
3
Linear models

Though modeling endogeneity may involve a variety of nonlinear or general-
ized linear, nonparametric or semiparametric models, and maximum likelihood or
Bayesian estimation, much of the intuition is grounded in the basic linear model.
This chapter provides a condensed overview of linear models and establishes con-
nections with later discussions.

3.1 Standard linear model (OLS)
Consider the data generating process (DGP):

Y = X + 

where  

0,2I


, X is n  p (with rank p), and E


XT 


= 0, or more

generally E [ | X] = 0.
The Gauss-Markov theorem states that b =


XTX

1
XTY is the minimum

variance estimator of  amongst linear unbiased estimators. Gauss’ insight follows
from a simple idea. Construct b (or equivalently, the residuals or estimated errors,
e) such that the residuals are orthogonal to every column ofX (recall the objective
is to extract all information in X useful for explaining Y — whatever is left over
from Y should be unrelated to X).

XT e = 0

where e = Y Xb. Rewriting the orthogonality condition yields

XT (Y Xb) = 0
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or the normal equations
XTXb = XTY

Provided X is full column rank, this yields the usual OLS estimator

b =

XTX

1
XTY

It is straightforward to show that b is unbiased (conditional on the data X).

E [b | X] = E

XTX

1
XTY | X



= E

XTX

1
XT (X + ) | X



=  +

XTX

1
XTE [ | X] =  + 0 = 

Iterated expectations yields E [b] = EX [E [b | X]] = EX [] = . Hence, unbi-
asedness applies unconditionally as well.

V ar [b | X] = V ar

XTX

1
XTY | X



= V ar

XTX

1
XT (X + ) | X



= E


 +


XTX

1
XT  


XTX

1
XT 

T
| X


=

XTX

1
XTE


T


X

XTX

1

= 2

XTX

1
XT IX


XTX

1

= 2

XTX

1

Now, consider the stochastic regressors case,

V ar [b] = V arX [E [b | X]] + EX [V ar [b | X]]

The first term is zero since E [b | X] =  for all X . Hence,

V ar [b] = EX [V ar [b | X]] = 2E

XTX

1

the unconditional variance of b can only be described in terms of the average
behavior of X .
To show that OLS yields the minimum variance linear unbiased estimator con-

sider another linear unbiased estimator b0 = LY (L replaces

XTX

1
XT ).

Since E [LY ] = E [LX + L] = , LX = I .
Let D = L


XTX

1
XT so that DY = b0  b.

V ar [b0 | X] = 2

D +


XTX

1
XT

 
D +


XTX

1
XT

T

= 2


DDT +


XTX

1
XTDT +DX


XTX

1

+

XTX

1
XTX


XTX

1
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Since
LX = I = DX +


XTX

1
XTX,DX = 0

and
V ar [b0 | X] = 2


DDT +


XTX

1

As DDT is positive semidefinite, V ar [b] (and V ar [b | X]) is at least as small as
any other V ar [b0] (V ar [b0 | X]). Hence, the Gauss-Markov theorem applies to
both nonstochastic and stochastic regressors.

Theorem 3.1 Rao-Blackwell theorem. If   N

0,2I


for the above DGP, b

has minimum variance of all unbiased estimators.

Finite sample inferences typically derive from normally distributed errors and
t (individual parameters) and F (joint parameters) statistics. Some asymptotic re-
sults related to the Rao-Blackwell theorem are as follows. For the Rao-Blackwell
DGP, OLS is consistent and asymptotic normally (CAN) distributed. Since MLE
yields b for the aboveDGPwith normally distributed errors,OLS is asymptotically
efficient amongst all CAN estimators. Asymptotic inferences allow relaxation of
the error distribution and rely on variations of the laws of large numbers and cen-
tral limit theorems.

3.2 Generalized least squares (GLS)
Suppose the DGP is Y = X +  where   (0,) and E


XT 


= 0, or more

generally, E [ | X] = 0, X is n p (with rank p). The BLU estimator is

bGLS =

XT1X

1
XT1Y

E [bGLS ] = 

V ar [bGLS | X] =

XT1X

1

and
V ar [bGLS ] = E


XT1X

1
]

= 2E


XT1X

1

where scale is extracted to construct 1 = 1
2

1.
A straightforward estimation approach involves Cholesky decomposition of .

 = T = LD1/2D1/2LT

where D is a matrix with pivots on the diagonal.

1Y = 1 (X + )

and
1  (0, I)
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since 10 = 0 and 1

T
1

= 1T

T
1

= I . Now, OLS applied
to the regression of 1Y (in place of Y ) onto 1X (in place of X) yields

bGLS =

1X

T
1X

1 
1X

T
1Y

=

XT


1

T
1X

1
XT


1

T
1Y

bGLS =

XT1X

1
XT1Y (Aitken estimator)

Hence, OLS regression of suitably transformed variables is equivalent to GLS re-
gression, the minimum variance linear unbiased estimator for the above DGP.
OLS is unbiased for the above DGP (but inefficient),

E [b] =  + EX


XTX

1
XTE [ | X]


= 

However, V ar [b | X] is not the standard one described above. Rather,

V ar [b | X] =

XTX

1
XT1X


XTX

1

which is typically estimated by Eicker-Huber-White asymptotic heteroskedastic-
ity consistent estimator

Est.Asy.V ar [b] = n

XTX

1
S0

XTX

1

= n1

n1XTX

1

n1

n

i=1

e2ixix
T
i



n1XTX

1

where xi is the ith row from X and S0 = 1/n
n

i=1 e
2
ixix

T
i , or the Newey-

West autocorrelation consistent covariance estimator where S0 is replaced by
S0 + n

1L
l=1

n
t=l+1 wleietl


xlx

T
tl + xtlx

T
l


, wl = 1 l

L+1 , and the
maximum lag L is set in advance.

3.3 Tests of restrictions and FWL
(Frisch-Waugh-Lovell)

Causal effects are often the focus of accounting and economic analysis. That is,
the question often boils down to what is the response to a change in one variable
holding the others constant. FWL (partitioned regression or double residual re-
gression) and tests of restrictions can help highlight causal effects in the context
of linear models (and perhaps more broadly).
Consider the DGP for OLS where the matrix of regressors is partitioned X =
X1 X2


and X1 represents the variables of prime interest and X2 perhaps
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represents control variables.1

Y = X +  = X11 +X22 + 

Of course,  can be estimated via OLS as b and b1 (the estimate for 1) can be
extracted from b. However, it is instructive to remember that each k represents
the response (of Y ) to changes inXk conditional on all other regressorsXk. The
FWL theorem indicates that b1 can also be estimated in two steps. First, regress
X1 and Y onto X2. Retain their residuals, e1 and eY . Second, regress eY onto e1
to estimate b1 =


eT1 e1

1
eT1 eY (a no intercept regression) and V ar [b1 | X] =

2

XTX

1
11
, where


XTX

1
11
refers to the upper left block of


XTX

1.
FWL produces the following three results:

1.

b1 =

XT
1 (I  P2)X1

1
XT
1 (I  P2)Y

=

XT
1 M2X1

1
XT
1 M2Y

is the same as b1 from the upper right partition of

b =

XTX

1
XTY

where P2 = X2

XT
2 X2

1
XT
2 .

2.

V ar [b1] = 2

XT
1 (I  P2)X1

1

= 2

XT
1 M2X1

1

is the same as from the upper left partition of

V ar [b] = 2

XTX

1

3. The regression or predicted values are

Y = PXY = X

XTX

1
XTY = Xb

= X1b1 +X2b2 = P2Y + (I  P2)X1b1
= P2Y +M2X1b1

First, we demonstrate result 1. Since e1 = (I  P2)X1 = M2X1 and eY =
(I  P2)Y =M2Y ,

b1 =

XT
1 (I  P2)X1

1
XT
1 (I  P2)Y

=

XT
1 M2X1

1
XT
1 M2Y

1When a linear specification of the control variables is questionable, we might employ partial linear
or partial index regressions. For details see the discussion of these semi-parametric regression models
in chapter 6. Also, a model specification test against a general nonparametric regression model is
discussed in chapter 6.
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To see that this is the same as from standard (one-step) multiple regression derive
the normal equations from

XT
1 X1b1 = X

T
1 Y X

T
1 X2b2

and
P2X2b2 = X2b2 = P2 (Y X1b1)

Substitute to yield

XT
1 X1b1 = X

T
1 Y X

T
1 P2 (Y X1b1)

Combine like terms in the normal equations.

XT
1 (I  P2)X1b1 = XT

1 (I  P2)Y
= XT

1 M2Y

Rewriting yields
b1 =


XT
1 M2X1

1
XT
1 M2Y

This demonstrates 1.2

2A more constructive demonstration of FWL result 1 is described below. From Gauss,

b =


XT
2

XT
1

 
X2 X1

1  XT
2

XT
1


Y

(for convenienceX is reordered as

X2 X1


).


XT
2

XT
1

 
X2 X1

1
=


XT
2 X2 XT

2 X1
XT
1 X2 XT

1 X1

1

(by LDLT block"rank-one" factorization)

=






I 0

XT
1 X2


XT
2 X2

1
I


XT
2 X2 0
0 XT

1 (I  P2)X1






I


XT
2 X2

1
XT
2 X1

0 I







1

=


I 


XT
2 X2

1
XT
2 X1

0 I

 
XT
2 X2

1
0

0

XT
1 M2X1

1






I 0

XT
1 X2


XT
2 X2

1
I



Multiply the first two terms and apply the latter inverse to

X2 X1

T
Y


b2
b1


=

 
XT
2 X2

1 

XT
2 X2

1
XT
2 X1


XT
1 M2X1

1

0

XT
1 M2X1

1


XT
2 Y

XT
1 (I  P2)Y



b1 = (xTM2x)1xTM2Y . This demonstrates FWL result 1.
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FWL result 2 is as follows.

V ar [b] = 2

XTX

1
= 2


XT
1 X1 XT

1 X2
XT
2 X1 XT

2 X2

1

= 2


A11 


XT
1 X1

1
XT
1 X2A22



XT
2 X2

1
XT
2 X1A11 A22



where
A11 =


XT
1 X1 X

T
1 X2


XT
2 X2

1
XT
2 X1

1

and
A22 =


XT
2 X2 X

T
2 X1


XT
1 X1

1
XT
1 X2

1

Rewriting A11, the upper left partition, and combining with 2 produces

2

XT
1 (I  P2)X1

1

This demonstrates FWL result 2.
To demonstrate FWL result 3

X1b1 +X2b2 = P2Y + (I  P2)X1b1

refer to the estimated model

Y = X1b1 +X2b2 + e

where the residuals e, by construction, are orthogonal to X . Multiply both sides
by P2 and simplify

P2Y = P2X1b1 + P2X2b2 + P2e

= P2X1b1 +X2b2

Rearranging yields
X2b2 = P2 (Y X1b1)

Now, add X1b1 to both sides

X1b1 +X2b2 = X1b1 + P2 (Y X1b1)

Simplification yields

X1b1 +X2b2 = P2Y + (I  P2)X1b1
= P2Y +M2X1b1

This demonstrates FWL result 3.
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3.4 Fixed and random effects
Often our data come in a combination of cross-sectional and time-series data, or
panel data which can substantially increase sample size. A panel data regression
then is

Ytj = Xtj + utj

where t refers to time and j refers to individuals (or firms). With panel data, one
approach is multivariate regression (multiple dependent variables and hence mul-
tiple regressions as in, for example, seemingly unrelated regressions). Another
common approach, and the focus here, is an error-components model. The idea
is to model utj as consisting of three individual shocks, each independent of the
others

utj = et + j + tj

For simplicity, suppose the time error component et is independent across time
t = 1, . . . , T , the individual error component j is independent across units
j = 1, . . . , n, and the error component tj is independent across all time t and
individuals j.
There are two standard regression strategies for addressing error components:

(1) a fixed effects regression, and (2) a random effects regression. Fixed effects re-
gressions model time effects et and/or individual effects j conditionally. On the
other hand, the random effects regressions are modeled unconditionally. That is,
random effects regressions model time effects et and individual effects j as part
of the regression error. The trade-offs between the two involve the usual regres-
sion considerations. Since fixed effects regressions condition on et and j , fixed
effects strategies do not rely on independence between the regressors and the error
components et and j . On the other hand, when appropriate (when independence
between the regressors and the error components et and j is satisfied), the ran-
dom effects model more efficiently utilizes the data. A Hausman test (Hausman
[1978]) can be employed to test the consistency of the random effects model by
reference to the fixed effects model.
For purposes of illustration, assume that there are no time-specific shocks, that

is et = 0 for all t. Now the error components regression is

Ytj = Xtj + j + tj

In matrix notation, the fixed effects version of the above regression is

Y = X +D + 

where D represents n dummy variables corresponding to the n cross-sectional
units in the sample. Provided tj is iid, the model can be estimated via OLS. Or
using FWL, the fixed effects estimator for  is


WG

=

XTMDX

1
XTMDY



3.4 Fixed and random effects 27

where PD = D

DTD

1
DT , projection into the columns of D, and MD =

I  PD, the projection matrix that produces the deviations from cross-sectional
group means. That is,

(MDX)tj = Xtj X ·j

and

MDYtj = Ytj  Y ·j

where X ·j and Y ·j are the group (individual) j means for the regressors and re-
gressand, respectively. Since this estimator only exploits the variation between the
deviations of the regressand and the regressors from their respective group means,
it is frequently referred to as a within-groups (WG) estimator.
Use of only the variation between deviations can be an advantage or a disad-

vantage. If the cross-sectional effects are correlated with the regressors, then the
OLS estimator (without fixed effects) is inconsistent but the within-groups estima-
tor is consistent. However, if the cross-sectional effects (i.e., the group means) are
uncorrelated with the regressors then the within-groups (fixed effects) estimator
is inefficient. In the extreme case in which there is an independent variable that
has no variation between the deviations and only varies between group means,
then the coefficient for this variable is not even identified by the within-groups
estimator.
To see that OLS is inconsistent when the cross-sectional effects are correlated

with the errors consider the complementary between-groups estimator. A between-
groups estimator only utilizes the variation among group means.


BG

=

XTPDX

1
XTPDY

The between-groups estimator is inconsistent if the (cross-sectional) group means
are correlated with the regressors. Further, since the OLS estimator can be written
as a matrix-weighted average of the within-groups and between-groups estima-
tors, if the between-groups estimator is inconsistent, OLS (without fixed effects)
is inconsistent as demonstrated below.


OLS

=

XTX

1
XTY

SinceMD + PD = I ,


OLS

=

XTX

1 
XTMDY +X

TPDY


Utilizing

XTX

1
XTX =


XTX

1
XT (MD + PD)X = I , we rewrite the

OLS estimator as a matrix-weighted average of the within-groups and between-
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groups estimators


OLS

=

XTX

1
XTMDX

WG
+

XTX

1
XTPDX

BG

=

XTX

1
XTMDX


XTMDX

1
XTMDY

+

XTX

1
XTPDX


XTPDX

1
XTPDY

=

XTX

1
XTMDX


XTMDX

1
XTMD (X + u)

+

XTX

1
XTPDX


XTPDX

1
XTPD (X + u)

Now, if the group means are correlated with the regressors then

p lim 
BG

= p lim

XTPDX

1
XTPD (X + u)

=  + p lim

XTPDX

1
XTPDu

=  +   = 0

and

p lim 
OLS

=

XTX

1
XTX +


XTX

1
XTPDX

=  +

XTX

1
XTPDX

=  if  = 0

Hence, OLS is inconsistent if the between-groups estimator is inconsistent, in
other words, if the cross-sectional effects are correlated with the errors.
Random effects regressions are typically estimated via GLS or maximum like-

lihood (here we focus on GLS estimation of random effects models). If the indi-
vidual error components are uncorrelated with the group means of the regressors,
then OLS with fixed effects is consistent but inefficient. We may prefer to employ
a random effects regression which is consistent and more efficient. OLS treats all
observations equally but this is not an optimal usage of the data. On the other
hand, a random effects regression treats j as a component of the error rather than
fixed. The variance of ujt is 2 + 2. The covariance of uti with utj is zero for
i = j, under the conditions described above. But the covariance of utj with usj is
2 for s = t. Thus, the T  T variance-covariance matrix is

 = 2I + 
2


T

where  is a T -length vector of ones and the data are ordered first by individual
unit and then by time. And the covariance matrix for the utj is

V ar [u] =





 0 · · · 0
0  · · · 0
...

...
. . .

...
0 0 · · · 
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GLS estimates can be computed directly or the data can be transformed and
OLS applied. We’ll briefly explore a transformation strategy. One transformation,
derived via singular value decomposition (SVD), is

1/2 = 1 (I  P)

where P = 

T 
1

T = 1
T 

T and , between zero and one, is

 = 1 

T2 + 

2


 1
2

The transformation is developed as follows. Since  is symmetric, SVD combined
with the spectral theorem implies we can write

 = QQT

where Q is an orthogonal matrix (QQT = QTQ = I) with eigenvectors in its
columns and  is a diagonal matrix with eigenvalues along its diagonal; T  1
eigenvalues are equal to 2 and one eigenvalue equals T2 + 2. To fix ideas,
consider the T = 2 case,

 =


2 + 

2
 2

2 2 + 
2




= QQT

where
 =


2 0
0 22 + 

2




and
Q =

1

2


1 1
1 1



Since
 = Q


2 0
0 22 + 

2



QT

and

1 = Q


1
2

0

0 1
22+

2



QT

= Q

 1
2

0

0 0


+


0 0
0 1

22+
2



QT

= Q

 1
2

0

0 0


QT +Q


0 0
0 1

22+
2



QT

=
1

2
Q


1 0
0 0


QT +

1

22 + 
2


Q


0 0
0 1


QT

=
1

2
(I  P) +

1

22 + 
2


P
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Note, the key to the general case is to construct Q such that

Q




0 · · · 0
...

. . .
...

0 · · · 1



QT = P

Since I  P and P are orthogonal projection matrices, we can write

1 = 
1
2

1
2

=


1


(I  P) +


1

T2 + 
2


 1
2

P






1


(I  P) +


1

T2 + 
2


 1
2

P



and the above claim

1/2 = 1 (I  P)

= 1


I 


1 


T2 + 

2


 1
2


P



=
1


(I  P) +


1

T2 + 
2


 1
2

P

is demonstrated.
A typical element of

1/2Y·j = 
1



Ytj  Y ·j



and for
1/2X·j = 

1



Xtj  X ·j



GLS estimates then can be derived from the following OLS regression

Ytj  Y ·j


=

Xtj  X ·j


+ residuals

Written in matrix terms this is

(I  P)Y = (I  P)X + (I  P)u

It is instructive to connect the GLS estimator to the OLS (without fixed effects)
estimator and to the within-groups (fixed effects) estimator. When  = 0, the GLS
estimator is the same as the OLS (without fixed effects) estimator. Note  = 0
when  = 0 (i.e., the error term has only one component ). When  = 1, the
GLS estimator equals the within-groups estimator. This is because  = 1 when
 = 0, or the between groups variation is zero. Hence, in this case the within-
groups (fixed effects) estimator is fully efficient. In all other cases,  is between
zero and one and the GLS estimator exploits both within-groups and between-
groups variation. Finally, recall consistency of random effects estimators relies on
there being no correlation between the error components and the regressors.
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3.5 Random coefficients
Random effects can be generalized by random slopes as well as random inter-
cepts in a random coefficients model. Then, individual-specific or heterogeneous
response is more fully accommodated. Hence, for individual i, we have

Yi = Xii + i

3.5.1 Nonstochastic regressors
Wald [1947], Hildreth and Houck [1968], and Swamy [1970] proposed standard
identification conditions and (OLS and GLS) estimators for random coefficients.
To fix ideas, we summarize Swamy’s conditions. Suppose there are T observa-
tions on each of n individuals with observable outcomes Yi and regressorsXi and
unobservables i and i.

Yi
(T1)

= Xi
(TK)

i
(K1)

+ i
(T1)

(i = 1, . . . , n)

Condition 3.1 E [i] = 0 E

i

T
j


=

iiI i = j
0 i = j

Condition 3.2 E [i] = 

Condition 3.3 E

(i  ) (i  )

T

=

 i = j
0 i = j

Condition 3.4 i and i are independent

Condition 3.5 i and j are independent for i = j

Condition 3.6 Xi (i = 1, . . . , n) is a matrix of K nonstochastic regressors, xitk
(t = 1, . . . , T ; k = 1, . . . ,K)

It’s convenient to define i =  + i (i = 1, . . . , n) where E [i] = 0 and

E

i

T
i


=

 i = j
0 i = j

Now, we can write a stacked regression in error form




Y1
Y2
...
Yn




=





X1
X2
...
Xn




 +





X1 0 · · · 0
0 X2 · · · 0
...

...
. . .

...
0 0 · · · Xn









1
2
...
n




+





1
2
...
n





or in compact error form
Y = X +H + 
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where H is the nT  nT block matrix of regressors and the nT  1 disturbance
vector, H + , has variance

V  V ar [H + ]

=





X1X
T
1 + 11I 0 · · · 0
0 X2X

T
2 + 22I · · · 0

...
...

. . .
...

0 0 · · · XnX
T
n + nnI





Therefore, while the parameters,  or  + , can be consistently estimated via
OLS, GLS is more efficient. Swamy [1970] demonstrates that  can be estimated
directly via

bGLS =

XTV 1X

1
XTV 1Y

=




n

j=1

XT
j


XjX

T
j + jjI

1
Xj




1


n

i=1

XT
i


XiX

T
i + iiI

1
Yi

or equivalently by a weighted average of the estimates for  + 

bGLS =

n

i=1

Wibi

where, applying the matrix inverse result in Rao [1973, (2.9)],3

Wi =




n

j=1


+ jj


XT
j Xj

11



1

+ ii


XT
i Xi

11

and bi =

XT
i Xi

1
XT
i Yi is an OLS estimate for  + i.

3.5.2 Correlated random coefficients
As with random effects, a key weakness of random coefficients is the condi-
tion that the effects (coefficients) are independent of the regressors. When this

3Rao’s inverse result follows. Let A and D be nonsingular matrices of orders m and n and B be
anm n matrix. Then


A+BDBT

1
= A1 A1B


BTA1B +D1

1
BTA1

= A1 A1BEBTA1 +A1BE (E +D)1 EBTA1

where E =

BTA1B

1.
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condition fails, OLS parameter estimation of  is likely inconsistent. However,
Wooldridge [2002, ch. 18] suggests ignorability identification conditions.We briefly
summarize a simple version of these conditions.4 For a set of covariatesW the fol-
lowing redundancy conditions apply:

Condition 3.7 E [Yi | Xi,i,Wi] = E [Yi | Xi,i]

Condition 3.8 E [Xi | i,Wi] = E [Xi |Wi]

Condition 3.9 V ar [Xi | i,Wi] = V ar [Xi |Wi]

and

Condition 3.10 V ar [Xi |Wi] > 0 for allWi

Then,  is identified as  = E

Cov(X,Y |W )
V ar(X|W )


. Alternative ignorability conditions

lead to a standard linear model.

Condition 3.11 E [i | Xi,Wi] = E [i |Wi]

Condition 3.12 the regression of Y onto covariates W (as well as potentially
correlated regressors, X) is linear

Now, we can consistently estimate  via a linear panel data regression. For exam-
ple, ignorable treatment allows identification of the average treatment effect5 via
the panel data regression

E [Y | D,W ] = D +H +W0 +D (W  E [W ]) 1

where D is (a vector of) treatments.

3.6 Ubiquity of the Gaussian distribution
Why is the Gaussian or normal distribution so ubiquitous? Jaynes [2003, ch. 7] ar-
gues probabilities are "states of knowledge" rather than long run frequencies. Fur-
ther, probabilities as logic naturally draws attention to the Gaussian distribution.
Before stating some general properties of this "central" distribution, we review it’s
development in Gauss [1809] as related by Jaynes [2003], p. 202. The Gaussian
distribution is uniquely determined if we equate the error cancelling property of a
maximum likelihood estimator (MLE; discussed in ch. 4) with the sample average.
The argument proceeds as follows.

4Wooldridge [2002, ch. 18] discusses more general ignorable treatment (or conditional mean in-
dependence) conditions and also instrumental variables (IV) strategies. We defer IV approaches to
chapter 10 when we consider average treatment effect identification strategies associated with contin-
uous treatment.

5Average treatment effects for a continuum of treatments and their instrumental variable identifi-
cation strategies are discussed in chapter 10.
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Suppose we have a sample of n+ 1 observations, x0, x1, . . . , xn, and the den-
sity function factors f (x0, x1, . . . , xn | ) = f (x0 | ) · · · f (xn | ). The log-
likelihood is

n

i=0

log f (xi | ) =
n

i=0

g (xi  )

so the MLE  satisfies

n

i=0

g

  xi




=

n

i=0

g


  xi


= 0

Equating the MLE with the sample average we have

 = x = 1

n+ 1

n

i=0

xi

In general, MLE and x are incompatible. However, consider a sample in which
only x0 is nonzero, that is, x1 = · · · = xn = 0. Now, if we let x0 = (n+ 1)u

and  = u then
  x0 = u (n+ 1)u = nu

and
n

i=0

g


  xi


= 0

becomes
n

i=0

g

(nu) = 0

or since u =   0
g

(nu) + ng


(u) = 0

The case n = 1 implies g (u) must be anti-symmetric, g (u) = g (u). With
this in mind, g (nu) + ng (u) = 0 reduces to

g

(nu) = ng


(u)

Apparently, (and naturally if we consider the close connection between the Gaussian
distribution and linearity)

g

(u) = au

that is, g (u) is a linear function and

g (u) =
1

2
au2 + b

For this to be a normalizable function, a must be negative and b determines the
normalization. Hence, we have

f (x | ) =



2 exp


 1
2 (x )

2

0 <  <
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and the "natural" way to think of error cancellation is the Gaussian distribution
with only the scale parameter  unspecified. Since the maximum of the Gaussian
likelihood function always equals the sample average and in the special case above
this is true only for the Gaussian likelihood, the Gaussian distribution is necessary
and sufficient.
Then, the ubiquity of the Gaussian distribution follows from its error cancella-

tion properties described above, the central limit theorem (discussed in the appen-
dix), and the following general properties (Jaynes [2003], pp. 220-221).
A. When any smooth function with a single mode is raised to higher and higher

powers, it approaches a Gaussian function.
B. The product of two Gaussian functions is another Gaussian function.
C. The convolution of two Gaussian functions is another Gaussian function (see

discussion below).
D. The Fourier transform of a Gaussian function is another Gaussian function.
E. A Gaussian probability distribution has higher entropy than any other distri-

bution with equal variance.
Properties A and E suggest why various operations result in convergence toward

the Gaussian distribution. Properties B, C, and D suggest why, once attained, a
Gaussian distribution is preserved.

3.6.1 Convolution of Gaussians
Property C is pivotal as repeated convolutions lead to the central limit theorem.
First, we discuss discrete convolutions (see Strang [1986],pp. 294-5). The con-
volution of f and g is written f  g. It is the sum (integral) of two functions
after one has been reversed and shifted. Let f = (f0, f1, . . . , fn1) and g =
(g0, g1, . . . , gn1) then

f  g =

f0g0 + f1gn1 + f2gn2 + · · ·+ fn1g1, f0g1 + f1g0 + f2gn1
+ · · ·+ fn1g1, . . . , f0gn1 + f1gn2 + f2gn3 + · · ·+ fn1g0



For example, the convolution of (1, 2, 3) and (4, 5, 6) is (1, 2, 3)  (4, 5, 6) =
(1 · 4 + 2 · 6 + 3 · 5, 1 · 5 + 2 · 4 + 3 · 6, 1 · 6 + 2 · 5 + 3 · 4) = (31, 31, 28).
Now, we discuss property C. The convolution property applied to Gaussians is





 (x µ1 | 1) (y  x µ2 | 2) dx =  (y  µ | )

where  (·) is a Gaussian density function, µ = µ1 + µ2 and 2 = 21 + 22. That
is, two Gaussians convolve to make another Gaussian distribution with additive
means and variances. For convenience let wi = 1

2i
and write


x µ1
1

2
+


y  x µ2

2

2
= (w1 + w2) (x x)2+

w1w2
w1 + w2

(y  µ1  µ2)
2

where x  w1µ1+w2yw2µ2
w1+w2

. Integrating out x produces the above result.
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3.7 Interval estimation
Finite sampling distribution theory for the linear model Y = X+ follows from
assigning the errors independent, normal probability distributions with mean zero
and constant variance 2.6 Interval estimates for individual model parameters j
are Student t distributed with np degrees of freedom when 2 is unknown. This
follows from

bj  j
Est.V ar [bj ]

 t (n p)

whereEst.V ar [bj ] = s2

XT
j MjXj

1,Xj is column j ofX ,Mj = IPj
and Pj is the projection matrix onto all columns of X except j, s2 = eT e

np , and
e is a vector of residuals. By FWL, the numerator is


XT
j MjXj

1
XT
j MjY

Rewriting yields

bj =

XT
j MjXj

1
XT
j Mj (X + )

AsMj annihilates all columns of X except Xj , we have

bj =

XT
j MjXj

1
XT
j Mj


Xjj + 



= j +

XT
j MjXj

1
XT
j Mj

Now,

bj  j =

XT
j MjXj

1
XT
j Mj

As this is a linear combination of independent, normal random variates, the trans-
formed random variable also has a normal distribution with mean zero and vari-
ance 2


XT
j MjXj

1. The estimated variance of bj is s2

XT
j MjXj

1 and
the t ratio is

bj  j
Est.V ar [bj ]

=
bj  j

s2

XT
j MjXj

1

=
bj  j

eT e(XT
j MjXj)

1

np

6It’s instructive to recall the discussion of the ubiquity of the Gaussian distribution adapted from
Jaynes [2003].
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This can be rewritten as the ratio of a standard normal random variable to the
square root of a chi-square random variable divided by its degrees of freedom.

bj  j
Est.V ar [bj ]

=


XT
j MjXj

1
XT
j Mj

TMX(XT
j MjXj)

1

np

=


XT
j MjXj

1
XT
j Mj (/)

(/)TMX(/)(XT
j MjXj)

1

np

In other words, a Student t distributed random variable with n  p degrees of
freedom which completes the demonstration.
Normal sampling distribution theory applied to joint parameter regions follow

an F distribution. For example, the null hypothesis H0 : 1 = ... = p1 = 0 is
tested via the F statistic = MSR

MSE  F (p 1, n p). As we observed above, the
denominator is

MSE =
eT e

n p

=
TMX

n p

2 (n p)
n p

The numerator is (XbY )
T
(XbY )

p1 . FWL indicates Xb = PY + MXb
where  refers to a vector of ones (for the intercept) and the subscript  refers
to everything but the intercept (i.e., everything except the vector of ones in X).
Therefore, Xb Y = PY +MXb  PY =MXb. Now,

MSR =
bTX

T
MXb

p 1

=
Y TPMXY

p 1

=
(X + )

T
PMX (X + )

p 1

under the null  = 0 and 0 is negated byM. Hence,

MSR =
TPMX

p 1

2 (p 1)
p 1

which completes the demonstration.
When the our understanding of the errors is weak, we frequently appeal to as-

ymptotic or approximate sampling distributions. Asymptotic tests of restrictions
are discussed next (also see the appendix).
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3.8 Asymptotic tests of restrictions: Wald, LM, LR
statistics

Tests of restrictions based onWald, LM (Lagrange multiplier), and LR (likelihood
ratio) statistics have a similar heritage. Asymptotically they are the same; only in
finite samples do differences emerge. A brief sketch of each follows.
Intuition for these tests come from the finite sample F statistic (see Davidson

and MacKinnon [1993], p. 82-83 and 452-6). The F statistic is valid if the errors
have a normal probability assignment.
For the restriction H0: R  r = 0

F =


eT e  eT e


/J

eT e/ (n p)

=
(Rb r)T


Rs2


XTX

1
RT
1

(Rb r)

J
 F (J, n p)

where R is J  p, e = (I  PX)Y = MXY and e = (I  PX)Y = MXY
are the residuals from the restricted and unrestricted models, respectively, Px =
X

XTX

1
XT , PX = X


XT
 X

1
XT
 are the projection matrices, X

is the restricted matrix of regressors, and s2 = eT e/ (n p) is the sample vari-
ance. Recall the numerator and denominator of F are divided by 2 to yield the
ratio of two chi-squared random variables. Since s2 converges to 2 we have
p lim


s2

2


= 1 in the denominator. Hence, we have J squared standard nor-

mal random variables summed in the numerator orW converges in distribution to
2 (J).
FWL provides another way to see the connection between the F statistic and

the Wald statisticW ,

F =


eT e  eT e


/J

eT e/ (n p)

=
(Rb r)T


Rs2


XTX

1
RT
1

(Rb r)

J

=
W

J

Consider the (partitioned) DGP:

Y = X +  = X11 +X22 + 
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and restriction H0 : 2 = 0. By FWL,7

eT e = Y TMXY = Y
TM1Y  Y TM1X2


XT
2 M1X2

1
XT
2 M1Y

and eT e = Y TM1Y . Hence, the numerator of F is

eT e  e

T e

/J = Y TM1X2


XT
2 M1X2

1
XT
2 M1Y/J

and the denominator is s2. Since R =

1 0


, rearrangement yields

W =
bT2


XTX

11
22
b2/J

s2

where

XTX

1

22
=

XT
2 X2 X

T
2 X1


XT
1 X1

1
XT
1 X2

1

is the lower right hand block of

XTX

1. Both F and W are divided by J in
the numerator and have s2 in the numerator. Now, we show that

Y TM1X2

XT
2 M1X2

1
XT
2 M1Y = b

T
2


XTX

11
22
b2

by rewriting the right hand side

bT2


XTX

11
22
b2 = bT2


XT
2 X2 X

T
2 X1


XT
1 X1

1
XT
1 X2


b2

= bT2

XT
2 M1X2


b2

by FWL for b2

bT2

XT
2 M1X2


b2

= Y TM1X2

XT
2 M1X2

1 
XT
2 M1X2

 
XT
2 M1X2

1
XT
2 M1Y

= Y TM1X2

XT
2 M1X2

1
XT
2 M1Y

7From FWL,

Xb = P1Y +M1X2b2

= P1Y +M1X2

XT
2 M1X2

1
XT
2 M1Y

= P1Y +M1X2

XT
2 M1X2

1
XT
2 M1Y

= P1Y + PM1X2
Y

Since P1PM1
= 0 (by orthogonality),

eT e = Y T

I  P1Y  PM1X2


Y

= Y TM1Y  Y TPM1X2
Y

= Y TM1Y  Y TM1X2

XT
2 M1X2

1
XT
2 M1Y



40 3. Linear models

This completes the demonstration as the right hand side from W is the same as
the left hand side from F .
If the errors do not have a normal probability assignment, the F statistic is

invalid (even asymptotically) but the Wald statistic may be asymptotically valid

W = (Rb r)T

Rs2


XTX

1
RT
1

(Rb r) d 2 (J)

To see this apply the multivariate Lindberg-Feller version of the central limit
theorem (see appendix on asymptotic theory) and recall if x  N (µ,), then
(x µ)T 1 (x µ)  2 (n). W is the quadratic form as under the null Rb
has mean r and Est.V ar [Rb] = Rs2


XTX

1
RT .

The LR statistic is based on the log of the ratio of the restricted to unrestricted
likelihoods

LR = 2 [LnL  LnL]

= nLn

eT e/e

T e
 d 2 (J)

Asymptotically LR converges toW .
The LagrangeMultiplier (LM) test is based on the gradient of the log-likelihood.

If the restrictions are valid then the derivatives of the log-likelihood evaluated at
the restricted estimates should be close to zero.
Following manipulation of first order conditions we find

 =

Rs2


XTX

1
RT
1

(Rb r)

A Wald test of  = 0 yields the statistic LM = T {Est.V ar []}
1
 which

simplifies to

LM = (Rb r)T

Rs2


XTX

1
RT
1

(Rb r)

It is noteworthy that, unlike theWald statistic above, the variance estimate is based
on the restrictions.
In the classical regression model, the LM statistic can be simplified to an nR2

test. Under the restrictions,E

Ln L



= E


1
2X

T 

= 0 andAsy.V ar


Ln L




=

2Ln L
T

1
= 2


XTX

1. The LM statistic is

eTX

XTX

1
XT e

eT e/n
= nR2

d 2 (p J)

LM is n times R2 from a regression of the (restricted) residuals e on the full set
of regressors.
From the above, we haveW > LR > LM in finite samples.



3.9 Misspecification and IV estimation 41

3.8.1 Nonlinear restrictions
More generally, suppose the restriction is nonlinear in 

H0 : f () = 0

The corresponding Wald statistic is

W = f (b)
T

G (b) s2


XTX

1
G (b)

T
1

f (b)
d 2 (J)

where G (b) =

f(b)
bT


. This is an application of the Delta method (see the ap-

pendix on asymptotic theory). If f (b) involves continuous functions of b such that
 =


f()

T


, by the central limit theorem

f (b)
d N


f () ,


2

n
Q1


T


where p lim

XTX
n

1
= Q1.

3.9 Misspecification and IV estimation
Misspecification arises from violation of E


XT 


= 0, or E [ | X] = 0, or

asymptotically, p lim

1
nX

T 

= 0. Omitted correlated regressors, measurement

error in regressors, and endogeneity (including simultaneity and self-selection)
produce such misspecification when not addressed.
Consider the DGP:

Y = X1 +X2 + 

where
 


0,2I


, E

X1 X2

T


= 0

and
p lim


1

n


X1 X2

T



= 0

IfX2 is omitted then it effectively becomes part of the error term, say  = X2+.
OLS yields

b =

XT
1 X1

1
XT
1 (X1 +X2 + ) =  +


XT
1 X1

1
XT
1 (X2 + )

which is unbiased only if X1 and X2 are orthogonal (so the Gauss-Markov theo-
rem likely doesn’t apply). And, the estimator is asymptotically consistent only if
p lim


1
n


XT
1 X2


= 0.

Instrumental variables (IV) estimation is a standard approach for addressing
lack of independence between the regressors and the errors. A “good” set of in-
struments Z has two properties: (1) they are highly correlated with the (endoge-
nous) regressors and (2) they are orthogonal to the errors (or p lim


1
nZ

T 

= 0).
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Consider the DGP:
Y = X + 

where  

0,2I


, but E


XT 


= 0, and p lim


1
nX

T 

= 0.

IV estimation proceeds as follows. Regress X onto Z to yield X = PZX =

Z

ZTZ

1
ZTX . Estimate  via bIV by regressing Y onto X .

bIV =

XTPZPZX

1
XTPZY

=

XTPZX

1
XTPZY

Asymptotic consistency8 follows as

p lim (bIV ) = p lim

XTPZX

1
XTPZY



= p lim

XTPZX

1
XTPZ (X + )



=  + p lim

XTPZX

1
XTPZ



=  + p lim


1

n
XTPZX

1
1/nXTZ


1

n
ZTZ

1
1

n
ZT 



= 

Note in the special case Dim (Z) = Dim (X) (where Dim refers to the dimen-
sion or rank of the matrix), each regressor has one instrument associated with
it, the instrumental variables estimator simplifies considerably as


XTZ

1 and

ZTX

1 exist. Hence,

bIV =

XTPZX

1
XTPzY

=

XTZ


ZTZ

1
ZTX

1
XTZ


ZTZ

1
ZTY

=

ZTX

1
ZTY

and
Asy.V ar [bIV ] = 

2

ZTX

1
ZTZ


XTZ

1

There is a finite sample trade-off in choosing the number of instruments to
employ. Asymptotic efficiency (inverse of variance) increases in the number of
instruments but so does the finite-sample bias. Relatedly, if OLS is consistent the
use of instruments inflates the variance of the estimates since XTPZX is smaller
by a positive semidefinite matrix than XTX (I = PZ + (I  Pz), IV annihilates
the left nullspace of Z).

8Slutsky’s theorem is applied repeatedly below (see the appendix on asymptotic theory). The theo-
rem indicates plim (g(X)) = g(plim (X)) and implies plim (XY ) = plim (X) plim (Y ).
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Importantly, if Dim (Z) > Dim (X) then over-identifying restrictions can be
used to test the instruments (Godfrey and Hutton, 1994). The procedure is regress
the residuals from the second stage onto Z (all exogenous regressors). Provided
there exists at least one exogenous regressor, then nR2  2 (K  L) where K
is the number of exogenous regressors in the first stage and L is the number of
endogenous regressors. Of course, under the null of exogenous instruments R2 is
near zero.
A Hausman test (based on a Wald statistic) can be applied to check the con-

sistency of OLS (and is applied after the above exogeneity test and elimination of
any offending instruments from the IV estimation).

W = (b bIV )
T
[V1  V0]

1
(b bIV )  2 (p)

where V1 is the estimated asymptotic covariance for the IV estimator and V0 =
s2

XTX

1 where s2 is from the IV estimator (to ensure that V1 > V0).

3.10 Proxy variables
Frequently in accounting and business research we employ proxy variables as
direct measures of constructs are not readily observable. Proxy variables can help
to address potentially omitted, correlated variables. An important question is when
do proxy variables aid the analysis and when is the cure worse than the disease.
Consider the DGP: Y = 0+X+Z+ . LetW be a set of proxy variables

for Z (the omitted variables). Typically, there are two conditions to satisfy:
(1)E [Y | X,Z,W ] = E [Y | X,Z] This form of mean conditional independence
is usually satisfied.
For example, supposeW = Z +  and the variables are jointly normally distrib-
uted with  independent of other variables. Then, the above condition is satisfied
as follows. (For simplicity, we work with one-dimensional variables but the result
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can be generalized to higher dimensions.9)

E [Y | X,Z,W ] = µY +

Y X Y Z Y Z








XX XZ XZ
ZX ZZ ZZ
ZX ZZ ZZ + 




1 


x µX
z  µZ
w  µW





= µY +
Y XZZ  XZY Z
XXZZ  2XZ

(x µX)

+
Y ZXX  XZY X
XXZZ  2XZ

(z  µZ) + 0 (w  µW )

(2) Cov [Xj , Z |W ] = 0 for all j. This condition is more difficult to satisfy.
Again, consider proxy variables likeW = Z+ whereE [] = 0 andCov [Z, ] =
0, then Cov [X,Z |W ] = XZ

2


ZZ+2
. Hence, the smaller is 2 , the noise in the

proxy variable, the better service provided by the proxy variable.
What is the impact of imperfect proxy variables on estimation? Consider proxy

variables like Z = 0 + 1W +  where E [] = 0 and Cov [Z, ] = 0. Let
Cov [X, ] =  = 0, Q =


 X W


, and

T =

(0 + 0)  1



The estimable equation is

Y = Q +  = (0 + 0) + X + 1W + ( + )

9A quick glimpse of the multivariate case can be found if we consider the simple case where
the DGP omits X . If W doesn’t contribute to E[Y | Z,W ], then it surely doesn’t contribute to
E[Y | X,Z,W ]. It’s readily apparent how the results generalize for the E[Y | X,Z,W ] case,
though cumbersome. In block matrix form E[Y | Z,W ] =

µY +

Y Z Y Z

  ZZ ZZ
ZZ ZZ + 

1 
z  µZ
w  µW



= µY +

Y Z Y Z

  1ZZ + 
1
 1

1 1

 
z  µZ
w  µW



= µY + Y Z
1
ZZ (z  µZ) + 0 (w  µW )

The key is recognizing that the partitioned inverse (following some rewriting of the off-diagonal
blocks) for


ZZ ZZ
ZZ ZZ + 

1

=

 
ZZ  ZZ


ZZ + 

1 ZZ
1

1
ZZ

ZZ
1




ZZ + 

1 ZZ
1
ZZ


ZZ + 


1


ZZ +   ZZ

1
ZZ

ZZ

1



=

 
ZZ  ZZ


ZZ + 

1 ZZ
1

1
ZZ

ZZ
1




ZZ + 

1 ZZ
1
ZZ


ZZ + 


1


ZZ +   ZZ

1
ZZ

ZZ

1



=


1ZZ + 

1
 1

1 1
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The OLS estimator of  is b =

QTQ

1
QTY . Let p lim


1/nQTQ

1
= .

p lim b =  +  p lim 1/n

 X W

T
( + )

=  + 




12
22
32



 =




0 + 0 + 12

 + 22
1 + 32





Hence, b is asymptotically consistent when  = 0 and inconsistency ("bias") is
increasing in the absolute value of  = Cov [X, ].

3.10.1 Accounting and other information sources
Use of proxy variables in the study of information is even more delicate. Fre-
quently we’re interested in the information content of accounting in the midst of
other information sources. As complementarity is the norm for information, we
not only have the difficulty of identifying proxy variables for other information
but also a functional form issue. Functional form is important as complementar-
ity arises through joint information partitions. Failure to recognize these subtle
interactions among information sources can yield spurious inferences regarding
accounting information content.
A simple example (adapted from Antle, Demski, and Ryan[1994]) illustrates

the idea. Suppose a nonaccounting information signal (x1) precedes an accounting
information signal (x2). Both are informative of firm value (and possibly employ
the language and algebra of valuation). The accounting signal however employs
restricted recognition such that the nonaccounting signal is ignored by the ac-
counting system. Table 3.1 identifies the joint probabilities associated with the
information partitions and the firm’s liquidating dividend (to be received at a fu-
ture date and expressed in present value terms). Prior to any information reports,

Table 3.1: Multiple information sources case 1 setup

probabilities; payoffs x1
1 2 3

x2 1 0.10;0 0.08;45 0.32;99
2 0.32;1 0.08;55 0.10;100

firm value (expected present value of the liquidating dividend) is 50. The change
in firm value at the time of the accounting report (following the second signal) as
well as the valuation-scaled signals (recall accounting, the second signal, ignores
the first signal) are reported in table 3.2. Due to the strong complementarity in
the information and restricted recognition employed by accounting, response to
earnings is negative. That is, the change in value moves in the opposite direction
of the accounting earnings report x2.
As it is difficult to identify other information sources (and their information

partitions), often a proxy variable for x1 is employed. Suppose our proxy variable
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Table 3.2: Multiple information sources case 1 valuation implications

change in firm value x1
-49.238 0 49.238

x2 20.56 -0.762 -5 -0.238
-20.56 0.238 5 0.762

is added as a control variable and a linear model of the change in firm value as a
function of the information sources is estimated. Even if we stack things in favor
of the linear model by choosing w = x1 we find

case 1: linear model with proxy variable
E [Y | w, x2] = 0.+ 0.0153w  0.070x2

R2 = 0.618

While a saturated design matrix (an ANOVA with indicator variables associated
with information partitions and interactions to capture potential complementarities
between the signals) fully captures change in value

case 1: saturated ANOVA
E [Y | D12, D13, D22, D12D22, D13D22] = 0.762 4.238D12

+0.524D13 + 1.0D22 + 0.524D13 + 1.0D22
+9.0D12D22 + 0.0D13D22

R2 = 1.0

whereDij refers to information signal i and partition j, the linear model explains
only slightly more than 60% of the variation in the response variable. Further,
the linear model exaggerates responsiveness of firm value to earnings. This is a
simple comparison of the estimated coefficient for  (0.070) compared with the
mean effect scaled by reported earnings for the ANOVA design ( 1.0

20.56 = 0.05).
Even if w effectively partitions x1, without accommodating potential informa-
tional complementarity (via interactions), the linear model is prone to misspecifi-
cation.

case 1: unsaturated ANOVA
E [Y | D12, D13, D22] = 2.188 + 0.752D12 + 1.504D13 + 2.871D22

R2 = 0.618

The estimated earnings response for the discretized linear proxy model is 2.871
20.56 =

0.14. In this case (call it case 1), it is even more overstated.
Of course, the linear model doesn’t always overstate earnings response, it can

also understate (case 2, tables 3.3 and 3.4) or produce opposite earnings response
to the DGP (case 3, tables 3.5 and 3.6). Also, utilizing the discretized or parti-
tioned proxy may yield earnings response that is closer or departs more from the
DGP than the valuation-scaled proxy for x1. The estimated results for case 2 are

case 2: linear model with proxy variable
E [Y | w, x2] = 0.+ 0.453w + 3.837x2

R2 = 0.941



3.10 Proxy variables 47

Table 3.3: Multiple information sources case 2 setup

probabilities; payoffs x1
1 2 3

x2 1 0.10;0 0.08;45 0.32;40
2 0.32;60 0.08;55 0.10;100

Table 3.4: Multiple information sources case 2 valuation implications

change in firm value x1
-19.524 0.0 19.524

x2 -4.400 -46.523 86.062 54.391
4.400 61.000 -140.139 -94.107

case 2: saturated ANOVA
E [Y | D12, D13, D22, D12D22, D13D22] = 30.476 + 25.476D12

+20.952D13 + 40.0D22  30.0D12D22 + 0.0D13D22
R2 = 1.0

case 2: unsaturated ANOVA
E [Y | D12, D13, D22] = 25.724 + 8.842D12 + 17.685D13 + 33.762D22

R2 = 0.941

Earnings response for the continuous proxy model is 3.837, for the partitioned
proxy is 33.7624.4 = 7.673, and for the ANOVA is 40.04.4 = 9.091. Hence, for case 2
the proxy variable models understate earnings response and the partitioned proxy
is closer to the DGP earnings response than is the continuous proxy (unlike case
1).
For case 3,we have The estimated results for case 3 are

Table 3.5: Multiple information sources case 3 setup

probabilities; payoffs x1
1 2 3

x2 1 0.10;4.802 0.08;105.927 0.32;50.299
2 0.32;65.864 0.08;26.85 0.10;17.254

case 3: linear model with proxy variable
E [Y | w, x2] = 0.+ 0.063w + 1.766x2

R2 = 0.007

case 3: saturated ANOVA
E [Y | D12, D13, D22, D12D22, D13D22] = 46.523 + 86.062D12
+54.391D13 + 61.062D22  140.139D12D22  94.107D13D22

R2 = 1.0
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Table 3.6: Multiple information sources case 3 valuation implications

change in firm value x1
1.326 16.389 -7.569

x2 0.100 -46.523 86.062 54.391
-0.100 61.000 -140.139 -94.107

case 3: unsaturated ANOVA
E [Y | D12, D13, D22] = 4.073 1.400D12  2.800D13  5.346D22

R2 = 0.009

Earnings response for the continuous proxy model is 1.766, for the partitioned
proxy is 5.3460.100 = 53.373, and for the ANOVA is

61.062
0.100 = 609.645. Hence, for

case 3 the proxy variable models yield earnings response opposite the DGP.
The above variety of misspecifications suggests that econometric analysis of

information calls for nonlinear models. Various options may provide adequate
summaries of complementary information sources. These choices include at least
saturated ANOVA designs (when partitions are identifiable), polynomial regres-
sions, and nonparametric and semiparametric regressions. Of course, the proxy
variable problem still lurks. Next, we return to the equilibrium earnings manage-
ment example discussed in chapter 2 and explore the (perhaps linear) relation
between firm value and accounting accruals.

3.11 Equilibrium earnings management
The earnings management example in Demski [2004] provides a straightforward
illustration of the econometric challenges faced when management’s reporting be-
havior is endogenous and also the utility of the propensity score as an instrument.
Suppose the objective is to track the relation between a firm’s value Pt and its
accruals zt. To keep things simple, firm value equals the present value of expected
future dividends, the market interest rate is zero, current period cash flows are
fully paid out in dividends, and dividends d are normal iid with mean zero and
variance 2. Firm managers have private information ypt about next period’s divi-
dend ypt = dt+1 +t where  are normal iid with mean zero and variance 2.10 If
the private information is revealed, ex dividend firm value at time t is

Pt  E

dt+1 | ypt = y

p
t



=
1

2
ypt

Suppose management reveals its private information through income It (cash
flows plus change in accruals) where fair value accruals zt = E


dt+1 | ypt = y

p
t



10For simplicity, there is no other information.
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= 1
2y
p
t are reported. Then, income is

It = dt + (zt  zt1)

= dt +
1

2


ypt  y

p
t1


and

Pt  E


dt+1 | dt = dt, It = dt +

1

2


ypt  y

p
t1


= E


dt+1 | zt =

1

2
ypt



= zt

There is a linear relation between price and fair value accruals.
Suppose the firm is owned and managed by an entrepreneur who, for intergen-

erational reasons, liquidates his holdings at the end of the period. The entrepreneur
is able to misrepresent the fair value estimate by reporting, zt = 1

2y
p
t + , where

  0. Auditors are unable to detect any accrual overstatements below a threshold
equal to 1

2. Traders anticipate the firm reports zt =
1
2y
p
t +

1
2 and the market

price is

Pt = zt  E [] = zt 
1

2


Given this anticipated behavior, the entrepreneur’s equilibrium behavior is to re-
port as conjectured. Again, there is a linear relationship between firm value and
reported "fair value" accruals.
Now, consider the case where the entrepreneur can misreport but with probabil-

ity . Investors process the entrepreneur’s report with misreporting in mind. The
probability of misreporting D, given an accrual report of zt, is

Pr (D | zt = zt) =


zt0.5

0.5





zt0.5

0.5


+ (1 )


zt
0.5



where  (·) is the standard normal density function. In turn, the equilibrium price
for the firm following the report is

Pt = E

dt+1 | zt = zt



=
 (zt  0.5)


zt0.5

0.5


+ (1 ) zt


zt
0.5





zt0.5

0.5


+ (1 )


zt
0.5



Again, the entrepreneur’s equilibrium reporting strategy is to misreport the maxi-
mum whenever possible and the accruals balance is 


1
2

, on average. Price is

no longer a linear function of reported "fair value".
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Consider the following simulation to illustrate. Let 2 = 2, = 4, and  = 1
4 .

For sample size n = 5, 000 and 1, 000 simulated samples, the regression is

Pt = 0 + 1xt

where
xt = Dt


zpt +

1

2



+ (1Dt) z

p
t

Dt  Bernoulli ()

Pt =
 (xt  0.5)


xt0.5

0.5


+ (1 )xt


xt
0.5





xt0.5

0.5


+ (1 )


xt
0.5



and zpt = 1
2y
p
t . A typical plot of the sampled data, price versus reported accruals

is depicted in figure 3.1. There is a distinctly nonlinear pattern in the data.11

Figure 3.1: Price versus reported accruals

Sample statistics for the regression estimates are reported in table 3.7. The es-
timates of the slope are substantially biased downward. Recall the slope is one if
there is no misreporting or if there is known misreporting. Suppose the analyst

11For larger (smaller) values of, the nonlinearity is more (less) pronounced.
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Table 3.7: Results for price on reported accruals regression

statistic 0 1
mean 0.285 0.571
median 0.285 0.571

standard deviation 0.00405 0.00379
minimum 0.299 0.557
maximum 0.269 0.584

E [Pt | xt] = 0 + 1xt

can ex post determine whether the firm misreported. LetDt = 1 if the firm misre-
ported in period t and 0 otherwise. Is price a linear function of reported accruals
xt conditional on Dt? Simulation results for the saturated regression

Pt = 0 + 1xt + 2Dt + 3xt Dt

are reported in table 3.8. Perhaps surprisingly, the slope coefficient continues to

Table 3.8: Results for price on reported accruals saturated regression

statistic 0 1 2 3
mean 0.244 0.701 0.117 0.271
median 0.244 0.701 0.117 0.271

standard deviation 0.0032 0.0062 0.017 0.011
minimum 0.255 0.680 0.061 0.306
maximum 0.233 0.720 0.170 0.239
E [Pt | xt, Dt] = 0 + 1xt + 2Dt + 3xt Dt

be biased toward zero.
Before we abandon hope for our econometric experiment, it is important to

remember investors do not observeDt but rather are left to infer any manipulation
from reported accruals xt. So what then is the omitted, correlated variable in this
earnings management setting? Rather thanDt it’s the propensity for misreporting
inferred from the accruals report, in other words Pr (Dt | xt = xt)  p (xt). If
the analyst knows what traders know, that is ,, and , along with the observed
report, then the regression for estimating the relation between price and fair value
is

Pt = 0 + 1xt + 2p (xt)

Simulation results are reported in table 3.9. Of course, this regression perfectly
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Table 3.9: Results for price on reported accruals and propensity score regression

statistic 0 1 2
mean 0.000 1.000 -2.000
median 0.000 1.000 -2.000

standard deviation 0.000 0.000 0.000
minimum 0.000 1.000 -2.000
maximum 0.000 1.000 -2.000

E [Pt | xt, p (xt)] = 0 + 1xt + 2p (xt)

fits the data as a little manipulation confirms.

Pt =
 (xt  0.5)


xt0.5

0.5


+ (1 )xt


xt
0.5





xt0.5

0.5


+ (1 )


xt
0.5



= 0 + 1xt + 2p (xt)

= 0 + 1xt + 2



xt0.5

0.5





xt0.5

0.5


+ (1 )


xt
0.5



=
(0 + 1xt)




xt0.5

0.5


+ (1 )


xt
0.5


+ 2


xt0.5

0.5





xt0.5

0.5


+ (1 )


xt
0.5



For 1 = 1,Pt =
1xt




xt0.5

0.5


+(1)


xt
0.5


10.5


xt0.5

0.5





xt0.5

0.5


+(1)


xt
0.5

 . Hence,

0 = 0 and the above expression simplifies

(0 + 1xt)



xt0.5

0.5


+ (1 )


xt
0.5


+ 2


xt0.5

0.5





xt0.5

0.5


+ (1 )


xt
0.5



=
1


 (xt  0.5)


xt0.5

0.5


+ (1 )xt


xt
0.5





xt0.5

0.5


+ (1 )


xt
0.5



+
(10.5+ 2)


xt0.5

0.5





xt0.5

0.5


+ (1 )


xt
0.5



Since the last term in the numerator must be zero and 1 = 1, 2 = 10.5 =
0.5. In other words, reported accruals conditional on trader’s perceptions of
the propensity for misreporting map perfectly into price. The regression estimates
the relation between price and fair value via 1 and the magnitude of misreporting
when the opportunity arises via 2.
Of course, frequently the analyst (social scientist) suffers an informational dis-

advantage. Suppose the analyst ex post observes Dt (an information advantage
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relative to traders) but doesn’t know , , and  (an information disadvantage
relative to traders). These parameters must be estimated from the data. An esti-
mate of  is

D = n1
n

t=1

Dt

An estimate of  = 1
2 is

 =
n1

n

t=1

xtDt

D


n1
n

t=1

xt (1Dt)


1D



An estimate of 2 = 1
2

2 is

2 = (n 1)1
n

t=1

(xt  x)
2  

2
D

1D



Combining the above estimates12 produces an estimate of p (xt)

p (xt) =
D


xt




D

xt



+

1D




xt



And the regression now is

Pt = 0 + 1xt + 2p (xt)

Simulation results reported in table 3.10 support the estimated propensity score
p (xt).

Table 3.10: Results for price on reported accruals and estimated propensity score
regression

statistic 0 1 2
mean 0.0001 0.9999 -2.0006
median -0.0000 0.9998 -2.0002

standard deviation 0.0083 0.0057 0.0314
minimum -0.025 0.981 -2.104
maximum 0.030 1.019 -1.906
E [Pt | xt, p (xt)] = 0 + 1xt + 2p (xt)

12IfDt is unobservable to the analyst then some other means of estimating p(xt) is needed (perhaps
initial guesses for  and followed by nonlinear refinement).
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Rather than p (xt), the propensity score can be estimated via logit, p (xt), (dis-
cussed in chapter 5) whereDt is regressed on xt.13 As expected, simulation results
reported in table 3.11 are nearly identical to those reported above (the correlation
between the two propensity score metrics is 0.999).

Table 3.11: Results for price on reported accruals and logit-estimated propensity
score regression

statistic 0 1 2
mean 0.000 1.000 1.999
median 0.000 1.000 1.997

standard deviation 0.012 0.008 0.049
minimum 0.035 0.974 2.154
maximum 0.040 1.028 1.863
E [Pt | xt, p (xt)] = 0 + 1xt + 2p (xt)

This stylized equilibrium earnings management example illustrates two points.
First, it provides a setting in which the intuition behind the propensity score, a
common econometric instrument, is clear. Second, it reinforces our theme con-
cerning the importance of the union of theory, data, and model specification. Con-
sistent analysis requires all three be carefully attended and the manner in which
each is considered depends on the others.

3.12 Additional reading
Linear models have been extensively studied and accordingly there are many
nice econometrics references. Some favorites include Davidson and MacKinnon
[1993, 2003], Wooldridge [2002], Cameron and Trivedi [2005], Greene [1997],
Amemiya [1985], Theil [1971], Rao [1973], and Graybill [1976]. Angrist and
Pischke [2009] provide a provocative justification for the linear conditional ex-
pectation function (see the end of chapter appendix). Davidson and MacKinnon
in particular offer excellent discussions of FWL. Bound, Brown, and Mathiowetz
[2001] and Hausman [2001] provide extensive review of classical and nonclas-
sical measurement error and their implications for proxy variables. Christensen
and Demski [2003, ch. 9-10] provide a wealth of examples of accounting as an
information source and the subtleties of multiple information sources. Their dis-
cussion of the correspondence (or lack thereof) between accounting metrics and
firm value suggests that association studies are no less prone to challenging spec-
ification issues than are information content studies. Discussions in this chapter

13The posterior probability of manipulation given a normally distributed signal has a logistic dis-
tribution (see Kiefer [1980]). Probit results are very similar although the logit intervals are somewhat
narrower. Of course, if Dt is unobservable (by the analyst) then discrete choice methods like logit or
probit are not directly accessible.
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refer specifically to information content. Finally, we reiterate Jayne’s [2003] dis-
cussion regarding the ubiquity of the Gaussian distribution is provocative.

3.13 Appendix
Angrist and Pischke [2009, ch. 3] layout a foundation justifying regression analy-
sis of economic data and building linkages to causal effects. The arguments begin
with the population-level conditional expectation function (CEF)

E [Yi | Xi = x] =

tfy (t | Xi = x) dt

where fy (t | Xi = x) is the conditional density function evaluated at Yi = t and
the law of iterated expectations

E [Yi] = EX [E [Yi | Xi]]

The law of iterated expectations allows us to separate the response variable into
two components: the CEF and a residual.

Theorem 3.2 CEF decomposition theorem.

Yi = E [Yi | Xi] + i

where (i) i is mean independent ofXi,E [i | Xi] = 0, and (ii) i is uncorrelated
with any function of Xi.

Proof. (i)

E [i | Xi] = E [Yi  E [Yi | Xi] | Xi]
= E [Yi | Xi] E [Yi | Xi] = 0

(ii) let h (Xi) be some function of Xi. By the law of iterated expectations,

E [h (Xi) i] = EX [h (Xi)E [i | Xi]]

and by mean independence E [i | Xi] = 0. Hence, E [h (Xi) i] = 0.
The CEF optimally summarizes the relation between the response, Yi, and ex-

planatory variables, Xi, in a minimum mean square error (MMSE) sense.

Theorem 3.3 CEF prediction theorem. Let m (Xi) be any function of Xi. The
CEF is the MMSE of Yi given Xi in that it solves

E [Yi | Xi] = argmin
m(Xi)

E

{Yi m (Xi)}

2
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Proof.Write

{Yi m (Xi)}
2
= {(Yi  E [Yi | Xi]) + (E [Yi | Xi]m (Xi))}

2

= (Yi  E [Yi | Xi])
2
+ 2 (Yi  E [Yi | Xi])

 (E [Yi | Xi]m (Xi)) + (E [Yi | Xi]m (Xi))
2

The first term can be ignored as it does not involve m (Xi). By the CEF de-
composition property, the second term is zero since we can think of h (Xi) 
2 (Yi  E [Yi | Xi]). Finally, the third term is minimized whenm (Xi) is theCEF.

A closely related property involves decomposition of the variance. This prop-
erty leads to the ANOVA table associated with many standard statistical analyses.

Theorem 3.4 ANOVA theorem.

V ar [Yi] = V ar [E [Yi | Xi]] + EX [V ar [Yi | Xi]]

where V ar [·] is the variance operator.

Proof. The CEF decomposition property implies the variance of Yi equals the
variance of the CEF plus the variance of the residual as the terms are uncorrelated.

V ar [Yi] = V ar [E [Yi | Xi]] + V ar [i | Xi]

Since i  Yi  E [Yi | Xi] and V ar [i | Xi] = V ar [Yi | Xi] = E

2i

, by

iterated expectations

E

2i

= EX


E

2i | Xi



= EX [V ar [Yi | Xi]]

This background sets the stage for three linear regression justifications. Regres-
sion justification I is the linear CEF theorem which applies, for instance, when
the data are jointly normally distributed (Galton [1886]).

Theorem 3.5 Linear CEF theorem (regression justification I). Suppose the CEF
is linear.

E [Yi | Xi] = XT
i 

where

 = argmin
b

E

Yi XT

i b
2

= E

XiX

T
i

1
E [XiYi]

Then the population regression function is linear.
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Proof. Suppose E [Yi | Xi] = XT
i 

 for some parameter vector . By the CEF
decomposition theorem,

E [Xi (Yi  E [Yi | Xi]) | Xi] = 0

Substitution yields
E

Xi

Yi XT

i 
 | Xi


= 0

Iterated expectations implies

E

Xi

Yi XT

i 
 = 0

Rearrangement gives

 = E

XiX

T
i

1
E [XiYi] = 

Now, we explore approximate results associated with linear regression. First,
we state the best linear predictor theorem (regression justification II). Then, we
describe a linear approximation predictor result (regression justification III).

Theorem 3.6 Best linear predictor theorem (regression justification II). The func-
tion XT

i  is the best linear predictor of Yi given Xi in a MMSE sense.

Proof.  = E

XiX

T
i

1
E [XiYi] is the solution to the population least squares

problem as demonstrated in the proof to the linear CEF theorem.

Theorem 3.7 Regression CEF theorem (regression justification III). The function
XT
i  provides the MMSE linear approximation to E [Yi | Xi]. That is,

 = argmin
b

E

E [Yi | Xi]XT

i b
2

Proof. Recall  solves argmin
b

E

Yi XT

i b
2. Write


Yi XT

i b
2

=

(Yi  E [Yi | Xi]) +


E [Yi | Xi]XT

i b
2

= (Yi  E [Yi | Xi])
2
+

E [Yi | Xi]XT

i b
2

+2 (Yi  E [Yi | Xi])

E [Yi | Xi]XT

i b


The first term does not involve b and the last term has expected value equal to zero
by the CEF decomposition theorem. Hence, the CEF approximation problem is
the same as the population least squares problem (regression justification II).


