
13
Informed priors

When building an empirical model we typically attempt to include our under-
standing of the phenomenon as part of the model. This commonly describes both
classical and Bayesian analyses (usually with locally uninformed priors). How-
ever, what analysis can we undertake if we have no data (new evidence) on which
to apply our model. The above modeling strategy leaves us in a quandary. With no
new data, we are not (necessarily) in a state of complete ignorance and this setting
suggests the folly of ignoring our background knowledge in standard data analy-
sis. If our model building strategy adequately reflects our state of knowledge plus
the new data, we expect inferences from the standard approach described above
to match Bayesian inference based on our informed priors plus the new data. If
not, we have been logically inconsistent in at least one of the analyses. Hence, at
a minimum, Bayesian analysis with informed priors serves as a consistency check
on our analysis.
In this section, we briefly discuss maximum entropy priors conditional on our

state of knowledge (see Jaynes [2003]). Our state of knowledge is represented
by various averages of background knowledge (this includes means, variances,
covariances, etc.). This is what we refer to as informed priors. The priors reflect
our state of knowledge but no more; hence, maximum entropy conditional on
what we know about the problem. Apparently, the standard in physical statistical
mechanics for over a century.
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13.1 Maximum entropy
What does it mean to be completely ignorant? If we know nothing, then we are
unable to differentiate one event or state from another. If we are unable to differen-
tiate events then our probability assignment consistent with this is surely that each
event is equally likely. To suggest otherwise, presumes some deeper understand-
ing. In order to deal with informed priors it is helpful to contrast with complete
ignorance and its probability assignment. Maximum entropy priors are objective
in the sense that two (or more) individuals with the same background knowledge
assign the same plausibilities regarding a given set of propositions prior to con-
sidering new evidence.
Shannon’s [1948] classical information theory provides a measure of our igno-

rance in the form of entropy. Entropy is defined as

H = 
nX
i=1

pi log pi

where pi  0 and
nX
i=1

pi = 1. This can be developed axiomatically from the

following conditions.

Condition 13.1 Some numerical measure Hn (p1, . . . , pn) of "state of knowl-
edge" exists.

Condition 13.2 Continuity: Hn (p1, . . . , pn) is a continuous function of pi.1

Condition 13.3 Monotonicity: Hn (p1, . . . , pn) is a monotone increasing func-
tion of n.2

Condition 13.4 Consistency: if there is more than one way to derive the value for
Hn (p1, . . . , pn), they each produce the same answer.

Condition 13.5 Additivity:3

Hn (p1, . . . pn) = Hr (p1, . . . pr) + w1Hk


p1
w1
, . . . ,

pk
w1



+w2Hm


pk+1
w2

, . . . ,
pk+m
w2


+ · · ·

Now, we sketch the arguments. Let

h (n)  H

1

n
, . . . ,

1

n



1Otherwise, an arbitrarily small change in the probability distribution could produce a large change
inHn (p1, . . . , pn).

2Monotonicity provides a sense of direction.
3For instance,H3 (p1, p2, p3) = H2 (p1, q) + qH2


p2
q
, p3
q


.
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and

pi =
ni
nX
i=1

ni

for integers ni. Then, combining the above with condition 13.5 implies

h

 
nX
i=1

ni

!
= H (p1, . . . , pn) +

nX
i=1

pih (ni)

Consider an example where n = 3 , n1 = 3, n2 = 4, n3 = 2,

h (9) = H


3

9
,
4

9
,
2

9


+
3

9
h (3) +

4

9
h (4) +

2

9
h (2)

= H


3

9
,
4

9
,
2

9


+
3

9
H


1

3
,
1

3
,
1

3


+
4

9
H


1

4
,
1

4
,
1

4
,
1

4


+
2

9
H


1

2
,
1

2



= H


1

9
, . . . ,

1

9



If we choose ni = m then the above collapses to yield

h (mn) = h (m) + h (n)

and apparently h (n) = K log n, but since we’re maximizing a monotone increas-
ing function in pi we can work with

h (n) = log n

then

h

 
nX
i=1

ni

!
= H (p1, . . . , pn) +

nX
i=1

pih (ni)

= H (p1, . . . , pn) +

nX
i=1

pi log ni

Rewriting yields

H (p1, . . . , pn) = h

 
nX
i=1

ni

!


nX
i=1

pi log ni
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Substituting pi
X
i

ni for ni yields

H (p1, . . . , pn) = h

 
nX
i=1

ni

!


nX
i=1

pi log

 
pi
X
i

ni

!

= h

 
nX
i=1

ni

!


nX
i=1

pi log pi 
nX
i=1

pi log

 X
i

ni

!

= h

 
nX
i=1

ni

!


nX
i=1

pi log pi  log

 X
i

ni

!

Since h (n) = log n, h

 
nX
i=1

ni

!
= log

 X
i

ni

!
, and we’re left with Shannon’s

entropy measure

H (p1, . . . , pn) = 
nX
i=1

pi log pi

13.2 Complete ignorance
Suppose we know nothing, maximization ofH subject to the constraints involves
solving the following Lagrangian for pi, i = 1, . . . , n, and 0.4


nX
i=1

pi log pi  (0  1)

 
nX
i=1

pi  1

!

The first order conditions are

0  log (pi) = 0 for all i
nX
i=1

pi  1 = 0

Then, the solution is
pi = exp [0] for all i
0 = log n

In other words, as expected, pi = 1
n for all i. This is the maximum entropy prob-

ability assignment.

4It’s often convenient to write the Lagrange multiplier as (0  1).
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13.3 A little background knowledge
Suppose we know a bit more. In particular, suppose we know the mean is F . Now,
the Lagrangian is


nX
i=1

pi log pi  (0  1)

 
nX
i=1

pi  1

!
 1

 
nX
i=1

pifi  F

!

where fi is the realized value for event i. The solution is

pi = exp [0  fi1] for all i

For example, n = 3, f1 = 1 , f2 = 2, f3 = 3, and F = 2.5, the maximum entropy
probability assignment and multipliers are5

p1 0.116
p2 0.268
p3 0.616
0 2.987
1 0.834

13.4 Generalization of maximum entropy principle
Suppose variable x can take on n different discrete values (x1, . . . xn) and our
background knowledge implies there arem different functions of x

fk (x) , 1  k  m < n

and these have expectations given to us in our statement of the background knowl-
edge

E [fk (x)] = Fk =
nP
i=1

pifk (xi) , 1  k  m

The set of probabilities with maximum entropy that satisfy these m constraints
can be identified by Lagrangian methods. As above, the solution is

pi = exp

"
0 

mP
j=1

jfj (xi)

#
for all i

and the sum of the probabilities is unity,

1 =

nX
i=1

pi = exp [0]
nX
i=1

exp

2
4 mX

j=1

jfj (xi)

3
5

5Of course, if F = 2 then pi = 1
3
and 1 = 0.
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Now define a partition function

Z (1, . . . ,m) 
nX
i=1

exp

2
4 mX

j=1

jfj (xi)

3
5

and we have

1 = exp [0]Z (1, . . . ,m)

which reduces to

exp [0] = Z (1, . . . ,m)

or

0 = log [Z (1, . . . ,m)]

Since the average value Fk equals the expected value of fk (x)

Fk = exp [0]
nX
i=1

fk (xi) exp

2
4 mX

j=1

jfj (xi)

3
5

and


@ log [Z (1, . . . ,m)]

@k
=

nP
i=1

fk (xi) exp

"


mP
j=1

jfj (xi)

#

Z (1, . . . ,m)

= exp [0]
nX
i=1

fk (xi) exp

2
4 mX

j=1

jfj (xi)

3
5

Therefore,6

Fk = 
@ logZ (1, . . . ,m)

@k

6Return to the example with n = 3, f1 (x1) = 1 , f1 (x2) = 2, f1 (x3) = 3, and F = 2.5. The
partition function is

Z (1) = exp [f11] + exp [f21] + exp [f31] .

It is readily verified that  @ logZ(1)
@1

= F = 2.5 on substituting the values of the multipliers.
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The maximum value of entropy is

Hmax = max

"


nX
i=1

pi log pi

#

= exp [0]
nX
i=1

exp

2
4 mX

j=1

jfj (xi)

3
5
0
@0 +

mX
j=1

jfj (xi)

1
A

= 0 + exp [0]
mX
j=1

nX
i=1

jfj (xi) exp

2
4 mX

j=1

jfj (xi)

3
5

= 0 +

mX
j=1

jFj

To establish support for a global maximum, consider two possible probability
distributions

nX
i=1

pi = 1 pi  0

and
nX
i=1

ui = 1 ui  0

Note
log x  x 1 0  x <1

with equality if and only if x = 1. Accordingly,
nX
i=1

pi log
ui
pi


nX
i=1

pi


ui
pi
 1

=

nX
i=1

(ui  pi) = 0

with equality if and only if pi = ui, i = 1, . . . , n. Rewrite the left hand side in
terms of entropy for pi

nX
i=1

pi log
ui
pi

=

nX
i=1

pi log ui 
nX
i=1

pi log pi

=

nX
i=1

pi log ui +H (p1, . . . pn)

Substitution into the inequality and rearrangement yields

H (p1, . . . pn)  0
nX
i=1

pi log ui

or

H (p1, . . . pn) 
nX
i=1

pi log
1

ui
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Let

ui 
1

Z (1, . . . ,m)
exp

2
4 mX

j=1

jfj (xi)

3
5

where the partition function Z (1, . . . ,m) effectively serves as a normalizing
factor. Now we can write the inequality

H (p1, . . . pn) 
nX
i=1

pi log
1

ui

as

H (p1, . . . pn) 
nX
i=1

pi

2
4logZ (1, . . . ,m) +

mX
j=1

jfj (xi)

3
5

or

H (p1, . . . pn)  logZ (1, . . . ,m) +
mX
j=1

jE [fj (xi)]

Since pi can vary over all possible probability distributions and it attains its max-
imum only when

pi = ui 
1

Z (1, . . . ,m)
exp

2
4 mX

j=1

jfj (xi)

3
5

we have a general derivation for the maximum entropy probability assignment
subject to background knowledge Fj , j = 1, . . . ,m.

13.5 Discrete choice model as maximum entropy prior
From here we can provide a more rigorous argument for the frequent utilization
of logistic regression when faced with discrete choice analysis. The logit model
for discrete choice D conditional on (regime differences in) covariates X is

Pr (D | X) =
1

1 + exp [Y ]

=
1

1 + exp [X]

but the basis for this specification is frequently left unanswered. Following Blower
[2004], we develop this model specification from the maximum entropy principle.
Bayesian revision yields

Pr (D | X) =
Pr (D,X)

Pr (X)
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and for treatment selection

Pr (D = 1 | X) =
Pr (D = 1, X)

Pr (D = 1, X) + Pr (D = 0, X)

Rewrite this expression as

Pr (D = 1 | X) =
1

1 + Pr(D=0,X)
Pr(D=1,X)

The maximum entropy probability assignments, denoted ~, for the joint likeli-
hoods, Pr (D = 1, X) and Pr (D = 0, X), are

Pr (D = 1, X, ~) =

exp

"


mP
j=1

jfj (X1)

#

Z (1, . . . ,m)

and

Pr (D = 0, X, ~) =

exp

"


mP
j=1

jfj (X0)

#

Z (1, . . . ,m)

The likelihood ratio is

Pr (D = 0, X, ~)
Pr (D = 1, X, ~)

=

exp

"


mP
j=1

jfj (X0)

#

exp

"


mP
j=1

jfj (X1)

#

= exp [Y ]

where

Y = 
mX
j=1

j {fj (X1) fj (X0)}

Hence, we have the logistic regression specification as a maximum entropy prob-
ability assignment

Pr (D = 1 | X, ~) =
1

1 + Pr(D=0,X,~)
Pr(D=1,X,~)

=
1

1 + exp [Y ]
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13.6 Continuous priors
Applying the principle of maximum entropy to continuous prior distributions is
more subtle. We sketch Jaynes’ [2003, ch. 12] limit arguments by taking the dis-
crete expression of entropy

Hd = 
nX
i=1

pi log pi

to a continuous expression for entropy

Hc
` = 

Z b

a

p (x | =) log
p (x | =)
m (x)

dx

whose terms are defined below.
Let the number of discrete points xi, i = 1, . . . , n, become very numerous such

that

lim
n!1

1

n
(number of points in a < x < b) =

Z b

a

m (x) dx

and assume this is sufficiently well-behaved that adjacent differences tend to zero
such that

lim
n!1

n (xi+1  xi) =
1

m (xi)

The discrete probability distribution pi goes into a continuous density, p (x | =),
with background knowledge, =, via the limiting form of

pi = p (xi | =) (xi+1  xi)

or utilizing the limit above

pi ! p (xi | =)
1

nm (xi)

Since

lim
n!1

nX
i=1

1

nm (xi)
=

Z b

a

dx

the limit of discrete entropy is

Hd
`  lim

n!1
Hd

=  lim
n!1

nX
i=1

pi log pi

=  lim
n!1

nX
i=1

p (xi | =)
nm (xi)

log
p (xi | =)
nm (xi)

= 
Z b

a

p (x | =) log
p (x | =)
nm (x)

dx
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The limit contains an infinite term, log n. Normalize Hd
` by subtracting this term

and we have Jaynes’ continuous measure of entropy

Hc
`  lim

n!1


Hd
`  log n



= 
Z b

a

p (x | =) log
p (x | =)
m (x)

dx+

Z b

a

p (x | =) log (n) dx log n

= 
Z b

a

p (x | =) log
p (x | =)
m (x)

dx

Next, we revisit maximum entropy for continuous prior distributions.

13.6.1 Maximum entropy
The maximum entropy continuous prior is normalized

Z b

a

p (x | =) dx = 1

and is constrained bym mean values Fk for the various different functions fk (x)
from our background knowledge

Fk =
R b
a
fk (x) p (x | =) dx k = 1, 2, . . . ,m

Treating m (x) as known, the solution to the Lagrangian identifies the maximum
entropy continuous prior

p (x | =) =
m (x) exp [1f1 (x) + · · ·+ mfm (x)]

Z (1, . . . ,m)

where the partition function is

Z (1, . . . ,m) =

Z b

a

m (x) exp [1f1 (x) + · · ·+ mfm (x)] dx

and the Lagrange multipliers are determined from

Fk = 
@ logZ(1,...,m)

@k
k = 1, 2, . . . ,m

Then, with the maximum entropy prior in hand, our best estimate (by quadratic
loss) of any other function of the parameters, say q (x), is

E [q (x)] =

Z b

a

q (x) p (x | =) dx

What is the role of the invariance measure, m (x)? First note what m (x) buys
us. Inclusion of m (x) in the entropy measure of our state of knowledge means
the entropy measure Hc

` , partition function, Lagrange multipliers, and E [q (x)]
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are invariant under a transformation of parameters, say x! y (x). What does this
imply for ignorance priors? Suppose we only know a < x < b, then there are no
multipliers and

p (x | =) =
m (x) exp [0]R b

a
m (x) exp [0] dx

=
m (x)R b

a
m (x) dx

so that, except for normalizing constant 1R b
a
m(x)dx

, m (x) is the prior distribution
p (x | =). Next, we briefly discuss use of transformation groups for resolving the
invariance measure,m (x), and fully specifying ignorance priors.

13.6.2 Transformation groups
We focus on ignorance priors since the maximum entropy principle dictates only
our background knowledge is included in the prior; this means we must recognize
our state of ignorance. Consider one of the most common problems in practice, a
two parameter sampling distribution. We observe a sample x1, . . . , xn from a con-
tinuous sampling distribution p (x | ,) dx =  (,) dx where  is a location
parameter and  is a scale parameter and we wish to estimate  and . Suppose we
have no knowledge of the location and scale parameters. What is the prior distribu-
tion p (, | =) dd = f (,) dd? What does it mean to have no knowledge
of the location and scale parameters? Jaynes [2003, ch. 12] suggests the follow-
ing characterization. If a change of location or scale alters our perception of the
distribution of the parameters, we must not have been completely ignorant with
regard to location and scale. Therefore, the distributions should be invariant to a
transformation group.
Suppose we transform the variables as follows

0 =  + b

0 = a

x0  0 = a (x )

1 < b < 1 and 0 < a < 1. Invariance implies the sampling distribution for
the transformed variables is the same as the sampling distribution for the original
variables

p (x0 | 0,0) dx0 =  (x0, 0,0) dx0 =  (x, ,) dx

Similarly, the prior distribution for the transformed parameters, based on the Ja-
cobian, is

g (0,0) = a1f (,)

These relations hold irrespective of the distributions  (x, ,) and f (,).
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If the sampling distribution is invariant under the above transformation group,
then the two functions are the same

 (x, ,) =  (x, ,)

for all values a and b. Invariance to location and scale implies

 (x, ,) =
1


h


x 




for arbitrary function h (·).7 Now, we return to priors.
Consider another problem with sample x01, . . . , x

0

n and we wish to estimate 0
and 0 but again have no initial knowledge of the location and scale. Let the prior
distribution be g (0,0). Since we have two problems with the same background
knowledge consistency requires we assign the same prior. Invariance to parameter
transformation implies the functions are the same

f (,) = g (,)

Combining
g (0,0) = a1f (,)

with the transformation group gives

g ( + b, a) = a1f (,)

f (,) = ag ( + b, a)

Now,

f (,) = g (,)

f ( + b, a) = g ( + b, a)

combining this with the above yields

f (,) = af ( + b, a)

Satisfying this condition implies the prior distribution is

f (,) =
constant



— this is Jeffrey’s prior.
To illustrate, suppose we only know 0 <  < 2 and 1 <  < 2, then we can

assign m (,) = 1
 and f (,) =

1
2 log 2

1
 . Now, consider the transformation

b = 0.1, and a = 1
2 , then af ( + b, a) =

1
2f

v + 0.1, 12


= 1

2 log 2
1
2
1
1
2
=

1
2 log 2

1
 = f (,) andm (v

0,0) = 1
2
1
0 =

1
2
1
1
2
= 1

 . If we assignm (v
0,0) =

1
0 , thenm (v,) = 2

1
 = 2

1
20 =

1
0 . The key is existence ofm (x).

7This discussion attempts to convey the intuitive implications of transformation groups for maxi-
mum entropy. See Jaynes [2003, p. 379] for a more complete discussion.
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13.6.3 Uniform prior
Next, we temporarily suppress the invariance measure,m (x), and derive a maxi-
mum entropy ignorance prior utilizing differential entropy

H = 
Z b

a

f (x) log f (x) dx

as a measure of continuous entropy. Suppose we’re completely ignorant except
that x has continuous support over the interval {a, b}. The maximum entropy prior
distribution is surely uniform. Its derivation involves maximization of the limiting
form of entropy such that f (x)  0 and

R b
a
f (x) dx = 1. Following Cover and

Thomas [1991, ch. 11], formulate the Lagrangian8

L = 
Z b

a

f (x) log f (x) dx+ 0

 Z b

a

f (x) dx 1

!

Since the partial derivative of the functional 
R b
a
f (x) log f (x) dx with respect

to f (x) for each value x is

@

@f (xi)

"

Z b

a

f (x) log f (x) dx

#
= 

@

@f (xi)
f (xi) log f (xi)

=  log f (xi) 1

the gradient of the Lagrangian is

 log f (x) 1 + 0

Solving the first order conditions yields9

f (x) = exp [1 + 0]

Utilizing the constraint to solve for 0 we haveZ b

a

f (x) dx = 1

Z b

a

exp [1 + 0] dx = 1

exp [1 + 0] (b a) = 1

0 = 1 log (b a)

Now,
f (x) = exp [1 + 0]

8Alternatively, we could begin from the partition function.
9Since the second partial derivatives with respect to f (x) are negative for all x,  1

f(x)
, a maxi-

mum is assured.
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becomes

f (x) = exp [1 + 1 log (b a)]

f (x) =
1

b a
The maximum entropy prior with no background knowledge (other than con-

tinuity and support) is the uniform distribution. If we return to Jaynes’ definition
of continuous entropy then we can assign m (x) = 1 (an invariance measure ex-
ists) and normalization produces f (x) = m(x)R b

a
m(x)dx

= 1
ba , as discussed earlier.

Hereafter, we work with differential entropy (for simplicity) and keep in mind the
existence ofm (x).

13.6.4 Gaussian prior
Suppose our background knowledge is limited to a continuous variable with finite
mean µ and finite variance 2. Following the development above, the Lagrangian
is

L = 
Z 1

1
f (x) log f (x) dx+ 0

Z 1

1
f (x) dx 1



+1

Z 1

1
xf (x) dx µ


+ 2

Z 1

1
(x µ)2 f (x) dx 2



The first order conditions are

1 log f (x) + 0 + 1x+ 2 (x µ)
2
= 0

or
f (x) = exp

h
1 + 0 + 1x+ 2 (x µ)

2
i

Utilizing the constraints to solve for the multipliers involvesZ 1

1
exp

h
1 + 0 + 1x+ 2 (x µ)

2
i
dx = 1

Z 1

1
x exp

h
1 + 0 + 1x+ 2 (x µ)

2
i
dx = µ

Z 1

1
(x µ)2 exp

h
1 + 0 + 1x+ 2 (x µ)

2
i
dx = 2

A solution is10

0 = 1
1

4
log

424


1 = 0

2 = 
1

22

10The result, 1 = 0, suggests how pivotal variance knowledge is to a Gaussian maximum entropy
prior. In fact, for a given variance, the Gaussian distribution has maximum entropy.
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Substitution of these values for the multipliers reveals

f (x) = exp
h
1 + 0 + 1x+ 2 (x µ)

2
i

f (x) =
1

p
2

exp

"

1

2

(x µ)2

2

#

Hence, the maximum entropy prior given knowledge of the mean and variance is
the Gaussian or normal distribution.

13.6.5 Multivariate Gaussian prior
If multiple variables or parameters are of interest and we have background knowl-
edge of only their means µ and variances 2, then we know the maximum entropy
prior for each is Gaussian (from above). Further, since we have no knowledge of
their interactions, their joint prior is the product of the marginals.
Now, suppose we have background knowledge of the covariances as well. A

straightforward line of attack is to utilize the Cholesky decomposition to write the
variance-covariance matrix  as T . We may now work with the transformed
data z = 1x, derive the prior for z, and then by transformation of variables
identify priors for x. Of course, since the prior for z is the product of marginal
Gaussian priors, as before,

f (z1, . . . , zk) = f (z1) · · · f (zk)

= (2)
 k

2

kY
i=1

exp



1

2


zi  1µi

2

where f (zi) = 1p
2
exp

h
 1
2


zi  1µi

2i, the transformation back to the
vector x = z produces the multivariate Gaussian distribution

f (x) = (2)
 k

2 J exp



1

2


1x 1µ

T 
1x 1µ



= (2)
 k

2 J exp



1

2
(x µ)T 1 (x µ)



where J is the Jacobian of the transformation. Since J =
1 = ||1 and

 =

LD

1
2


D

1
2LT


= T is positive definite, ||1 = ||

1
2 where L is

a lower triangular matrix and D is a diagonal matrix. Now, the density can be
written in standard form

f (x) = (2)
 k

2 ||
1
2 exp



1

2
(x µ)T 1 (x µ)



Hence, the maximum entropy prior when background knowledge is comprised
only of means, variances, and covariances for multiple variables or parameters is
the multivariate Gaussian distribution.
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13.6.6 Exponential prior
Suppose we know the variable of interest has continuous but non-negative support
and finite mean . The Lagrangian is

L = 
Z 1

0

f (x) log f (x) dx+ 0

Z 1

0

f (x) dx 1


+1

Z 1

0

xf (x) dx 


The first order conditions are

1 log f (x) + 0 + 1x = 0

Solving for f (x) produces

f (x) = exp [1 + 0 + 1x]

Using the constraints to solve for the multipliers involvesZ 1

0

exp [1 + 0 + 1x] dx = 1

Z 1

0

x exp [1 + 0 + 1x] dx = 

and produces

0 = 1 log 

1 = 
1



Substitution of these multipliers identifies the prior

f (x) = exp [1 + 0 + 1x]

f (x) =
1


exp



x





Hence, the maximum entropy prior is an exponential distribution with mean .

13.6.7 Truncated exponential prior
If support is shifted to, say, (a,1) for a > 0 and the mean equals , the maximum
entropy prior is a "truncated" exponential distribution. The first order conditions
continue to be

1 log f (x) + 0 + 1x = 0

Solving for f (x) again produces

f (x) = exp [1 + 0 + 1x]
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But using the constraints to solve for the multipliers involves
Z 1

a

exp [1 + 0 + 1x] dx = 1

Z 1

a

x exp [1 + 0 + 1x] dx = 

and produces

0 = 1
a

a+ 
 log [  a]

1 =
1

a 

Substitution of these multipliers identifies the prior

f (x) = exp [1 + 0 + 1x]

f (x) =
1

  a
exp



x a
  a



Hence, the maximum entropy prior is a "truncated" exponential distribution with
mean .

13.6.8 Truncated Gaussian prior
Suppose our background knowledge consists of the mean and variance over the
limited support region, say (a,1), the maximum entropy prior is the truncated
Gaussian distribution. This is consistent with the property the Gaussian distribu-
tion has maximum entropy of any distribution holding the variance constant.
As an example suppose we compare a mean zero Gaussian with the exponential

distribution with variance one (hence, a = 0 and the mean of the exponential
distribution is also one). If the variance of the truncated Gaussian equals one, then
the underlying untruncated Gaussian has variance 2 = 2.752.11 Entropy for the

11A general expression for the moments of a truncated Gaussian is

E [x | a  x < b] = µ+


aµ



 


bµ






bµ



 


aµ




V ar [x | a  x < b] = 2

2

66664

1 +
aµ




aµ



 bµ




bµ






bµ






aµ






 


aµ





bµ






bµ






aµ




!2

3

77775

where  (·) is the standard normal density function and  (·) is the standard normal cumulative distri-
bution function. For the setting under consideration, we set the variance of the truncated distribution
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exponential distribution is

H = 
1Z
0

exp [x] log (exp [x]) dx

=

1Z
0

x exp [x] dx = 1

Entropy for the truncated Gaussian distribution is

H = 
1Z
0

2
p
2

exp



1

2

x2

2


log


2

p
2

exp



1

2

x2

2


dx

= 
1Z
0

2
p
2

exp



1

2

x2

2

 
log


2

p
2



1

2

x2

2


dx

= 1.232

As claimed, a truncated Gaussian distribution with the same variance has greater
entropy.

13.7 Variance bound and maximum entropy
A deep connection between maximum entropy distributions and the lower bound
of the sampling variance (often called the Cramer-Rao lower bound) can now be
demonstrated. Consider a sample of n observations

x  {x1, x2, . . . , xn}

with sampling distribution dependent on , p (x | ). Let

u (x, ) 
@ log p (x | )

@

and
(f, g) =

Z
f (x) g (x) dx

equal to one (equal to the variance of the exponential)

1 = 2

"
1


 (0)

1  (0)

2#

and solve for 2. The mean of the truncated normal distribution is

E [x | 0 < x <1] = 0 + 
 (0)

1  (0)
= 1.324
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By the Schwartz inequality we have

(f, g)
2  (f, f) (g, g)

or, writing it out,

Z
f (x) g (x) dx

2
=

Z
f (x) f (x) dx

Z
g (x) g (x) dx

where equality holds if and only if f (x) = qg (x), q = (f,g)
(g,g) not a function of x

but possibly a function of .12
Now, choose

f (x) = u (x, )
p
p (x | )

and

g (x) = ( (x) E [])
p
p (x | )

then

(f, g) =

Z
u (x, ) ( (x) E []) p (x | ) dx

= E [u] E []E [u]

12Clearly,
R
[f (x) qg (x)]2 dx  0. Now, find q to minimize the integral. The first order condi-

tion is

0 =

Z
[f (x) qg (x)] g (x) dx

0 =

Z
f (x) f (x) dx q

Z
g (x) g (x) dx

solving for q gives

q =
(f, g)

(g, g)

and the inequality becomes an equality

Z
(f, g)

(g, g)
g (x) g (x) dx

2


Z 
(f, g)

(g, g)

2
g (x) g (x) dx

Z
g (x) g (x) dx


(f, g)

(g, g)

2 Z
g (x) g (x) dx

2
=


(f, g)

(g, g)

2 Z
g (x) g (x) dx

Z
g (x) g (x) dx
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since

E [u] =

Z
u (x, ) p (x | ) dx

=

Z
@ log p (x | )

@
p (x | ) dx

=
@

@

Z
p (x | ) dx



=
@

@
[1]

E [u] = 0

we have
(f, g) = E [u]

We also have

(f, f) =

Z
[u (x, )]

2
p (x | ) dx

= E

u2


= V ar [u]

the latter from E [u] = 0, and

(g, g) =

Z
( (x) E [])2 p (x | ) dx

= V ar []

So the Schwartz inequality simplifies to

E [u]
2  V ar []V ar [u]

or
E [u] 

p
V ar []V ar [u]

But

E [u] =

Z
 (x)

@ log p (x | )
@

p (x | ) dx

=

Z
 (x)

@p (x | )
@

dx

=
dE []

d
= 1 + b0 ()
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where b () = (E [] ), bias in the parameter estimate, and b0 () = @b()
@ =

@E[]
@  1. This means the inequality can be rewritten as

V ar [] 
E [u]

2

V ar [u]


[1 + b0 ()]

2

R h@ log p(x|)
@

i2
p (x | ) dx

A change of parameters ( ! ) where q () = @
@ and substitution into

f = qg yields

@ log p (x | )
@

p
p (x | ) = 

@

@
( (x) E [])

p
p (x | )

@ log p (x | )
@

= 
@

@
( (x) E [])

Now, integrate over 

Z
@ log p (x | )

@
d =

Z
 0 () ( (x) E []) d

log p (x | ) =  () (x) +
Z
@

@
E [] d

=  () (x) +
Z
E [] d + constant

Notice
R
E [] d is a function of , call it  logZ (). Also, the constant is inde-

pendent of  but may depend on x, call it logm (x). Substitution gives

log p (x | ) =  () (x) logZ () + logm (x)

p (x | ) =
m (x)

Z ()
e()(x)
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This is the maximum entropy distribution with a constraint13 fixing E [ (x)] and
Z () is a normalizing constant such that

Z () =

Z
m (x) e()(x)dx

The significance of this connection merits deeper consideration. If the sampling
distribution is a maximum entropy distribution then maximal efficiency is achiev-
able in the squared error loss sense, that is, the Cramer-Rao lower bound for the
sampling variance is achievable.14 Bayesian inference consistently processes all
information by combining the maximum entropy prior distribution and maximum
entropy likelihood function or sampling distribution. This affirms the power of
probability as logic (Jaynes [2003]).

13.8 An illustration: Jaynes’ widget problem
Jaynes’ widget problem is a clever illustration of informed priors (Jaynes [1963],
[2003], ch. 14). A manager of a process that produces red (R), yellow (Y), and
green (G) widgets must choose between producing R, Y, or G widgets as only 200
of one type of widgets per day can be produced. If this is all that is known (nearly
complete ignorance), the manager is indifferent between R, Y, or G. Suppose the
manager acquires some background knowledge. For illustrative purposes, we ex-
plore stages of background knowledge.
Stage 1: The manager learns the current stock of widgets: 100 red, 150 yellow,

and 50 green. With only this background knowledge including no knowledge of
the consequences, the manager intuitively chooses to produce green widgets.
Stage 2: The manager learns the average daily orders have been 50 red, 100

yellow, and 10 green widgets. With this background knowledge, the manager may
intuitively decide to produce yellow widgets.

13The constraint is E [ (x)] =  @ logZ()
@

as

E [ (x)] =

Z
 (x)

m (x)

Z ()
e()(x)dx

and


@ logZ ()

@
= 

@
R
m (x) e()(x)dx

@

= 
1

Z ()

Z
m (x) e()(x) ( (x)) dx

=

Z
 (x)

m (x)

Z ()
e()(x)dx

14See Jaynes [2003], p. 520 for exceptions. Briefly, if the sampling distribution does not have the
form of a maximum entropy distribution either the lower bound is not achievable or the sampling
distribution has discontinuities.
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Table 13.1: Jaynes’ widget problem: summary of background knowledge by
stage

Stage R Y G Decision
1. in stock 100 150 50 G
2. aver. daily orders 50 100 10 Y
3. aver. individual order size 75 10 20 R
4. specific order 0 0 40 ?

Stage 3: The manager learns the average order size has been 75 red, 10 yel-
low, and 20 green widgets. With this background knowledge, the manager may
intuitively switch to producing red widgets.
Stage 4: The manager learns an emergency order for 40 green widgets is im-

minent. Now, what does the manager decide to produce? It seems common sense
is not enough to guide the decision. We’ll pursue a formal analysis but first we
summarize the problem in table 13.1.
Of course, this is a decision theoretic problem where formally the manager

(a) enumerates the states of nature, (b) assigns prior probabilities associated with
states conditional on background knowledge, (c) updates beliefs via Bayesian
revision (as this framing of the problem involves no new evidence, this step is
suppressed), (d) enumerates the possible decisions (produce R, Y, or G), and (e)
selects the expected loss minimizing alternative based on a loss function which
incorporates background knowledge of consequences.

13.8.1 Stage 1 solution
The states of nature are the number of red, yellow, and green widgets ordered
today. Let n1 = 0, 1, 2, . . . be the number of red widgets ordered. Similarly,
let n2 and n3 be the number of yellow and green widgets ordered. If this triple
(n1, n2, n3) is known the problem is likely trivial. The maximum entropy prior
given only stage 1 background knowledge is

max
p(n1,n2,n3)

(


1X
n1=0

1X
n2=0

1X
n3=0

p (n1, n2, n3) log p (n1, n2, n3)

)

s.t.
P1

n1=0

P1
n2=0

P1
n3=0

p (n1, n2, n3) = 1

or solve the Lagrangian

L = 
1X

n1=0

1X
n2=0

1X
n3=0

p (n1, n2, n3) log p (n1, n2, n3)

 (0  1)

 
1X

n1=0

1X
n2=0

1X
n3=0

p (n1, n2, n3) 1

!

The solution is the improper (uniform) prior

p (n1, n2, n3) = exp [0] for all (n1, n2, n3)
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where 0 = lim
n!1

log n.
As we have no background knowledge of consequences, the loss function is

simply

R (x) = x x > 0
0 x  0

and the loss associated with producing red widgets (decision D1) is

L (D1;n1, n2, n3) = R (n1  S1  200) +R (n2  S2) +R (n3  S3)

where Si is the current stock of widget i = R, Y, or G. Similarly, the loss associ-
ated with producing yellow widgets (decision D2) is

L (D2;n1, n2, n3) = R (n1  S1) +R (n2  S2  200) +R (n3  S3)

or green widgets (decision D3) is

L (D3;n1, n2, n3) = R (n1  S1) +R (n2  S2) +R (n3  S3  200)

Then, the expected loss for decision D1 is

E [L (D1)] =
X
ni

p (n1, n2, n3)L (D1;n1, n2, n3)

=

1X
n1=0

p (n1)R (n1  S1  200)

+

1X
n2=0

p (n2)R (n2  S2)

+

1X
n3=0

p (n3)R (n3  S3)

Expected loss associated with decision D2 is

E [L (D2)] =

1X
n1=0

p (n1)R (n1  S1)

+
1X

n2=0

p (n2)R (n2  S2  200)

+

1X
n3=0

p (n3)R (n3  S3)
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and for decision D3 is

E [L (D3)] =

1X
n1=0

p (n1)R (n1  S1)

+

1X
n2=0

p (n2)R (n2  S2)

+

1X
n3=0

p (n3)R (n3  S3  200)

Recognize p (ni) = p for all ni, let b any arbitrarily large upper limit such that
p = 1

b , and substitute in the current stock values

E [L (D1)] =

bX
n1=0

pR (n1  300) +
bX

n2=0

pR (n2  150)

+

bX
n3=0

pR (n3  50)

=
(b 300) (b 299)

2b
+
(b 150) (b 149)

2b

+
(b 50) (b 49)

2b

=
114500 997b+ 3b2

2b

E [L (D2)] =

bX
n1=0

pR (n1  100) +
bX

n2=0

pR (n2  350)

+

bX
n3=0

pR (n3  50)

=
(b 100) (b 99)

2b
+
(b 350) (b 349)

2b

+
(b 50) (b 49)

2b

=
134500 997b+ 3b2

2b
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E [L (D3)] =

bX
n1=0

pR (n1  100) +
bX

n2=0

pR (n2  150)

+

bX
n3=0

pR (n3  250)

=
(b 100) (b 99)

2b
+
(b 150) (b 149)

2b

+
(b 250) (b 249)

2b

=
94500 997b+ 3b2

2b

Since the terms involving b are identical for all decisions, expected loss minimiza-
tion involves comparison of the constants. Consistent with intuition, the expected
loss minimizing decision is D3.

13.8.2 Stage 2 solution
For stage 2 we know the average demand for widgets. Conditioning on these three
averages adds three Lagrange multipliers to our probability assignment. Following
the discussion above on maximum entropy probability assignment we have

p (n1, n2, n3) =
exp [1n1  2n2  3n3]

Z (1,2,3)

where the partition function is

Z (1,2,3) =
1X

n1=0

1X
n2=0

1X
n3=0

exp [1n1  2n2  3n3]

factoring and recognizing this as a product of three geometric series yields

Z (1,2,3) =

3Y
i=1

(1 exp [i])
1

Since the joint probability factors into

p (n1, n2, n3) = p (n1) p (n2) p (n3)

we have
p (ni) = (1 exp [i]) exp [ini] i = 1, 2, 3

ni = 0, 1, 2, . . .

E [ni] is our background knowledge and from the above analysis we know

E [ni] = 
@ logZ (1,2,3)

@i

=
exp [i]

1 exp [i]
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Manipulation produces

exp [i] =
E [ni]

E [ni] + 1

substitution finds

p (ni) = (1 exp [i]) exp [ini]

= 1
E[ni]+1


E[ni]
E[ni]+1

ni
ni = 0, 1, 2, . . .

Hence, we have three exponential distributions for the maximum entropy proba-
bility assignment

p1 (n1) =
1

51


50

51

n1

p2 (n2) =
1

101


100

101

n2

p3 (n3) =
1

11


10

11

n3

Now, combine these priors with the uninformed loss function, say for the first
component of decision D1

1X
n1=0

p (n1)R (n1  300) =

1X
n1=300

p (n1) (n1  300)

=

1X
n1=300

p (n1)n1 
1X

n1=300

p (n1) 300

By manipulation of the geometric series

1X
n1=300

p (n1)n1 = (1 exp [1])


exp [3001] (300 exp [1] 299) exp [1]

(1 exp [1])
2

=
exp [3001] (300 exp [1] 299)

exp [1] 1

and

1X
n1=300

p (n1) 300 = 300 (1 exp [1])
exp [3001]
1 exp [1]

= 300 exp [3001]
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Combining and simplifying produces

1X
n1=300

p (n1) (n1  300) =
exp [3001] (300 exp [1] 299)

exp [1] 1


exp [3001] (300 exp [1] 300)

exp [1] 1

=
exp [3001]
exp [1] 1

substituting exp [1] = E[n1]
E[n1]+1

= 50
51 yields

1X
n1=300

p (n1) (n1  300) =

50
51

300
51
50  1

= 0.131

Similar analysis of other components and decisions produces the following sum-
mary results for the stage 2 decision problem.

E [L (D1)] =

1X
n1=0

p (n1)R (n1  300) +
1X

n2=0

p (n2)R (n2  150)

+

1X
n3=0

p (n3)R (n3  50)

= 0.131 + 22.480 + 0.085 = 22.70

E [L (D2)] =

1X
n1=0

p (n1)R (n1  100) +
1X

n2=0

p (n2)R (n2  350)

+

1X
n3=0

p (n3)R (n3  50)

= 6.902 + 3.073 + 0.085 = 10.06

E [L (D3)] =

1X
n1=0

p (n1)R (n1  100) +
1X

n2=0

p (n2)R (n2  150)

+

1X
n3=0

p (n3)R (n3  250)

= 6.902 + 22.480 + 4 1010 = 29.38

Consistent with our intuition, the stage 2 expected loss minimizing decision is
produce yellow widgets.
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13.8.3 Stage 3 solution
With average order size knowledge, we are able to frame the problem by enu-
merating more detailed states of nature. That is, we can account for not only total
orders but also individual orders. A state of nature can be described as we receive
u1 orders for one red widget, u2 orders for two red widgets, etc., we also receive
vy orders for y yellow widgets and wg orders for g green widgets. Hence, a state
of nature is specified by

 = {u1, . . . , v1, . . . , w1, . . .}

to which we assign probability

p (u1, . . . , v1, . . . , w1, . . .)

Today’s total demands for red, yellow and green widgets are

n1 =

1X
r=1

rur, n2 =

1X
y=1

yvy, n3 =

1X
g=1

gwg

whose expectations from stage 2 areE [n1] = 50,E [n2] = 100, andE [n3] = 10.
The total number of individual orders for red, yellow, and green widgets are

m1 =

1X
r=1

ur, m2 =

1X
y=1

vy, m3 =

1X
g=1

wg

Since we know the average order size for red widgets is 75, for yellow widgets is
10, and for green widgets is 20, we also know the average daily total number of
orders for red widgets is E [m1] =

E[n1]
75 = 50

75 , for yellow widgets is E [m2] =
E[n2]
10 = 100

10 , and for green widgets is E [m3] =
E[n3]
20 = 10

20 .
Six averages implies we have six Lagrange multipliers and the maximum en-

tropy probability assignment is

p () =
exp [1n1  µ1m1  2n2  µ2m2  3n3  µ3m3]

Z (1, µ1,2, µ2,3, µ3)

Since both the numerator and denominator factor, we proceed as follows

p () = p (u1, . . . , v1, . . . , w1, . . .)

= p1 (u1, . . .) p2 (v1, . . .) p3 (w1, . . .)

where, for instance,

Z1 (1, µ1) =

1X
u1=0

1X
u2=0

· · · exp [1 (u1 + 2u2 + 3u3 + · · · )]

 exp [µ1 (u1 + u2 + u3 + · · · )]

=

1Y
r=1

1

1 exp [r1  µ1]
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Since

E [ni] = 
@ logZi (i, µi)

@i

and

E [mi] = 
@ logZi (i, µi)

@µi

we can solve for, say, 1 and µ1 via

E [ni] =
@

@1

1X
r=1

log (1 exp [r1  µ1])

=

1X
r=1

r

exp [r1 + µ1] 1

and

E [mi] =
@

@µ1

1X
r=1

log (1 exp [r1  µ1])

=

1X
r=1

1

exp [r1 + µ1] 1

The expressions for E [ni] and E [mi] can be utilized to numerically solve for
i and µi to complete the maximum entropy probability assignment (see Tribus
and Fitts [1968]), however, as noted by Jaynes [1963, 2003], these expressions
converge very slowly. We follow Jaynes by rewriting the expressions in terms of
quickly converging sums and then follow Tribus and Fitts by numerically solving
for i and µi.15
For example, use the geometric series

E [m1] =

1X
r=1

1

exp [r1 + µ1] 1

=

1X
r=1

1X
j=1

exp [j (r1 + µ1)]

Now, evaluate the geometric series over r

1X
r=1

1X
j=1

exp [j (r1 + µ1)] =
1X
j=1

exp [j (1 + µ1)]
1 exp [j1]

15Jaynes [1963] employs approximations rather than computer-based numerical solutions.
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Table 13.2: Jaynes’ widget problem: stage 3 state of knowledge

Widget S E [ni] E [mi] i µi
Red 100 50 50

75 0.0134 4.716

Yellow 150 100 100
10 0.0851 0.514

Green 50 10 10
20 0.051 3.657

This expression is rapidly converging (the first term alone is a reasonable approx-
imation). Analogous geometric series ideas apply to E [ni]

E [n1] =

1X
r=1

r

exp [r1 + µ1] 1

=

1X
r=1

1X
j=1

r exp [j (r1 + µ1)]

=

1X
j=1

exp [j (1 + µ1)]
(1 exp [j1])

2

Again, this series is rapidly converging. Now, numerically solve for i and µi
utilizing knowledge of E [ni] and E [mi]. For instance, solving

E [m1] =
50

75
=

1X
j=1

exp [j (1 + µ1)]
1 exp [j1]

E [n1] = 50 =

1X
j=1

exp [j (1 + µ1)]
(1 exp [j1])

2

yields 1 = 0.0134 and µ1 = 4.716. Other values are determined in analogous
fashion and all results are described in table 13.2.16

Gaussian approximation

The expected loss depends on the distribution of daily demand, ni. We compare
a Gaussian approximation based on the central limit theorem with the exact dis-
tribution for ni. First, we consider the Gaussian approximation. We can write the

16Results are qualitatively similar to those reported by Tribus and Fitts [1968].
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expected value for the number of orders of, say, size r as

E [ur] =

1X
ur=0

p1 (ur)ur

=

1X
ur=0

exp [ (r1 + µ1)ur]
Z (1, µ1)

ur

=

1X
ur=0

exp [ (r1 + µ1)ur]
1

1exp[r1µ1]
ur

= (1 exp [r1  µ1])
exp [r1  µ1]

(1 exp [r1  µ1])
2

=
1

exp [r1 + µ1] 1

and the variance of ur as

V ar [ur] = E

u2r

 E [ur]

2

E

u2r

=

1X
ur=0

exp [ (r1 + µ1)ur]
1

1exp[r1µ1]
u2r

=

1X
ur=0

(1 exp [r1  µ1])


exp [ (r1 + µ1)] + exp [2 (r1 + µ1)]

(1 exp [r1  µ1])
3

=
exp [r1 + µ1] + 1

(exp [r1 + µ1] 1)
2

Therefore,
V ar [ur] =

exp [r1 + µ1]

(exp [r1 + µ1] 1)
2

Since n1 is the sum of independent random variables

n1 =

1X
r=1

rur

the probability distribution for n1 has mean E [n1] = 50 and variance

V ar [n1] =

1X
r=1

r2V ar [ur]

=

1X
r=1

r2 exp [r1 + µ1]

(exp [r1 + µ1] 1)
2
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Table 13.3: Jaynes’ widget problem: stage 3 state of knowledge along with
standard deviation

Widget S E [ni] E [mi] i µi i
Red 100 50 50

75 0.0134 4.716 86.41

Yellow 150 100 100
10 0.0851 0.514 48.51

Green 50 10 10
20 0.051 3.657 19.811

We convert this into the rapidly converging sum17

1X
r=1

r2 exp [r1 + µ1]

(exp [r1 + µ1] 1)
2 =

1X
r=1

1X
j=1

jr2 exp [j (r1 + µ1)]

=
1X
j=1

j
exp [j (1 + µ1)] + exp [j (21 + µ1)]

(1 exp [j])3

Next, we repeat stage 3 knowledge updated with the numerically-determined stan-
dard deviation of daily demand, i, for the three widgets in table 13.3.18,19
The central limit theorem applies as there are many ways for large values of ni

to arise.20 Then the expected loss of failing to meet today’s demand given current
stock, Si, and today’s production, Pi = 0 or 200, is

1X
ni=1

p (ni)R (ni  Si  Pi)


1

p
2i

Z 1

Si+Pi

(ni  Si  Pi) exp

"

1

2

(ni  E [ni])
2

2i

#
dni

Numerical evaluation yields the following expected unfilled orders conditional on
decision Di.

E [L (D1)] = 0.05 + 3.81 + 0.16 = 4.02

E [L (D2)] = 15.09 + 0.0 + 0.16 = 15.25

E [L (D3)] = 15.09 + 3.81 + 0.0 = 18.9

Clearly, producing red widgets is preferred given state 3 knowledge based on our
central limit theorem (Gaussian) approximation. Next, we follow Tribus and Fitts
[1968] and revisit the expected loss employing exact distributions for ni.

17For both variance expressions, V ar [ur] and V ar [n1] , we exploit the idea that the converging

sum
1P
j=1

j2 exp [jx] = exp[x]+exp[2x]
(1exp[x])3

.

18Jaynes [1963] employs the quite good approximation V ar [ni]  2
i
E [ni].

19Results are qualitatively similar to those reported by Tribus and Fitts [1968].
20On the other hand, when demand is small, say, ni = 2, there are only two ways for this to occur,

u1 = 2 or u2 = 1.
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Exact distributions

We derive the distribution for daily demand given stage 3 knowledge, p (nr | =3),
from the known distribution of daily orders p (u1, . . . | =3) by appealing to Bayes’
rule

p (nr | =3) =

1X
u1=0

1X
u2=0

· · · p (nru1u2 . . . | =3)

=

1X
u1=0

1X
u2=0

· · · p (nr | u1u2 . . .=3) p (u1u2 . . . | =3)

We can write

p (nr | u1u2 . . .=3) = 

0
@nr 

1X
j=1

juj

1
A

where  (x) = 1 if x = 0 and  (x) = 0 otherwise. Using independence of ui, we
have

p (nr | =3) =
1X

u1=0

1X
u2=0

· · · 

0
@nr 

1X
j=1

juj

1
A 1Y
i=1

p (ui | =3)

Definition 13.1 Define the z transform as follows. For f (n) a function of the
discrete variable n, the z transform F (z) is

F (z) 
1P
n=0

f (n) zn 0  z  1

Let P (z) be the z transform of p (nr | =3)

P (z) =

1X
nr=0

1X
u1=0

1X
u2=0

· · · znr

0
@nr 

1X
j=1

juj

1
A 1Y
i=1

p (ui | =3)

=

1X
u1=0

1X
u2=0

· · · z

1P
j=1

juj
1Y
i=1

p (ui | =3)

=

1X
u1=0

1X
u2=0

· · ·
1Y
i=1

p (ui | =3) ziui

=

1Y
i=1

1X
ui=0

ziuip (ui | =3)

Substituting p (ui | =3) = (1 exp [i1  µ1]) exp [ui (i1 + µ1)] yields

P (z) =

1Y
i=1

(1 exp [i1  µ1])
1Y
i=1

1X
ui=0


zi exp [i1  µ1]

ui



368 13. Informed priors

Since P (0) =
1Q
i=1

(1 exp [i1  µ1]), we can write

P (z) = P (0)

1Y
i=1

1X
ui=0


zi exp [i1  µ1]

ui

The first few terms in the product of sums is

P (z)

P (0)
=

1Y
i=1

1X
ui=0


zi exp [i1  µ1]

ui

= 1 +

ze1


eµ1 +


ze1

2 
eµ1 + e2µ1


+

ze1

3 
eµ1 + e2µ1 + e3µ1


+ · · ·

Or, write
P (z)

P (0)
=

1X
n=0

Cn

ze1

n

where the coefficients Cn are defined by C0 = 1 and

Cn =
nP
j=1

Cj,ne
jµ1 ,

1P
i=1

ui = j,
1P
i=1

iui = n

and
Cj,n = Cj1,n1 + Cj,nj

with starting values C1,1 = C1,2 = C1,3 = C1,4 = C2,2 = C2,3 = C3,3 =
C3,4 = C4,4 = 1 and C2,4 = 2.21
Let p0  p (n = 0 | =3). Then, the inverse transform of P (z) yields the distri-

bution for daily demand

p (n | =3) = p0Cnen1

We utilize this expression for p (n | =3), the coefficientsCn =
nP
j=1

Cj,ne
jµ1 , the

recursion formula Cj,n = Cj1,n1 + Cj,nj , and the earlier-derived Lagrange
multipliers to numerically derive the distributions for daily demand for red, yel-
low, and green widgets. The distributions are plotted in figure 13.1.

As pointed out by Tribus and Fitts, daily demand for yellow widgets is nearly
symmetric about the mean while daily demand for red and green widgets is "hit

21Cj,j = 1 for all j and Cj,n = 0 for all n < j. See the appendix of Tribus and Fitts [1968] for a
proof of the recursion expression.
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Figure 13.1: "Exact" distributions for daily widget demand

or miss." Probabilities of zero orders for the widgets are

p (n1 = 0) = 0.51
p (n2 = 0) = 0.0003
p (n3 = 0) = 0.61

Next, we recalculate the minimum expected loss decision based on the "exact"
distributions. The expected loss of failing to meet today’s demand given current
stock, Si, and today’s production, Pi = 0 or 200, is

1X
ni=1

p (ni | =3)R (ni  Si  Pi) =
1X

Si+Pi

(ni  Si  Pi) p (ni | =3)

Numerical evaluation yields the following expected unfilled orders conditional on
decision Di.

E [L (D1)] = 2.35 + 5.07 + 1.31 = 8.73

E [L (D2)] = 18.5 + 0.0 + 1.31 = 19.81

E [L (D3)] = 18.5 + 5.07 + 0.0 = 23.58

While the Gaussian approximation for the distribution of daily widget demand
and numerical evaluation of the "exact" distributions produce somewhat different
expected losses, the both demonstrably support production of red widgets today.
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13.8.4 Stage 4 solution
Stage 4 involves knowledge of an imminent order of 40 green widgets. This ef-
fectively changes the stage 3 analysis so that the current stock of green widgets is
10 rather than 50. Expected losses based on the Gaussian approximation are

E [L (D1)] = 0.05 + 3.81 + 7.9 = 11.76

E [L (D2)] = 15.09 + 0.0 + 7.9 = 22.99

E [L (D3)] = 15.09 + 3.81 + 0.0 = 18.9

On the other hand, expected losses based on the "exact" distributions are

E [L (D1)] = 2.35 + 5.07 + 6.70 = 14.12

E [L (D2)] = 18.5 + 0.0 + 6.70 = 25.20

E [L (D3)] = 18.5 + 5.07 + 0.0 = 23.58

While stage 4 knowledge shifts production in favor of green relative to yellow
widgets, both distributions for daily widget demand continue to support producing
red widgets today. Next, we explore another probability assignment puzzle.

13.9 Football game puzzle
Jaynes [2003] stresses consistent reasoning as the hallmark of the maximum en-
tropy principle. Sometimes, surprisingly simple settings can pose a challenge.
Consider the following puzzle posed by Walley [1991, pp. 270-271]. A football
match-up between two football rivals produces wins (W ), losses (L), or draws
(D) for the home team. If this is all we know then the maximum entropy prior
for the home team’s outcome is uniform Pr (W,L,D) =


1
3 ,

1
3 ,

1
3


. Suppose we

know the home team wins half the time. Then, the maximum entropy prior is
Pr (W,L,D) =


1
2 ,

1
4 ,

1
4


. Suppose we learn the game doesn’t end in a draw. The

posterior distribution is Pr (W,L,D) =

2
3 ,

1
3 , 0

.22

Now, we ask what is the maximum entropy prior if the home team wins half the
time and the game is not a draw. The maximum entropy prior is Pr (W,L,D) =
1
2 ,

1
2 , 0

. What is happening? This appears to be inconsistent reasoning. Is there

something amiss with the maximum entropy principle?
We suggest two different propositions are being evaluated. The former involves

a game structure that permits draws but we gain new evidence that a particular
game did not end in a draw. On the other hand, the latter game structure precludes
draws. Consequently, the information regarding home team performance has a
very different implication (three states of nature, W vs. L or D, compared with

22We return to this puzzle later when we discuss Jaynes’ Ap distribution.
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two states of nature,W vs. L). This is an example of what Jaynes [2003, pp. 470-
3] calls "the marginalization paradox," where nuisance parameters are integrated
out of the likelihood in deriving the posterior. If we take care to recognize these
scenarios involve different priors and likelihoods, there is no contradiction. In
Jaynes’ notation where we let & = W , y = not D, and z = null, the former
involves posterior p (& | y, z,=1) with prior =1 permitting W , L, or D, while
the latter involves posterior p (& | z,=2) with prior =2 permitting only W or L.
Evaluation of propositions involves joint consideration of priors and likelihoods,
if either changes there is no surprise when our conclusions are altered.
The example reminds us of the care required in formulating the proposition

being evaluated. The next example revisits an accounting issue where informed
priors are instrumental to identification and inference.

13.10 Financial statement example

13.10.1 Under-identification and Bayes
If we have more parameters to be estimated than data, we often say the problem
is under-identified. However, this is a common problem in accounting. To wit, we
often ask what activities did the organization engage in based on our reading of
their financial statements. We know there is a simple linear relation between the
recognized accounts and transactions

Ay = x

where A is an m  n matrix of ±1 and 0 representing simple journal entries in
its columns and adjustments to individual accounts in its rows, y is the transaction
amount vector, and x is the change in the account balance vector over the period of
interest (Arya, et al [2000]). Since there are onlym1 linearly independent rows
(due to the balancing property of accounting) and m (the number of accounts) is
almost surely less than n (the number of transactions we seek to estimate) we’re
unable to invert from x to recover y. Do we give up? If so, we might be forced to
conclude financial statements fail even this simplest of tests.
Rather, we might take a page from physicists (Jaynes [2003]) and allow our

prior knowledge to assist estimation of y. Of course, this is what decision the-
ory also recommends. If our prior or background knowledge provides a sense
of the first two moments for y, then the Gaussian or normal distribution is our
maximum entropy prior. Maximum entropy implies that we fully utilize our back-
ground knowledge but don’t use background knowledge we don’t have (Jaynes
[2003], ch. 11). That is, maximum entropy priors combined with Bayesian revi-
sion make efficient usage of both background knowledge and information from
the data (in this case, the financial statements). As in previously discussed ac-
counting examples, background knowledge reflects potential equilibria based on
strategic interaction of various, relevant economic agents and accounting recogni-
tion choices for summarizing these interactions.
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Suppose our background knowledge = is completely summarized by

E [y | =] = µ

and

V ar [y | =] = 

then our maximum entropy prior distribution is

p (y | =)  N (µ,)

and the posterior distribution for transactions, y, conditional on the financial state-
ments, x, is

p (y | x,=)

 N

µ+ AT0


A0A

T
0

1
A0 (y

p  µ) , AT0

A0A

T
0

1
A0



where N (·) refers to the Gaussian or normal distribution with mean vector de-
noted by the first term, and variance-covariance matrix denoted by the second
term, A0 is A after dropping one row and yp is any consistent solution to Ay = x
(for example, form any spanning tree from a directed graph of Ay = x and solve
for yp). For the special case where  = 2I (perhaps unlikely but nonetheless
illuminating), this simplifies to

p (y | x,=)  N

PR(A)y

p +

I  PR(A)


µ,2


I  PR(A)



where PR(A) = AT0

A0A

T
0

1
A0 (projection into the rowspace of A), and then

I  PR(A) is the projection into the nullspace of A.23

23In the general case, we could work with the subspaces (and projections) ofA0 where = T
(the Cholesky decomposition of ) and the transformed data z  1y  N


1µ, I


(Arya,

Fellingham, and Schroeder [2000]). Then, the posterior distribution of z conditional on the financial
statements x is

p (z | x,=)  N

PR(A0)z

p +

I  PR(A0)


µz , I  PR(A0)



where zp = 1yp and µz = 1µ. From this we can recover the above posterior distribution of y
conditional on x via the inverse transformation y = z.
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13.10.2 Numerical example
Suppose we observe the following financial statements.

Balance sheets Ending balance Beginning balance
Cash 110 80
Receivables 80 70
Inventory 30 40
Property & equipment 110 100

Total assets 330 290

Payables 100 70
Owner’s equity 230 220

Total equities 330 290

Income statement for period
Sales 70
Cost of sales 30
SG&A 30
Net income 10

Let x be the change in account balance vector where credit changes are negative.
The sum of x is zero; a basis for the left nullspace of A is a vector of ones.

change in account amount
 cash 30

 receivables 10
 inventory (10)

 property & equipment 10
 payables (30)
sales (70)

cost of sales 30
sg&a expenses 30

We envision the following transactions associated with the financial statements
and are interested in recovering their magnitudes y.

transaction amount
collection of receivables y1

investment in property & equipment y2
payment of payables y3
bad debts expense y4

sales y5
depreciation - period expense y6

cost of sales y7
accrued expenses y8
inventory purchases y9

depreciation - product cost y10
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A crisp summary of these details is provided by a directed graph as depicted in
figure 13.2.

Figure 13.2: Directed graph of financial statements

TheAmatrix associated with the financial statements and directed graph where
credits are denoted by 1 is

A =

2
66666666664

1 1 1 0 0 0 0 0 0 0
1 0 0 1 1 0 0 0 0 0
0 0 0 0 0 0 1 0 1 1
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 1 0 1 0 0

3
77777777775

and a basis for the nullspace is immediately identified by any set of linearly inde-
pendent loops in the graph, for example,

N =

2
4 1 0 1 1 0 0 0 1 0 0
0 1 1 0 0 0 0 0 1 1
0 0 0 0 0 1 0 1 1 1

3
5
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A consistent solution yp is readily identified by forming a spanning tree and solv-
ing for the remaining transaction amounts. For instance, let y3 = y6 = y9 = 0,
the spanning tree is depicted in figure 13.3.

Figure 13.3: Spanning tree

Then, (yp)T =

60 30 0 0 70 0 30 30 0 20


.

Now, suppose background knowledge = regarding transactions is described by
the first two moments

E

yT | =


= µT =


60 20 25 2 80 5 40 10 20 15


and

V ar [y | =] =  =

2
666666666666664

10 0 0 0 5 0 0 0 0 0
0 1 0 0 0 0.2 0 0 0 0.2
0 0 1 0 0 0 0 0.2 0 0
0 0 0 0.5 0.1 0 0 0 0 0
5 0 0 0.1 10 0 3.5 0 0 0
0 0.2 0 0 0 1 0 0 0 0
0 0 0 0 3.5 0 5 0 0.2 0
0 0 0.2 0 0 0 0 1 0 0
0 0 0 0 0 0 0.2 0 1 0
0 0.2 0 0 0 0 0 0 0 1

3
777777777777775
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maximum entropy priors for transactions are normally distributed with parameters
described by the above moments.
Given financial statements x and background knowledge =, posterior beliefs

regarding transactions are normally distributed with E

yT | x,=


=

[ 58.183 15.985 12.198 1.817 70 5.748 30 22.435 19.764 0.236 ]

and V ar [y | x,=] =

2
66666666664

0.338 0.172 0.167 0.338 0 0.164 0 0.174 0.007 0.007

0.172 0.482 0.310 0.172 0 0.300 0 0.128 0.182 0.182
0.167 0.310 0.477 0.167 0 0.135 0 0.302 0.175 0.175
0.338 0.172 0.167 0.338 0 0.164 0 0.174 0.007 0.007
0 0 0 0 0 0 0 0 0 0

0.164 0.300 0.135 0.164 0 0.445 0 0.281 0.145 0.145
0 0 0 0 0 0 0 0 0 0

0.174 0.128 0.302 0.174 0 0.281 0 0.455 0.153 0.153
0.007 0.182 0.175 0.007 0 0.145 0 0.153 0.328 0.328
0.007 0.182 0.175 0.007 0 0.145 0 0.153 0.328 0.328

3
77777777775

As our intuition suggests, the posterior mean of transactions is consistent with the
financial statements, A (E [y | x,=]) = x, and there is no residual uncertainty
regarding transactions that are not in loops, sales and cost of sales are y5 = 70
and y7 = 30, respectively. Next, we explore accounting accruals as a source of
both valuation and evaluation information.

13.11 Smooth accruals
Now, we explore valuation and evaluation roles of smooth accruals in a simple, yet
dynamic setting with informed priors regarding the initial mean of cash flows.24
Accruals smooth cash flows to summarize the information content regarding ex-
pected cash flows from the past cash flow history. This is similar in spirit to Arya et
al [2002]. In addition, we show in a moral hazard setting that the foregoing accrual
statistic can be combined with current cash flows and non-accounting contractible
information to efficiently (subject to LEN model restrictions25) supply incentives
to replacement agents via sequential spot contracts. Informed priors regarding the
permanent component of cash flows facilitates performance evaluation. The LEN
(linear exponential normal) model application is similar to Arya et al [2004]. It
is not surprising that accruals can serve as statistics for valuation or evaluation,
rather the striking contribution here is that the same accrual statistic can serve
both purposes without loss of efficiency.

24These examples were developed from conversations with Joel Demski, John Fellingham, and Hai-
jin Lin.
25See Holmstrom andMilgrom [1987], for details on the strengths and limitations of the LEN (linear

exponential normal) model.
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13.11.1 DGP
The data generating process (DGP ) is as follows. Period t cash flows (excluding
the agent’s compensation s) includes a permanent componentmt that derives from
productive capital, the agent’s contribution at, and a stochastic error et.

cft = mt + at + et

The permanent component (mean) is subject to stochastic shocks.

mt = g mt1 + t

where m0 is common knowledge (strongly informed priors), g is a deterministic
growth factor, and stochastic shock t. In addition, there exists contractible, non-
accounting information that is informative of the agent’s action at with noise µt.

yt = at + µt

Variance knowledge for the errors, e, , and µ, leads to a joint normal probabil-
ity assignment with mean zero and variance-covariance matrix . The DGP is
common knowledge to management and the auditor. Hence, the auditor’s role is
simply to assess manager’s reporting compliance with the predetermined account-
ing system.26
The agent has reservation wage RW and is evaluated subject to moral haz-

ard. The agent’s action is binary a 2 {aH , aL}, aH > aL, with personal cost
c(a), c(aH) > c(aL), and the agent’s preferences for payments s and actions are
CARA U(s, a) = exp{r[s c(a)]}. Payments are linear in performance mea-
sures wt (with weights t) plus flat wage t, st = t + 

T
t wt.

The valuation role of accruals is to summarize next period’s unknown expected
cash flowmt+1 based on the history of cash flows through time t (restricted recog-
nition). The incentive-induced equilibrium agent action at is effectively known
for valuation purposes. Hence, the observable cash flow history at time t is {cf1
a1, cf2  a2, . . . , cft  at }.

13.11.2 Valuation results
For the case  = D where D is a diagonal matrix comprised of 2e,2 , and 2µ
(appropriately aligned), the following OLS regression identifies the most efficient
valuation usage of the past cash flow history.

bmt = (H
TH)1HT z,

26Importantly, this eliminates strategic reporting considerations typically associated with equilib-
rium earnings management.
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H =

2
6666666664

 0 0 0 0
1 0 0 0 0
g  0 0 0
0 1 0 0 0
...

...
. . .

...
...

0 0 · · · g 
0 0 · · · 0 1

3
7777777775
, z =

2
6666666664

g m0

cf1  a1
0

cf2  a2
...
0

cft  at

3
7777777775
, and  =

e
"
.27

Can accruals supply a sufficient summary of the cash flow history for the cash
flow mean?28
We utilize difference equations to establish accruals as a valuation statistic. Let

mt = g mt1 + t,  =
e
 , and  =

e
µ . Also, B =


1 + 2 2

g2 g22


=

SS1 where

 =

2
4 1+2+g22

p
(1+2+g22)24g24

2 0

0
1+2+g22+

p
(1+2+g22)24g24

2

3
5

and

S =

"
1+2g22

p
(1+2+g22)24g24

2g2
1+2g22+

p
(1+2+g22)24g24

2g2

1 1

#
.

Now, define the difference equations by
dent
numt


= Bt


den0
num0


= StS1


1
0


.

The primary result for accruals as a valuation statistic is presented in proposi-
tion 13.1.29

Proposition 13.1 Letmt = g mt1+et, = D, and  = e

. Then, accrualst1

and cft are, collectively, sufficient statistics for the mean of cash flows mt based
on the history of cash flows and gt1accrualst is an efficient statistic formt

[bmt|cf1, ..., cft] = gt1accrualst

=
1

dent


numt

g2
(cft  at ) + g

t12dent1accrualst1



where accruals0 = m0, and

dent
numt


= Bt


den0
num0


= StS


1
0


. The

variance of accruals is equal to the variance of the estimate of the mean of cash

27Other information, yt, is suppressed as it isn’t informative for the cash flow mean.
28As the agent’s equilibrium contribution a is known, expected cash flow for the current period is

estimated by bmt + at and next period’s expected cash flow is predicted by g bmt + at+1.
29All proofs are included in the end of chapter appendix.
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flows multiplied by g2(t1); the variance of the estimate of the mean of cash
flows equals the coefficient on current cash flow multiplied by 2e, V ar [bmt] =
numt

dentg2
2e.

Hence, the current accrual equals the estimate of the current mean of cash flows
scaled by gt1, accrualst = 1

gt1 bmt.

Tidy accruals

To explore the tidiness property of accruals in this setting it is instructive to con-
sider the weight placed on the most recent cash flow as the number of periods
becomes large. This limiting result is expressed in corollary 13.2.

Corollary 13.2 As t becomes large, the weight on current cash flows for the effi-
cient estimator of the mean of cash flows approaches

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24

and the variance of the estimate approaches

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24
2e.

Accruals, as identified above, are tidy in the sense that each period’s cash flow is
ultimately recognized in accounting income or remains as a "permanent" amount
on the balance sheet.30 This permanent balance is approximately

k1X
t=1

cft

"
1

numt

numk
 numt

k1X
n=t

gnt22(n1)

gn1denn

#

where k is the first period where numt

g2dent
is well approximated by the asymptotic

rate identified in corollary 1 and the estimate of expected cash flow bmt is identified
from tidy accruals as gt1accrualst.31
In the benchmark case ( = 2eI ,  =  = 1, and g = 1), this balance reduces

to
k1X
t=1

cft

"
1

F2t
F2k

 F2t
k1X
n=t

1

F2n+1

#

where the estimate of expected cash flow bmt is equal to tidy accrualst.

30The permanent balance is of course settled up on disposal or dissolution.
31Cash flows beginning with period k and after are fully accrued as the asymptotic rate effectively

applies each period. Hence, a convergent geometric series is formed that sums to one. On the other
hand, the permanent balance arises as a result of the influence of the common knowledge initial ex-
pected cash flowm0.
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13.11.3 Performance evaluation
On the other hand, the evaluation role of accruals must regard at as unobservable
while previous actions of this or other agents are at the incentive-induced equi-
librium action a, and all observables are potentially (conditionally) informative:
{cf1  a1, cf2  a2, . . . , cft}, and {y1  a1, y2  a2, . . . , yt}.32
For the case = D, the most efficient linear contract can be found by determin-

ing the incentive portion of compensation via OLS and then plugging a constant 
to satisfy individual rationality.33 The (linear) incentive payments are equal to the
OLS estimator, the final element of bat, multiplied by  = c(aH)c(aL)

aHaL
, t=  bat

where34

bat = (HT
a Ha)

1HT
a wt,

Ha =

2
666666666664

 0 0 0 0 0
1 0 0 0 0 0
g  0 0 0 0
0 1 0 0 0 0
...

...
. . .

...
...

...
0 0 · · · g  0
0 0 · · · 0 1 1
0 0 · · · 0 0 

3
777777777775
, wt =

2
666666666664

g m0

cf1  a1
0

cf2  a2
...
0
cft
yt

3
777777777775
, and  =

e
"
.

Further, the variance of the incentive payments equals the last row, column ele-
ment of 2(HT

a Ha)
12e.

In a moral hazard setting, the incentive portion of the LEN contract based on
cash flow and other monitoring information history is identified in proposition
13.3. Incentive payments depend only on two realizations: unexpected cash flow
and other monitoring information for period t. Unexpected cash flow at time t is

cft  E[cft|cf1, . . . , cft1] = cft  gt1accrualst1
= cft  bmt1

= cft  [bmt|cf1, . . . , cft1].

As a result, sequential spot contracting with replacement agents has a particularly
streamlined form. Accounting accruals supply a convenient and sufficient sum-
mary of the cash flow history for the cash flow mean. Hence, the combination of
last period’s accruals with current cash flow yields the pivotal unexpected cash
flow variable.

32For the case  = D, past y’s are uninformative of the current period’s act.
33Individual rationality is satisfied if
 = RW  {E[incentivepayments|a] 1

2
rV ar[s] c(a)}.

34The nuisance parameters (the initial 2t elements of bat) could be avoided if one employs GLS in
place of OLS.
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Proposition 13.3 Let mt = g mt1 + et,  = D,  = e

, and  = e

µ
. Then,

accrualst1, cft, and yt, collectively, are sufficient statistics for evaluating the
agent with incentive payments given by

Tt wt = 
1

2dent1 + 
2dent


2dentyt

+2dent1

cft  gt1accrualst1

 

and variance of payments equal to

V ar[Tt wt] = 
2 dent

2dent1 + 
2dent

2e

where = c(aH)c(aL)
aHaL , and accrualst1 and dent are as defined in proposition

13.1.

Benchmark case
Suppose  = 2eI ( =  = 1) and g = 1. This benchmark case highlights
the key informational structure in the data. Corollary 13.4 identifies the linear
combination of current cash flows and last period’s accruals employed to estimate
the current cash flow mean conditional on cash flow history for this benchmark
case.

Corollary 13.4 For the benchmark case  = 2eI ( =  = 1) and g = 1,
accruals at time t are an efficient summary of past cash flow history for the cash
flow mean if

[bmt|cf1, ..., cft] = accrualst

=
F2t
F2t+1

(cft  at ) +
F2t1
F2t+1

accrualst1

where Fn = Fn1 + Fn2, F0 = 0, F1 = 1 (the Fibonacci series), and the
sequence is initialized with accruals0 = m0 (common knowledge mean beliefs).
Then, variance of accruals equals V ar [bmt] =

F2t
F2t+1

2e.

For the benchmark case, the evaluation role of accruals is synthesized in corol-
lary 13.5.

Corollary 13.5 For the benchmark case  = 2eI ( =  = 1) and g = 1,
accrualst1, cft, and yt are, collectively, sufficient statistics for evaluating the
agent with incentive payments given by

Tt wt = 


F2t+1
L2t

yt +
F2t1
L2t

(cft  accrualst1)


and variance of payments equals 2 F2t+1L2t
2e where accrualst1 is as defined

in corollary 2, Ln = Ln1 + Ln2, L0 = 2, L1 = 1 (the Lucas series), and
 = c(aH)c(aL)

aHaL
.35

35The Lucas and Fibonacci series are related by Ln = Fn1 + Fn+1, for n = 1, 2, ... .
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13.11.4 Summary
A positive view of accruals is outlined above. Accruals combined with current
cash flow can serve as sufficient statistics of the cash flow history for the mean
of cash flows. Further, in a moral hazard setting accruals can be combined with
current cash flow and other monitoring information to efficiently evaluate replace-
ment agents via sequential spot contracts. Informed priors regarding the conta-
minating permanent component facilitates this performance evaluation exercise.
Notably, the same accrual statistic serves both valuation and evaluation purposes.
Next, we relax common knowledge of the DGP by both management and the

auditor to explore strategic reporting equilibria albeit with a simpler DGP. That
is, we revisit earnings management with informed priors and focus on Bayesian
separation of signal (regarding expected cash flows) from noise.

13.12 Earnings management
We return to the earnings management setting introduced in chapter 2 and contin-
ued in chapter 3.36 Now, we focus on belief revision with informed priors. First,
we explore stochastic manipulation, as before, and, later on, selective manipula-
tion.

13.12.1 Stochastic manipulation
The analyst is interested in uncovering the mean of accruals E [xt] = µ (for all
t) from a sequence of reports {yt} subject to stochastic manipulation by man-
agement. Earnings management is curbed by the auditor such that manipulation
is limited to . That is, reported accruals yt equal privately observed accruals xt
when there is no manipulation It = 0 and add  when there is manipulation It = 1

yt = xt Pr (It = 0) = 1 
yt = xt +  Pr (It = 1) = 

The (prior) probability of manipulation  is known as well as the variance of xt,
2d. Since the variance is known, the maximum entropy likelihood function for
the data is Gaussian with unknown, but finite and constant, mean. Background
knowledge regarding the mean of xt is that the mean is µ0 with variance 20.
Hence, the maximum entropy prior distribution for the mean is also Gaussian.
And, the analysts’ interests focus on the mean of the posterior distribution for x,
E

µ | µ0,20,2d, {yt}


.

Consider the updating of beliefs when the first report is observed, y1. The ana-
lyst knows

y1 = x1 I1 = 0
y1 = x1 +  I1 = 1

36These examples were developed from conversations with Joel Demski and John Fellingham.
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plus the prior probability of manipulation is . The report contains evidence re-
garding the likelihood of manipulation. Thus, the posterior probability of manip-
ulation37 is

p1  Pr

I1 = 1 | µ0,

2
0,

2
d, y1



=




y1µ0p
2d+

2
0






y1µ0p
2d+

2
0


+ (1 )


y1µ0p
2d+

2
0



where  (·) is the standard Normal (Gaussian) density function. The density func-
tions are, of course, conditional on manipulation or not and the random variable
of interest is x1  µ0 which is Normally distributed with mean zero and variance
2d + 

2
0 = 2d


1 + 1

2


where  = d

0
.

Bayesian updating of the mean following the first report is

µ1 = µ0 + 
2
1

1

2d
(p1 (y1  ) + (1 p1) y1  µ0)

=
1

2 + 1


2µ0 + p1 (y1  ) + (1 p1) y1



where the variance of the estimated mean is

21 =
1

1
20
+ 1

2d

=
2d

2 + 1

Since

V ar [pt (yt   | It = 1) + (1 pt) (yt | It = 0)] = V ar [xt]  2d for all t

21, . . . ,
2
t are known in advance of observing the reported data. That is, the in-

formation matrix is updated each period in a known way.

37The posterior probability is logistic distributed (see Kiefer [1980]).

pt =
1

1 + Exp [at + btyt]

where
at = ln


1 



+

1

2

2d + 

2
t1


h
 + µt1

2  µ2t1
i

and
bt =

1
2d + 

2
t1


h
µ2t1 


 + µt1

2i
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This updating is repeated each period.38 The posterior probability of manipula-
tion given the series of observed reports through period t is

pt  Pr

It = 1 | µ0,

2
0,

2
d, {yt}



=




ytµt1p
2d+

2
t1






ytµt1p
2d+

2
t1


+ (1 )


y1µt1p
2d+

2
t1



where the random variable of interest is xt  µt1 which is Normally distributed
with mean zero and variance 2d + 2t1. The updated mean is

µt = µt1 + 
2
t

1

2d


pt (yt  ) + (1 pt) yt  µt1



=
1

2 + t

"
2µ0 +

tX
k=1

pk (yk  ) + (1 pk) yk

#

and the updated variance of the mean is39

2t =
1

1
20
+ t 1

2d

=
2d

2 + t

38To see this as a standard conditional Gaussian distribution result, suppose there is no manipulation
so that x1, . . . , xt are observed and we’re interested in E [µ | x1, . . . , xt] and V ar [µ | x1, . . . , xt].
The conditional distribution follows immediately from the joint distribution of

µ = µ0 + 0

x1 = µ+ "1 = µ0 + 0 + "1

and so on
xt = µ+ "t = µ0 + 0 + "t

The joint distribution is multivariate Gaussian

N

0

BBB@

2

6664

µ0
µ0
...
µ0

3

7775
,

2

6664

20 20 20 20
20 20 + 

2
d 20 20

20

...
. . .

...
20 20 · · · 20 + 

2
d

3

7775

1

CCCA

With manipulation, the only change is xt is replaced by (yt   | It = 1) with probability pt and
(yt | It = 0) with probability 1 pt.
39Bayesian updating of the mean can be thought of as a stacked weighted projection exercise where

the prior "sample" is followed by the new evidence. For period t, the updated mean is

µt  E [µ | µ0, {yt}] =

XT
t Xt

1
XT
t Yt

and the updated variance of the mean is

2t  V ar [µ | µ0, {yt}] =

XT
t Xt

1
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Now, it’s time to look at some data.

Experiment

Suppose the prior distribution for x has mean µ0 = 100 and standard devia-
tion 0 = 25, then it follows (from maximum entropy) the prior distribution is
Gaussian. Similarly, xt is randomly sampled from a Gaussian distribution with
mean µ, where the value of µ is determined by a random draw from the prior
distribution N (100, 25), and standard deviation d = 20. Reports yt are stochas-
tically manipulated as xt+  with likelihood  = 0.2, where  = 20, and yt = xt
otherwise.

Results

Two plots summarize the data. The first data plot, figure 13.4, depicts the mean of
100 simulated samples of t = 100 observations and the mean of the 95% inter-
val estimates of the mean along with the baseline (dashed line) for the randomly
drawn mean µ of the data. As expected, the mean estimates converge toward the
baseline as t increases and the interval estimates narrow around the baseline.
The second data plot, figure 13.5, shows the incidence of manipulation along

with the assessed posterior probability of manipulation (multiplied by ) based
on the report for a representative draw. The graph depicts a reasonably tight cor-
respondence between incidence of manipulation and posterior beliefs regarding
manipulation.

Scale uncertainty

Now, we consider a setting where the variance (scale parameter) associated with
privately observed accruals, 2d, and the prior, 20, are uncertain. Suppose we only

where

Yt =

2

666666666664

1
0
µ0p

p1
d

(y1  )
p
1p1
d

y1

...p
pt
d

(yt  )
p
1pt
d

yt

3

777777777775

and

Xt =

2

666666666664

1
0p
p1
dp
1p1
d
...p
pt
dp
1pt
d

3
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Figure 13.4: Stochastic manipulation d known

Figure 13.5: Incidence of stochastic manipulation and posterior probability
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know  = d
0
and 2d and 20 are positive. Then, Jeffreys’ prior distribution for

scale is proportional to the square root of the determinant of the information matrix
for t reports {yt} (see Jaynes [2003]),

f (d) /

s
2 + t

2d

Hence, the prior for scale is proportional to 1
d

f (d) /
1

d

With the mean µ and scale 2d unknown, following Box and Tiao [1973, p. 51],
we can write the likelihood function (with priors on the mean incorporated as
above) as

`

µ,2d | {yt}


=

2d
 t+1

2 exp



1

22d
(Y Xµ)T (Y Xµ)



Now, rewrite40

(Y Xµ)T (Y Xµ) =

Y  bY T Y  bY 

+
bY XµT bY Xµ

= ts2t + (µ µt)
T
XTX (µ µt)

40The decomposition is similar to decomposition of mean square error into variance and squared
bias but without expectations. Expand both sides of

(Y Xµ)T (Y Xµ) =

Y  bY

T 
Y  bY


+

bY Xµ

T bY Xµ


The left hand side is
Y TY  2Y TXµ+ µTXTXµ

The right hand side is

Y TY  2Y TXbµ+ bµTXTXbµ+ µTXTXµ 2µTXTXbµ+ bµTXTXbµ

Now show
2Y TXµ = 2Y TXbµ+ 2bµTXTXbµ 2bµTXTXµ

Rewriting yields
Y TX (bµ µ) = bµTXTX (bµ µ)

or combining

(Y Xbµ)T X (bµ µ) = 0

b"TX (bµ µ) = 0

The last expression is confirmed asXTb" = 0 by least squares estimator construction (the residuals b"
are chosen to be orthogonal to the columns ofX).
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where
s2t =

1

t


Y  bY T Y  bY 

Y T =

µ0

p
p1y1

p
1 p1y1 · · · p

ptyt
p
1 ptyt


bY = Xµt

XT =



p
p1

p
1 p1 · · · p

pt
p
1 pt


µt =


XTX

1
XTY

Hence,

`

µ,2d | {yt}


=


2d
 t+1

2 exp

"

ts2t
22d


(µ µt)

T
XTX (µ µt)
22d

#

=

2d
 t+1

2 exp



ts2t
22d


exp

"

(µ µt)

T
XTX (µ µt)
22d

#

The posterior distribution for the unknown parameters is then

f

µ,2d | {yt}


/ `


µ,2d | {yt}


f (d)

substitution from above gives

f

µ,2d | {yt}


/


2d
( t2+1) exp



ts2t
22d



 exp

"

(µ µt)

T
XTX (µ µt)
22d

#

The posterior decomposes into

f

µ,2d | {yt}


= f


2d | s

2
t


f

µ | µt,

2
d


where

f

µ | µt,

2
d


/ exp

"

(µ µt)

T
XTX (µ µt)
22d

#

is the multivariate Gaussian kernel, and

f

2d | s

2
t


/

2d
( t2+1) exp



ts2t
22d


, t  1

is the inverted chi-square kernel, which is conjugate prior to the variance of a
Gaussian distribution. Integrating out 2d yields the marginal posterior for µ,

f (µ | {yt}) =
Z 1

0

f

µ,2d | {yt}


d2d
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which has a noncentral, scaled-Student t

µt, s

2
t


XTX

1
, t

distribution. In

other words,
T =

µ µt
stp
2+t

has a Student t(t) distribution, for t  1 (see Box and Tiao [1973, p. 117-118]).41
Now, the estimate for µ conditional on reports to date is the posterior mean42

µt  E [µ | {yt}]

=

R1
1 µf (µ | {yt}) dµR1
1 f (µ | {yt}) dµ

=
2µ0 + p1y1 + (1 p1) y1 + · · ·+ ptyt + (1 pt) yt

2 + t

from the above posterior distribution and pt is defined below. The variance of the
estimate for µ is

2t  V ar [µt]

= es2t XTX
1

=
es2t

t+ 2
, t  1

where es2t is the estimated variance of the posterior distribution for xt (see dis-
cussion below under a closer look at the variance). Hence, the highest posterior
density (most compact) interval for µ with probability p is

µt ± t

t; 1

p

2


t

2µ0+p1y1+(1p1)y1+···+ptyt+(1pt)yt
2+t

±t

t; 1 p

2

 estp
t+2

t  1

41This follows from a transformation of variables,

z =
A

22d

where
A = ts2 + (µ µt)

T XTX (µ µt)
that produces the kernel of a scaled Student t times the integral of a gamma distribution (see Gelman
et al [2004], p.76). Or, for a > 0, p > 0,

Z 1

0
x(p+1)e

a
x dx = ap (p)

where
 (z) =

Z 1

0
tz1etdt

and for n a positive integer
 (n) = (n 1)!

a constant which can be ignored when identifying the marginal posterior (see Box and Tiao [1973, p.
144]).
42For emphasis, we write the normalization factor in the denominator of the expectations expression.
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The probability the current report yt, for t  2,43 is manipulated conditional on
the history of reports (and manipulation probabilities) is

pt  Pr

It = 1 | , {yt} , {pt1} , µt1,2t1


, t  2

=

R R

f(yt|Dt=1,µ,
2
d)f(µ|µt1,

2
d)f(

2
d|s

2
t1)dµd

2
d

den(pt)

=

R R
(2d)

 1
2 exp


 (ytµ)

2

22
d


(2d)

 1
2 exp


 (

µµt1)X
TX(µµt1)
22

d


dµ

den(pt)



2d
( t2+1) exp h (t1)s2t1

22d

i
d2d

+(1 )
R

1p
2d+

2
t1

exp


 1
2

(ytµt1)
2

2d+
2
t1





2d
( t2+1) exp h (t1)s2t1

22d

i
d2d

where

den (pt) = 

Z
1q

2d + 
2
t1

exp

"

1

2


yt    µt1

2
2d + 

2
t1

#



2d
( t2+1) exp



(t 1) s2t1

22d


d2d

+(1 )
Z

1q
2d + 

2
t1

exp

"

1

2


yt  µt1

2
2d + 

2
t1

#



2d
( t2+1) exp



(t 1) s2t1

22d


d2d

Now, we have

f (yt   | Dt = 1) =
R1
0

1p
2d+

2
t1

exp


 1
2

(ytµt1)
2

2d+
2
t1





2d
( t2+1) exp h (t1)s2t1

22d

i
d2d

and

f (yt | Dt = 0) =

Z 1

0

1q
2d + 

2
t1

exp

"

1

2


yt  µt1

2
2d + 

2
t1

#



2d
( t2+1) exp



(t 1) s2t1

22d


d2d

43For t = 1, pt  Pr (Dt = 1 | yt) =  as the distribution for (yt | Dt) is so diffuse (s20 has
zero degrees of freedom) the report yt is uninformative.
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are noncentral, scaled-Student t

µt1, s

2
t1 + s

2
t1

XTX

1
, t 1


distributed.

In other words,
T =

yt  µt1q
s2t1 +

s2t1
2+t1

has a Student t(t 1) distribution for t  2.

A closer look at the variance.

Now, we more carefully explore what s2 estimates. We’re interested in estimates
of µ and 2d

2+t and we have the following relations:

xt = µ+ "t

= yt  Dt

If Dt is observed then xt is effectively observed and estimates of µ = E [x] and
2d = V ar [x] are, by standard methods, x and s2. However, when manipulation
Dt is not observed, estimation is more subtle. xt = yt  Dt is estimated via
ytpt which deviates from xt by t =  (Dt  pt). That is, xt = ytpt+t.
where

E [t | yt] =  [pt (1 pt) + (1 pt) (0 pt)] = 0

and

V ar [t | yt] = 2
h
pt (1 pt)

2
+ (1 pt) (0 pt)

2
i

= 2pt (1 pt) = 2V ar [Dt | yt]

s2 estimates E
hb"Tt b"t | yt

i
where b"t = yt ptµt. However, 2d = E "Tt "t

is the object of interest. We can write

b"t = yt  pt  µt
= (Dt + µ+ "t) pt  µt
= "t +  (Dt  pt) + (µ µt)

In other words,
"t + (µ µt) = b"t   (Dt  pt)

Since E

XT "t


= 0 (the regression condition) and µt is a linear combination of

X , Cov ["t, (µ µt)] = 0. Then, the variance of the left-hand side is a function
of 2d, the parameter of interest.

V ar ["t + (µ µt | yt)] = V ar ["t] + V ar [µ µt | yt]

= 2d + 
2
d

1

2 + t

=
2 + t+ 1

2 + t
2d
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As Dt is stochastic
E [b"t (Dt  pt) | yt] = 0

the variance of the right-hand side is

V ar [b"t   (Dt  pt) | yt] = V ar [b"t | yt] + 2V ar [(Dt  pt) | yt]
2Cov [b"t, (Dt  pt) | yt]

= V ar [b"t | yt]
+2

h
pt (1 pt)

2
+ (1 pt) (0 pt)

2
i

= V ar [b"t | yt] + 2pt (1 pt)
As V ar [b"t] is consistently estimated via s2, we can estimate 2d by

b2d =
2 + t

2 + t+ 1


s2 + 2pt (1 pt)



b2d =
2 + t

2 + t+ 1
es2

where pt (1 pt) is the variance ofDt and es2 = s2 + 2pt (1 pt) estimates the
variance of b"t + t given the data {yt}.
Experiment

Repeat the experiment above except now we account for variance uncertainty as
described above.44

Results

For 100 simulated samples of t = 100, we generate a plot, figure 13.6, of the mean
and average 95% interval estimates. As expected, the mean estimates converge
toward the baseline (dashed line) as t increases and the interval estimates narrow
around the baseline but not as rapidly as the known variance setting.

44Another (complementary) inference approach involves creating the posterior distribution via con-
ditional posterior simulation. Continue working with prior p


2d | X


/ 1

2
d

to generate a posterior
distribution for the variance

p

2d | X, {yt}


 Inv  2


t, b2d



and conditional posterior distribution for the mean

p

µ | 2d, X, {yt}


 N


XTX

1
XTY,2d


XTX

1

That is, draw 2d from the inverted, scaled chi-square distribution with t degrees of freedom and scale
parameter b2d. Then draw µ from a Gaussian distribution with mean


XTX

1
XTY and variance

equal to the draw for 2d

XTX

1 from the step above.
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Figure 13.6: Stochastic manipulation d unknown

13.12.2 Selective earnings management
Suppose earnings are manipulated whenever privately observed accruals xt lie
below prior periods’ average reported accruals yt1. That is,

xt < yt1 It = 1
otherwise It = 0

where y0 = µ0; for simplicity, µ0 and yt are commonly observed.45 The set-
ting differs from stochastic earnings management only in the prior and posterior
probabilities of manipulation. The prior probability of manipulation is

t  Pr

xt < yt1 | µ0,

2
0,

2
d, {yt1}



= 

0
@ yt1  µt1q

2d + 
2
t1

1
A

where  (·) represents the cumulative distribution function for the standard nor-
mal. Updated beliefs are informed by reported results even though they may be
manipulated. If reported results exceed average reported results plus , then we

45This assumption could be relaxed or, for example, interpreted as an unbiased forecast conveyed
via the firm’s prospectus.
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know there is no manipulation. Or, if reported results are less than average re-
ported results less , then we know there is certain manipulation. Otherwise, there
exists a possibility the reported results are manipulated or not. Therefore, the pos-
terior probability of manipulation is

Pr

It = 1 | µ0,20,2d, {yt} , yt > yt1 + 


= 0

pt  Pr

It = 1 | µ0,20,2d, {yt} , yt < yt1  


= 1

Pr

It = 1 | µ0,20,2d, {yt} , yt1    yt  yt1 + 



=
t

 
ytµt1p

2
d
+2

t1

!

t

 
ytµt1p

2
d
+2

t1

!
+(1t)

 
y1µt1p
2
d
+2

t1

!

As before, the updated mean is

µt = µt1 + 
2
t

1

2d


pt (yt  ) + (1 pt) yt  µt1



=
1

2 + t

"
2µ0 +

tX
k=1

pk (yk  ) + (1 pk) yk

#

and the updated variance of the mean is

2t =
1

1
20
+ t 1

2d

=
2d

2 + t

Time for another experiment.

Experiment

Suppose the prior distribution for x has mean µ0 = 100 and standard devia-
tion 0 = 25, then it follows (from maximum entropy) the prior distribution is
Gaussian. Similarly, xt is randomly sampled from a Gaussian distribution with
mean µ, a random draw from the prior distribution N (100, 25), and standard de-
viation d = 20. Reports yt are selectively manipulated as xt+ when xt < yt1,
where  = 20, and yt = xt otherwise.

Results

Again, two plots summarize the data. The first data plot, figure 13.7, depicts the
mean and average 95% interval estimates based on 100 simulated samples of t =
100 observations along with the baseline (dashed line) for the randomly drawn
mean µ of the data. As expected, the mean estimates converge toward the baseline
as t increases and the interval estimates narrow around the baseline. The second
data plot, figure 13.8, shows the incidence of manipulation along with the assessed
posterior probability of manipulation (multiplied by ) based on the report for a
representative draw. The graph depicts a reasonably tight correspondence between
incidence of manipulation and posterior beliefs regarding manipulation.



13.12 Earnings management 395

Figure 13.7: Selective manipulation d known

Figure 13.8: Incidence of selective manipulation and posterior probability
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Scale uncertainty

Again, we consider a setting where the variance (scale parameter) associated with
privately observed accruals 2d is uncertain but manipulation is selective. The only
changes from the stochastic manipulation setting with uncertain scale involve the
probabilities of manipulation.
The prior probability of manipulation is

t 
Z
Pr

xt < yt1 | µ0, ,

2
d, {yt1}


f

2d | s

2
t1

d2d

=

Z 1

0

Z yt1

1
f

xt | µ0, ,

2
d, {yt1}


dxtf


2d | s

2
t1

d2d, t  2

On integrating 2d out, the prior probability of manipulation then simplifies as

t =

Z yt1

1
f (xt | µ0, , {yt1}) dxt, t  2

a cumulative noncentral, scaled-Student t

µt1, s

2
t1 + s

2
t1

XTX

1
, t 1


distribution; in other words,

T =
xt  µt1q
s2t1 +

s2t1
2+t1

has a Student t(t 1) distribution, t  2.46
Following the report yt, the posterior probability of manipulation is

Pr

It = 1 | µ0, , {yt} , yt > yt1 + 


= 0

pt  Pr

It = 1 | µ0, , {yt} , yt < yt1  


= 1

Pr

It = 1 | µ0, , {yt} , yt1    yt  yt1 + 


=

t
R
f(yt|It=1,=t1,2d)f(

2
d|s

2
t1)d

2
dR

f(yt|=t1,2d)f(2d|s2t1)d2d
, t  2

where =t1 = [µ0, , {yt1}],

f

yt | =t1,2d


= tf


yt   | It = 1,=t1,2d


+(1 t) f


yt | It = 0,=t1,2d


f

yt   | It = 1,=t1,2d


and f


yt | It = 0,=t1,2d


are noncentral, scaled-

Student t

µt1, s

2
t1 + s

2
t1

XTX

1
, t 1


distributed. In other words,

T =
yt  µt1q
s2t1 +

s2t1
2+t1

has a Student t(t 1) distribution for t  2.

46The prior probability of manipulation is uninformed or pt = 1
2
for t < 2.
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A closer look at the variance.

In the selective manipulation setting,

V ar [b"t   (Dt  pt) | yt] = V ar [b"t | yt] + 2V ar [(Dt  pt) | yt]
2E [b"t (Dt  pt) | yt]

= V ar [b"t | yt] + 2pt (1 pt)
2E [b"t (Dt  pt) | yt]

The last term differs from the stochastic setting as selective manipulation produces
truncated expectations. That is,

2E [b"t (Dt  pt) | yt] = 2{ptE [b"t (1 pt) | yt, Dt = 1]
+ (1 pt)E [b"t (0 pt) | yt, Dt = 0]}

= 2{ptE
b"t (1 pt) | yt, xt < yt1

+(1 pt)E
b"t (0 pt) | yt, xt > yt1}

= 2{ptE
b"t (1 pt) | yt,b"t + t < yt1  µt

+(1 pt)E
b"t (0 pt) | yt,b"t + t > yt1  µt}

= 2

ptE

b"t | yt,b"t + t < yt1  µt E [b"tpt | yt]
= 2


pt

Z Z



yt1  µ


| µ,


f (µ,) dµd  0



= 2ptesf

yt1  µtes



where es2 = s2+2pt (1 pt) estimates the variance ofb"t+t with no truncation,
2. The extra term, esf yt1µtes


, arises from truncated expectations induced by

selective manipulation rather than random manipulation. As both µ and  are
unknown, we evaluate this term by integrating out µ and  where f


yt1µt

es


has a Student t(t) distribution. Hence, we can estimate 2d by

b2d =
2 + t

2 + t+ 1


s2 + 2pt (1 pt) + 2ptesf


yt1  µtes



=
2 + t

2 + t+ 1


es2 + 2ptesf


yt1  µtes



conditional on the data {yt}.

Experiment

Repeat the experiment above except now we account for variance uncertainty.
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Figure 13.9: Selective manipulation d unknown

Results

For 100 simulated samples of t = 100 observations, we generate a plot, figure
13.9, of the mean and average 95% interval estimates to summarize the data.As
expected, the mean estimates converge toward the baseline (dashed line) as t in-
creases and the interval estimates narrow around the baseline but not as rapidly as
the known variance setting.

13.13 Jaynes’ Ap distribution
Our story is nearly complete. However, consistent reasoning regarding proposi-
tions involves another, as yet unaddressed, element. For clarity, consider binary
propositions. We might believe the propositions are equally likely but we also
may be very confident of these probabilities, somewhat confident, or not confi-
dent at all. Jaynes [2003, ch. 18] compares propositions regarding heads or tails
from a coin flip with life ever existing on Mars. He suggests that the former is very
stable in light of additional evidence while the latter is very instable when faced
with new evidence. Jaynes proposes a self-confessed odd proposition or distrib-
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ution (depending on context) denoted Ap to tidily handle consistent reasoning.47
The result is tidy in that evaluation of new evidence based on background knowl-
edge (including Ap) follows from standard rules of probability theory — Bayes’
theorem.
This new proposition is defined by

Pr (A | Ap, E,=)  p

where A is the proposition of interest, E is any additional evidence, = mathe-
matically relevant background knowledge, and Ap is something like regardless of
anything else the probability of A is p. The propositions are mutually exclusive
and exhaustive. As this is surely an odd proposition or distribution over a prob-
ability, let the distribution for Ap be denoted (Ap). High instability or complete
ignorance leads to

(Ap | =) = 1 0  p  1
Bayes’ theorem leads to

(Ap | E,=) = (Ap | =)
Pr (E | Ap,=) Pr (=)
Pr (E | =) Pr (=)

= (Ap | =)
Pr (E | Ap,=)
Pr (E | =)

Given complete ignorance, this simplifies as

(Ap | E,=) = (1)
Pr (E | Ap,=)
Pr (E | =)

=
Pr (E | Ap,=)
Pr (E | =)

Also, integrating out Ap we have

Pr (A | E,=) =
Z 1

0

(A,Ap | E,=) dp

expanding the integrand gives

Pr (A | E,=) =
Z 1

0

Pr (A | Ap, E,=) (Ap | E,=) dp

from the definition of Ap, the first factor is simply p, leading to

Pr (A | E,=) =
Z 1

0

p (Ap | E,=) dp

Hence, the probability assigned to the proposition A is just the first moment or
expected value of the distribution for Ap conditional on the new evidence. The
key feature involves accounting for our uncertainty via the joint behavior of the
prior and the likelihood.

47Jaynes’ Ap distribution is akin to over-dispersed models. That is, hierarchical generalized linear
models that allow dispersion beyond the assigned sampling distribution.
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13.13.1 Football game puzzle revisited
Reconsider the football game puzzle posed by Walley [1991, pp. 270-271]. Re-
call the puzzle involves a football match-up between two football rivals which
produces either a win (W ), a loss (L), or a draw (D) for the home team. Sup-
pose we know the home team wins more than half the time and we gain evidence
the game doesn’t end in a draw. Utilizing Jaynes’ Ap distribution, the posterior
distribution differs from the earlier case where the prior probability of a win is
one-half, Pr (W,L,D) =


3
4 ,

1
4 , 0

. The reasoning for this is as follows. Let A be

the proposition the home team wins (the argument applies analogously to a loss)
and we know only the probability is at least one-half, then

(Ap | =1) = 2 1
2  p  1

and
(Ap | E,=1) = (2)

Pr (E | Ap,=)
Pr (E | =)

Since, Pr (E = not D | =1) = Pr (E = not D | Ap,=1) = 3
4 if draws are per-

mitted, or Pr (E = not D | =2) = Pr (E = not D | Ap,=2) = 1 if draws are not
permitted by the game structure.

(Ap | E,=1) = (2)
3
4
3
4

= 2

(Ap | E,=2) = (2)
1

1
= 2

Hence,

Pr (A =W | E,=j) =

Z 1

1
2

p · (Ap | E,=j) dp

=

Z 1

1
2

(2p) dp =
3

4

Here the puzzle is resolved by careful interpretation of prior uncertainty combined
with consistent reasoning enforced by Jaynes’ Ap distribution.48 Prior instability
forces us to reassess the evaluation of new evidence; consistent evaluation of the
evidence is the key. Some alternative characterizations of our confidence in the
prior probability the home team wins are illustrated next.
How might we reconcile Jaynes’ Ap distribution and Walley’s


2
3 ,

1
3 , 0

or

1
2 ,

1
2 , 0

probability conclusion. The former follows from background knowl-

edge that the home team wins more than half the time with one-half most likely

48For a home team loss, we have

Pr (A = L | E,=) =
Z 1

2

0
2pdp =

1

4
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and monotonically declining toward one. Ap in this case is triangular 8  8p for
1
2  p  1. The latter case is supported by background knowledge that the home
team wins about half the time but no other information regarding confidence in
this claim. Then, Ap is uniform for 0  p  1.

13.14 Concluding remarks
Now that we’re "fully" armed, it’s time to re-explore the accounting settings in
this and previous chapters as well as other settings, collect data, and get on with
the serious business of evaluating accounting choice. But this monograph must
end somewhere, so we hope the reader will find continuation of this project a
worthy task. We anxiously await the blossoming of an evidentiary archive and
new insights.

13.15 Additional reading
There is a substantial and growing literature on maximum entropy priors. Jaynes
[2003] is an excellent starting place. Cover and Thomas [1991, ch. 12] expand the
maximum entropy principle via minimization of relative entropy in the form of a
conditional limit theorem. Also, Cover and Thomas [1991, ch. 11] discuss max-
imum entropy distributions for time series data including Burg’s theorem (Cover
and Thomas [1991], pp. 274-5) stating the Gaussian distribution is the maximum
entropy error distribution given autocovariances. Walley [1991] critiques the pre-
cise probability requirement of Bayesian analysis, the potential for improper ig-
norance priors, and the maximum entropy principle while arguing in favor of an
upper and lower probability approach to consistent reasoning (see Jaynes’ [2003]
comment in the bibliography).
Financial statement inferences are extended to bounding transactions amounts

and financial ratios in Arya, Fellingham, Mittendorf, and Schroeder [2004]. Earn-
ings management implications for performance evaluation are discussed in path
breaking papers by Arya, Glover, and Sunder [1998] and Demski [1998]. Arya
et al discuss earnings management as a potential substitute for (lack of) com-
mitment in conveying information about the manager’s input. Demski discusses
accruals smoothing as a potential means of conveying valuable information about
the manager’s talent and input. Demski, Fellingham, Lin, and Schroeder [2008]
discuss the corrosive effects on organizations of excessive reliance on individual
performance measures.

13.16 Appendix
This appendix supplies proofs to the propositions and corollaries for the smooth
accruals discussion.



402 13. Informed priors

Proposition 13.1. Let mt = g mt1 + "t,  = D, and  = e

. Then,

accrualst1 and cft are, collectively, sufficient statistics for the mean of cash
flows mt based on the history of cash flows and gt1accrualst is an efficient
statistic for mt

[bmt|cf1, ..., cft] = gt1accrualst

=
1

dent


numt

g2
(cft  at ) + g

t12dent1accrualst1



where accruals0 = m0, and

dent
numt


= Bt


den0
num0


= StS1


1
0


.

The variance of accruals is equal to the variance of the estimate of the mean of
cash flows multiplied by g2(t1); the variance of the estimate of the mean of cash
flows equals the coefficient on current cash flow multiplied by 2e, V ar [bmt] =
numt

dentg2
2e.

Proof. Outline of the proof:

1. Since the data are multivariate normally distributed, BLU estimation is effi-
cient (achieves the Cramer-Rao lower bound amongst consistent estimators;
see Greene [1997], p. 300-302).

2. BLU estimation is written as a recursive least squares exercise (see Strang
[1986], p. 146-148).

3. The proof is completed by induction. That is, the difference equation solu-
tion is shown, by induction, to be equivalent to the recursive least squares
estimator. A key step is showing that the information matrix = and its in-
verse can be derived in recursive fashion via LDLT decomposition (i.e.,
D1L1= = LT ).

Recursive least squares. LetH1 =


1


(a 2 by 1matrix),H2 =


g 
0 1



(a 2 by 2 matrix), Ht =

0 · · · 0 g 
0 · · · 0 0 1


(a 2 by t matrix with t  2

leading columns of zeroes), z1 =

gm0

cf1  a1


, z2 =


0

cf2  a2


, and zt =

0
cft  at


. The information matrix for a t-period cash flow history is

=t = =at1 +H
T
t Ht

=

2
66666664

1 + 2 + g22 g2 0 · · · 0

g2 1 + 2 + g22 g2
. . .

...

0 g2
. . . g2 0

...
. . . g2 1 + 2 + g22 g2

0 · · · 0 g2 1 + 2

3
77777775
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a symmetric tri-diagonal matrix, where =at1 is =t1 augmented with a row and
column of zeroes to conform with =t. For instance, =1 =


1 + 2


and =a1 =

1 + 2 0
0 0


. The estimate of the mean of cash flows is derived recursively as

bt = b
a
t1 + kt


zt Htbat1


for t > 1 where kt = =1t HT

t , the gain matrix, and bat1 is bt1 augmented with
a zero to conform with bt. The best linear unbiased estimate of the current mean
is the last element in the vector bt and its variance is the last row-column element
of =1t multiplied by 2e.
Difference equations. The difference equations are

dent
numt


=


1 + 2 2

g2 g22

 
dent1
numt1



with

den0
num0


=


1
0


. The difference equations estimator for the current

mean of cash flows and its variance are

bmt =
1

dent


numt

g2
(cft  at ) + g

2dent1 bmt1



= gt1 accrualst

=
1

dent


numt

g2
(cft  at ) + g

t12dent1accrualst1



where accruals0 = m0, and

V ar [bmt] = g
2(t1)V ar [accrualst] = 2e

numt

g2dent
.

Induction steps. Assume

bmt =
1

dent


numt

g2
(cft  at ) + g

2dent1 bmt1



= gt1 accrualst

=
1

dent


numt

g2
(cft  at ) + g

t12dent1accrualst1



=

bat1 + kt


zt Htbat1


[t]

and
V ar [bmt] = g

2(t1)V ar [accrualst] = V ar [bt] [t, t]

where [t] ([t, t]) refers to element t (t, t) in the vector (matrix). The above is clearly
true for the base case, t = 1 and t = 2. Now, show

bmt+1 =
1

dent+1


numt+1

g2

cft+1  at+1


+ gt2dentaccrualst



= [bat + kt+1 (zt+1 Ht+1b
a
t )] [t+ 1] .
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Recall zt+1 =


0
ct+1  at+1


and Ht+1 =


0 · · · 0 g 
0 · · · 0 0 1


. From

LDLT decomposition of =t+1 (recall LT = D1L1= where L1 is simply
products of matrices reflecting successive row eliminations - no row exchanges
are involved due to the tri-diagonal structure and D1 is the reciprocal of the
diagonal elements remaining following eliminations) the last row of =1t+1 is

h
gt12(t1)num1

g2dent+1
· · · g24numt1

g2dent+1

g2numt

g2dent+1

numt+1

g2dent+1

i
.

This immediately identifies the variance associated with the estimator as the last
term in =1t+1 multiplied by the variance of cash flows,

numt+1

g2dent+1
2e. Hence, the

difference equation and the recursive least squares variance estimators are equiv-
alent.

SinceHT
t+1zt+1 =

2
6664

0
...
0

cft+1  at+1

3
7775, the lead term on the RHS of the [t+ 1]

mean estimator is numt+1

g2dent+1


cft+1  at+1


which is identical to the lead term on

the left hand side (LHS). Similarly, the second term on the RHS (recall the focus
is on element t, the last element of bat is 0) is

[(I  kt+1Ht+1) bat ] [t+ 1]

=

2
6666664

0
BBBBBB@
I =1t+1

2
6666664

0 0 · · · 0 0

0
...

. . .
...

...
... 0

. . . 0 0
0 · · · 0 g22 g2
0 · · · 0 g2 1 + 2

3
7777775

1
CCCCCCA
bat

3
7777775
[t+ 1]

=


g34numt

g2dent+1
+
g2numt+1

g2dent+1


bmt

=


g34numt + g

2numt+1

g2dent+1


gt1 accrualst.

The last couple of steps involve substitution of bmt for bat [t+ 1] followed by
gt1accrualst for bmt on the right hand side (RHS) The difference equation rela-
tion, numt+1 = g

2dent + g
22numt, implies

g34numt + g
2numt+1

g2dent+1
bmt =

1

dent+1
g2dent bmt

=
1

dent+1
gt2dent accrualst

the second term on the LHS. This completes the induction steps.
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Corollary 13.2. As t becomes large, the weight on current cash flows for the
efficient estimator of the mean of cash flows approaches

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24

and the variance of the estimate approaches

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24
2e.

Proof. The difference equations

dent
numt


= StS1


den0
num0



= StS1

1
0


= Stc

imply

c = S1

den0
num0


=

2
4 g2

1+(1+g2)2+
p
(1+(1+g2)2)24g24
g2

1+(1+g2)2+
p
(1+(1+g2)2)24g24

3
5

Thus, 
dent
numt


= S


t1 0
0 t2


c

=
1q

(1 + (1 + g2) 2)
2  4g24



2
66664

1
2

8>><
>>:

t2


1 +


1 g2


2 +

q
(1 + (1 + g2) 2)

2  4g24


t1


1 +


1 g2


2 

q
(1 + (1 + g2) 2)

2  4g24

9>>=
>>;

g2

t2  

t
1



3
77775

Since 2 is larger than 1, t1 contributes negligibly to

dent
numt


for arbitrarily

large t. Hence,

lim
t!1

numt

g2dent
=

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24
.
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From proposition 13.1, the variance of the estimator for expected cash flow is
numt

g2dent
2e. Since

lim
t!1

numt

g2dent
=

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24
.

the asymptotic variance is

2

1 + (1 g2) 2 +
q
(1 + (1 + g2) 2)

2  4g24
2e.

This completes the asymptotic case.

Proposition 13.2. Let mt = g mt1 + "t,  = D,  = e

, and  = e

µ
. Then,

accrualst1, cft, and yt, collectively, are sufficient statistics for evaluating the
agent with incentive payments given by

Tt wt = 
1

2dent1 + 
2dent



2dentyt + 

2dent1

cft  gt1accrualst1


and variance of payments equal to

V ar[Tt wt] = 
2 dent

2dent1 + 
2dent

2e

where = c(aH)c(aL)
aHaL , and accrualst1 and dent are as defined in proposition

13.1.

Proof. Outline of the proof:

1. Show that the "best" linear contract is equivalent to the BLU estimator of
the agent’s current act rescaled by the agent’s marginal cost of the act.

2. The BLU estimator is written as a recursive least squares exercise (see
Strang [1986], p. 146-148).

3. The proof is completed by induction. That is, the difference equation solu-
tion is shown, by induction, to be equivalent to the recursive least squares
estimator. Again, a key step involves showing that the information matrix
=a and its inverse can be derived in recursive fashion via LDLT decompo-
sition (i.e., D1L1=a = LT ).

"Best" linear contracts. The program associated with the optimal aH -inducing
LEN contract written in certainty equivalent form is

Min
,

 + E

Tw|aH


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subject to

 + E

Tw|aH



r

2
V ar


Tw


 c (aH)  RW (IR)

 + E

Tw|aH



r

2
V ar


Tw


 c (aH)

  + E

Tw|aL



r

2
V ar


Tw


 c (aL) (IC)

As demonstrated in Arya et al [2004], both IR and IC are binding and  equals
the BLU estimator of a based on the history w (the history of cash flows cf and
other contractible information y) rescaled by the agent’s marginal cost of the act
 = c(aH)c(aL)

aHaL
. Since IC is binding,

 + E

Tw|aH



r

2
V ar


Tw




 + E


Tw|aL



r

2
V ar


Tw


= c (aH) c (aL)

E

Tw|aH


 E


Tw|aL


= c (aH) c (aL)

T {E [w|aH ] E [w|aL]} = c (aH) c (aL)

(aH  aL) T~ = c (aH) c (aL)

where

w =

2
666664

cf1 m0  a1
cf2 m0  a2

...
cft m0

yt

3
777775

and ~ is a vector of zeroes except the last two elements are equal to one, and

T~ =
c (aH) c (aL)
aH  aL

.

Notice, the sum of the last two elements of  equals one, T~ = 1, is simply
the unbiasedness condition associated with the variance minimizing estimator of
a based on design matrixHa. Hence, Tw equals the BLU estimator of a rescaled
by , Tt wt = bat. As  is a free variable, IR can always be exactly satisfied by
setting

 = RW 
n
E

Tw|aH



r

2
V ar


Tw


 c (aH)

o
.

Recursive least squares.Ht remains as defined in the proof of proposition 13.1.

Let Ha1 =

2
4  0

1 1
0 

3
5 (a 3 by 2 matrix), Ha2 =

2
4 g  0
0 1 1
0 0 

3
5 (a 3 by 3
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matrix), Hat =

2
4 0 · · · 0 g  0
0 · · · 0 0 1 1
0 · · · 0 0 0 

3
5 (a 3 by t+ 1 matrix with leading

zeroes), ew1 =
2
4 gm0

cf1
y1

3
5, ew2 =

2
4 0
cf2
y2

3
5, and ewt =

2
4 0
cft
yt

3
5. The infor-

mation matrix for a t-period cash flow and other monitoring information history
is

=at = =aat1 +H
T
atHat =

2
66666666664

1 + 2 + g22 g2 0 0 · · · 0

g2 1 + 2 + g22 g2
. . . · · · 0

0 g2
. . . . . . 0

...

0
. . . . . . 1 + 2 + g22 g2 0

... · · · 0 g2 1 + 2 1

0 0 · · · 0 1 1 + 2

3
77777777775

a symmetric tri-diagonal matrix where =aat1 is =at1 (the augmented information
matrix employed to estimate the cash flow mean in proposition 13.1) augmented
with an additional row and column of zeroes (i.e., the information matrix from
proposition 13.1, =t1, is augmented with two columns of zeroes on the right and
two rows of zeroes on the bottom). The recursive least squares estimator is

bat =

baat1 + kat

 ewt Hatbaat1

for t > 1 where baat1 is bt1 (the accruals estimator of mt1 from proposition
13.1) augmented with two zeroes and kat = =1at HT

at. The best linear unbiased
estimate of the current act is the last element in the vector bat and its variance
is the last row-column element of =1at multiplied by 2e. Notice, recursive least
squares applied to the performance evaluation exercise utilizes the information
matrix =aat1 (the information matrix employed in proposition 13.1 augmented
with two trailing rows-columns of zeroes) and estimator baat1 (the accruals esti-
mator of mt1 from proposition 13.1 augmented with the two trailing zeroes).
This accounts for the restriction on the parameters due to past actions already
having been motivated in the past (i.e., past acts are at their equilibrium level a).
Only the current portion of the design matrixHat and the current observations wt
(in place of zt) differ from the setup for accruals (in proposition 13.1).
Difference equations. The difference equations are


dent
numt


=


1 + 2 2

g2 g22

 
dent1
numt1


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with

den0
num0


=


1
0


. The difference equations estimator for the linear in-

centive payments Tw is

Tt wt = 
1

2dent1 + 
2dent


2dentyt + 

2dent1 (cft  g bmt1)


= 
1

2dent1 + 
2dent



2dentyt + 

2dent1

cft  gt1 accrualst1


and the variance of payments is

V ar

Tw


= 2

dent

2dent1 + 
2dent

2e.

Induction steps. Assume

Tt wt = 
1

2dent1 + 
2dent


2dentyt + 

2dent1 (cft  g bmt1)


= 
1

2dent1 + 
2dent



2dentyt + 

2dent1

cft  gt1 accrualst1


= 


bat1 + kat


wt Hatbat1


[t+ 1]

and

V ar

Tt wt


= 2V ar [bat] [t+ 1, t+ 1]

where [t+ 1] ([t+ 1, t+ 1]) refers to element t + 1 (t+ 1, t+ 1) in the vector
(matrix). The above is clearly true for the base case, t = 1 and t = 2. Now, show


1

2dent + 
2dent+1


2dent+1yt+1 + 

2dent (cft+1  g bmt)


= 
1

2dent + 
2dent+1


2dent+1yt+1 + 

2dent

cft+1  gt accrualst


=  [bat + kat+1 ( ewt+1 Hat+1bat )] [t+ 2] .

Recall ewt+1 =
2
4 0
cft+1
yt+1

3
5 and Hat+1 =

2
4 0 · · · 0 g  0
0 · · · 0 0 1 1
0 · · · 0 0 0 

3
5. From

LDLT decomposition of =at+1 (recall LT = D1L1=a where L1 is simply
products of matrices reflecting successive row eliminations - no row exchanges
are involved due to the tri-diagonal structure and D1 is the reciprocal of the
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remaining elements remaining after eliminations) the last row of =1at+1 is

1

2dent + 
2dent+1

2
666664

gt12(t1)den1
...

g2

dent1 + 

2numt1




dent + 

2numt


dent+1

3
777775

T

.49

This immediately identifies the variance associated with the estimator as the last
term in =1at+1 multiplied by the product of the agent’s marginal cost of the act
squared and the variance of cash flows, 2 dent+1

2dent+2dent+1
2e. Hence, the differ-

ence equation and the recursive least squares variance of payments estimators are
equivalent.

Since HT
at+1 ewt+1 =

2
666664

0
...
0

cft+1
cft+1 + yt+1

3
777775 and the difference equation implies

dent+1 =

1 + 2


dent + 

2numt, the lead term on the RHS is

dent+1

2dent + 
2dent+1

(yt+1 + cft+1)
dent + 

2numt

2dent + 
2dent+1

cft+1

=
dent+1

2dent + 
2dent+1

yt+1 
2dent

2dent + 
2dent+1

cft+1

which equals the initial expression on the LHS of the [t+ 2] incentive payments.
Similarly, the bmt = gt1 accrualst term on the RHS (recall the focus is on
element t+ 2) is

[(I  kat+1Hat+1) bat ] [t+ 2]

=

2
666666664

0
BBBBBBBB@
I =1at+1

2
666666664

0 0 · · · 0 0 0

0
...

. . .
...

...
...

... 0 · · · 0 0 0
0 · · · 0 g22 g2 0
0 · · · 0 g2 1 + 2 1

0 · · · 0 0 1 1 + 2

3
777777775

1
CCCCCCCCA
bat

3
777777775
[t+ 2]

= 
g2dent

2dent + 
2dent+1

bmt

= 
gt2dent

2dent + 
2dent+1

accrualst.

49Transposed due to space limitations.
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Combining terms and simplifying produces the result

1

2dent + 
2dent+1


2dent+1yt+1 + 

2dent (cft+1  g bmt)


=
1

2dent + 
2dent+1


2dent+1yt+1 + 

2dent

cft+1  gt accrualst


.

Finally, recall the estimator bat (the last element of bat) rescaled by the agent’s
marginal cost of the act identifies the "best" linear incentive payments

Tt wt = bat
= 

1

2dent1 + 
2dent


2dentyt + 

2dent1 (cft  g bmt1)


= 
1

2dent1 + 
2dent



2dentyt + 

2dent1

cft  gt1 accrualst1


.

This completes the induction steps.

Corollary 13.4. For the benchmark case  = 2eI ( =  = 1) and g = 1,
accruals at time t are an efficient summary of past cash flow history for the cash
flow mean if

[bmt|cf1, ..., cft] = accrualst

=
F2t
F2t+1

(cft  at ) +
F2t1
F2t+1

accrualst1

where Fn = Fn1 + Fn2, F0 = 0, F1 = 1 (the Fibonacci series), and the
sequence is initialized with accruals0 = m0 (common knowledge mean beliefs).
Then,variance of accruals equals V ar [bmt] =

F2t
F2t+1

2e.

Proof. Replace g =  = 1 in proposition 13.1. Hence,
dent
numt


= B


dent1
numt1



reduces to 
dent
numt


=


2 1
1 1

 
dent1
numt1


.

Since 
Fn+1
Fn


=


1 1
1 0

 
Fn
Fn1



and 
Fn+2
Fn+1


=


1 1
1 0

 
1 1
1 0

 
Fn
Fn1


=


2 1
1 1

 
Fn
Fn1


,
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dent = F2t+1, numt = F2t, dent1 = F2t1, and numt1 = F2t2.

For g =  = 1, the above implies

bmt = gt1accrualst

=
1

dent


numt

g2
(cft  at ) + g

t12dent1accrualst1



reduces to
F2t
F2t+1

(cft  at ) +
F2t1
F2t+1

accrualst1

and variance of accruals equals F2t
F2t+1

2e.

Corollary 13.5 For the benchmark case  = 2eI ( =  = 1) and g =
1,accrualst1, cft, and yt are, collectively, sufficient statistics for evaluating the
agent with incentive payments given by

Tt wt = 


F2t+1
L2t

yt +
F2t1
L2t

(cft  accrualst1)


and variance of payments equals 2 F2t+1L2t
2e where accrualst1 is as defined in

corollary 13.4 and Ln = Ln1 + Ln2, L0 = 2, and L1 = 1 (the Lucas series),
and  = c(aH)c(aL)

aHaL
.

Proof. Replace g =  =  = 1 in proposition 13.3. Hence,
dent
numt


= B


dent1
numt1



reduces to 
dent
numt


=


2 1
1 1

 
dent1
numt1


.

Since 
Fn+1
Fn


=


1 1
1 0

 
Fn
Fn1



and 
Fn+2
Fn+1


=


1 1
1 0

 
1 1
1 0

 
Fn
Fn1


=


2 1
1 1

 
Fn
Fn1



dent = F2t+1, numt = F2t, dent1 = F2t1, numt1 = F2t2, and Lt =
Ft+1 + Ft1. For g =  =  = 1, the above implies

Tt wt = 
1

2dent1
2dent


2dentyt + 

2dent1

cft  gt1accrualst1


reduces to




F2t1
L2t

(cft  accrualst1) +
F2t+1
L2t

yt



and variance of payments equals 2 F2t+1L2t
2e.


