gT (Y, ) = D` (Y, )
(since D` is row vector, g is column vector of partial derivatives of with
respect to ).

• Define G (g, ) as the matrix of contributions to the gradient (CG matrix)
with typical element Gti (g, )  @`t(Y,)

@i
.

• H (Y, ) is the Hessian matrix for the log-likelihood with typical element
Hij (Y, ) 

@2`t(Y,)
@i@j

.

• Define the expected average Hessian for sample of size n as Hn () 
E

n1H (Y, )


.

• The limiting Hessian or asymptotic Hessian (if it exists) isH ()  lim
n!1

Hn ()

(the matrix is negative semidefinite).

• Define the information in observation t as =t () a k  k matrix with typ-
ical element (=t ())ij  E [Gti ()Gtj ()] (the information matrix is
positive semidefinite).

• The average information matrix is =n ()  n1
nX
t=1

=t () = n1=n

and the limiting information matrix or asymptotic information matrix (if it
exists) is = ()  lim

n!1
=n ().

The short explanation for these variance estimators is thatML estimators (under
suitable regularity conditions) achieve the Cramer-Rao lower bound for consistent
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estimators.8 That is,

Asy.V ar
h
̂
i
=


E


@2` (Y, )

@@T

1
=


E


@` (Y, )

@


@` (Y, )

@T

1
The expected outer product of the gradient (OPG) is an estimator of the inverse of
the variance matrix for the gradient. Roughly speaking, the inverse of the gradi-
ent function yields MLE (type 2) parameter estimates and the inverse of expected
OPG estimates the parameter variance matrix (see Berndt, Hall, Hall, and Haus-
man [1974]). Also, the expected value of the Hessian equals the negative of the
information matrix.9 In turn, the inverse of the information matrix is an estimator
for the estimated parameter variance matrix.
Example: Consider the MLE of a standard linear regression model with DGP:

Y = X + " where "  N

0,2I


and E


XT "


= 0. Of course, the MLE for

 is b =

XTX

1
XTY as

g () 
@` (Y,)

@
= 

1

2

264 XT
1 (Y X)

...
XT
p (Y X)

375
8See Theil [1971], pp. 384-385 and Amemiya [1985], pp. 14-17.

E


@2`

@@T


= E


@

@


1

L

@L

@T



by the chain rule

= E



1

L2
@L

@

@L

@T
+
1

L

@2L

@@T



= E




1

L

@L

@


@L

@T
1

L


+

Z
1

L

@2L

@@T
Ldx

= E




1

L

@L

@


@L

@T
1

L


+

Z
@2L

@@T
dx

= E

@`

@

@`

@T


+

Z
@2L

@@T
dx

since the regulatory conditions essentially make the order of integration and differentiation inter-
changeable the last term can be rewritten

Z
@2L

@@T
dx =

@

@

Z
@L

@T
dx =

@

@

@

@T

Z
Ldx = 0

Now we have

E


@2`

@@T


= E


@`

@

@`

@T



9This is motivated by the fact that plim 1
n

nP
i=1

g(yi) = E[g(y)] for a random sample provided the

first two moments of g(y) are finite (see Greene [1997], ch. 4).
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where Xj refers to column j of X . Substituting X + " for Y produces


@` (Y,)

@


@` (Y,)

@T


=


1

2

2 264 XT
1 ""

TX1 · · · XT
1 ""

TXp
...

. . .
...

XT
p ""

TX1 · · · XT
p ""

TXp

375
Now,

E


@` (Y,)

@


@` (Y,)

@T


=


1

2

264 XT
1 X1 · · · XT

1 Xp
...

. . .
...

XT
p X1 · · · XT

p Xp

375
Since

H () 
@2` (Y,)

@@T
= 


1

2

264 XT
1 X1 · · · XT

1 Xp
...

. . .
...

XT
p X1 · · · XT

p Xp

375
we have

E


@` (Y,)

@


@` (Y,)

@T


= E


@2` (Y,)

@@T


and the demonstration is complete as

Asy.V ar [b] =


E


@` (Y,)

@


@` (Y,)

@T

1
= 


E


@2` (Y,)

@@T

1
= 2


XTX

1
A more complete explanation (utilizing results and notation developed in the

appendix) starts with the MLE first order condition (FOC) g

̂

= 0. Now, a

Taylor series expansion of the likelihood FOC around  yields 0 = g

̂



g ()+H

̄
 
̂  


where ̄ is convex combination (perhaps different for each

row) of  and ̂. Solve for

̂  


and rewrite so every term is O (1)

n1/2

̂  


= 


n1H


̄
1 h

n1/2g ()
i

ByWULLN (weak uniform law of large numbers), the first term is asymptotically
nonstochastic, by CLT (the central limit theorem) the second term is asymptot-
ically normal, so n1/2


̂  


is asymptotically normal. Hence, the asymptotic

variance of n1/2

̂  


is the asymptotic expectation of n


̂  


̂  

T
.
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Since n1/2

̂  


a
= 


n1H ()

1 
n1/2g ()


, the asymptotic variance is

H1 ()
 
n1E


g () gT ()

 
H1 ()


. Simplifying yields

Asym.V ar
h
n1/2


̂  

i
= H1 ()= ()H1 ()

This can be simplified since H () = = () by LLN. Hence,

Asy.V ar
h
n1/2


̂  

i
= H1 () = =1 ()

And the statistic relies on estimation of H1 () or =1 ().

• A common estimator of the empirical Hessian is

Ĥ  Hn

Y, ̂

= n1D2

`t


Y, ̂


(LLN and consistency of ̂ guarantee consistency of Ĥ for H ()).

• The OPG or BHHH estimator is

=OPG  n1
nX
t=1

DT
 `t


Y, ̂

D`t


Y, ̂

= n1GT


̂

G

̂


(consistency is guaranteed by CLT and LLN for the sum).

• The third estimator evaluates the expected values of the second derivatives
of the log-likelihood at ̂. Since this form is not always known, this estima-
tor may not be available. However, as this estimator does not depend on the
realization of Y it is less noisy than the other estimators.

We round out this discussion of MLE by reviewing a surprising case where
MLE is not the most efficient estimator. Next, we discuss James-Stein shrinkage
estimators.

4.4 James-Stein shrinkage estimators
Stein [1955] showed that when estimatingK parameters from independent normal
observations with (for simplicity) unit variance, we can uniformly improve on the
conventional maximum likelihood estimator in terms of expected squared error
loss for K > 2. James and Stein [1961] determined such a shrinkage estimator
can be written as a function of the maximum likelihood estimator b

 = b 1 abTb
!
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where 0  a  2(K  2). The expected squared error loss of the James-Stein
estimator  is

 (, ) = E
h
(  )T (  )

i
= E

24(b   abbTb
)T (b   abbTb

)35
= E

b  T b   2aE "b  T bbTb
#

+a2E

264 bTbbTb2
375

= E

b  T b   2aE "bTbbTb
#
+ 2aTE

" bbTb
#

+a2E

264 bTbbTb2
375

= E

b  T b   2a+ 2aTE " bbTb
#
+ a2E

"
1bTb
#

This can be further simplified by exploiting the following theorems; we conclude
this section with Judge and Bock’s [1978, p. 322-3] proof following discussion of
the James-Stein shrinkage estimator.

Theorem 4.1 E
h
b
bTb

i
= E


1

2
(K+2,)


where bTb  2(K,) and  = T  is a

noncentrality parameter.10

Using

E

b  T b   = E
hbTbi 2TE hbi+ T 

= K +  2+  = K

for the first term, a convenient substitution for one in the second term, and the
above theorem for the third term, we rewrite the squared error loss (from above)

 (, ) = E

b  T b   2a+ 2aTE " bbTb
#
+ a2E

"
1bTb
#

10We adopt the convention the noncentrality parameter is the sum of squared means T ; others,
including Judge and Bock [1978], employ T 

2
.
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as

 (, ) = K  2aE

"
2(K2,)

2(K2,)

#
+ 2aT E

"
1

2(K+2,)

#
+ a2E

"
1

2(K,)

#

Theorem 4.2 For any real-valued function f and positive definite matrix A,

E
h
f
bTbbTAbi = E

h
f

2(K+2,)


tr (A)

i
+E

h
f

2(K+4,)

i
TA


where tr (A) is trace of A.

Letting f
bTb = 1

2
(K2,)

and A = I with rankK  2,

2aE

"
2(K2,)

2(K2,)

#
= 2aE

"
K  2
2(K,)

#
 2aT E

"
1

2(K+2,)

#

and

 (, ) = K  a [2 (K  2) a]E

"
1

2(K,)

#

Hence,  (, ) = K  a [2 (K  2) a]E


1
2
(K,)


 


,b = K for all 

if 0 < a < 2 (K  2) with strict inequality for some T .
Now, we can find the optimal James-Stein shrinkage estimator. Solving the first

order condition

@ (, )

@a
= 0

(2 (K  2) a+ 2a)E

"
1

2(K,)

#
= 0

leads to a = K  2; hence,  = b 1 K2
bTb


. As E


1

2
(K,)


= 1

K2 , the

James-Stein estimator has minimum expected squared error loss when  = 0,

 (, ) = K  (K  2)2E

"
1

2(K,)

#
= K  (K  2) = 2

and its MSE approaches that for the MLE as  = T  approaches infinity. Next,
we sketch proofs of the theorems.
Stein [1966] identified a key idea used in the proofs. Suppose a J  1 random

vector w is distributed as N (, I), then its quadratic form wTw has a noncentral
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2(J,) where  = T . This quadratic form can be regarded as having a central
2(J+2H) where H is a Poisson random variable with parameter 2 . Hence,

E
h
f

2(J,)

i
= EH

h
HE

h
f

2(J+2H)

ii
=

1X
t=0




2

t exp 
2


t!

E
h
f

2(J+2t)

i
Now, we proceed with proofs to the above theorems.

Theorem 4.3 E
h
b
bTb

i
= E


1

2
(K+2,)


.

Proof.Write

E

f
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Again, apply Stein’s observation to produce
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4.5 Summary
This chapter has briefly reviewed loss functions, nonlinear regression, maximum
likelihood estimation, and some alternative estimation methods (including James-
Stein shrinkage estimators). It is instructive to revisit nonlinear regression (espe-
cially, GNR) in the next chapter when we address specification and estimation of
discrete choice models.
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4.6 Additional reading
Poirier [1995] provides a nice discussion of loss functions. Conditional linear loss
functions lead to quantile regression (see Koenker and Bassett [1978], Koenker
[2005], and Koenker [2009] for an R computational package). Shugan and Mi-
tra [2008] offer an intriguing discussion of when and why non-averaging statis-
tics (e.g., maximum and variance) explain more variance than averaging metrics.
Maximum likelihood estimation is discussed by a broad range of authors including
Davidson and MacKinnon [1993], Greene [1997], Amemiya [1985], Rao [1973],
and Theil [1971]. Stigler [2007] provides a fascinating account of the history of
maximum likelihood estimation including the pioneering contributions of Gauss
and Fisher as well as their detractors. The nonlinear regression section draws heav-
ily from a favorite reference, Davidson and MacKinnon [2003]. Their chapter 6
and references therein provide a wealth of ideas related to estimation and specifi-
cation of nonlinear models.


