
11
Marginal treatment effects

In this chapter, we review policy evaluation and Heckman and Vytlacil’s [2005,
2007a] (HV) strategy for linking marginal treatment effects to other average treat-
ment effects including policy-relevant treatment effects. Recent innovations in the
treatment effects literature including dynamic and general equilibrium consider-
ations are mentioned briefly but in-depth study of these matters is not pursued.
HV’s marginal treatment effects strategy is applied to the regulated report pre-
cision setting introduced in chapter 2, discussed in chapter 10, and continued in
the next chapter. This analysis highlights the relative importance of probability
distribution assignment to unobservables and quality of instruments.

11.1 Policy evaluation and policy invariance
conditions

Heckman and Vytlacil [2007a] discuss causal effects and policy evaluation. Fol-
lowing the lead of Bjorklund and Moffitt [1987], HV base their analysis on mar-
ginal treatment effects. HV’s marginal treatment effects strategy combines the
strengths of the treatment effect approach (simplicity and lesser demands on the
data) and the Cowles Commission’s structural approach (utilize theory to help ex-
trapolate results to a broader range of settings). HV identify three broad classes of
policy evaluation questions.
(P-1) Evaluate the impact of historically experienced and documented policies

on outcomes via counterfactuals. Outcome or welfare evaluations may be objec-
tive (inherently ex post) or subjective (may be ex ante or ex post). P-1 is an inter-
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276 11. Marginal treatment effects

nal validity problem (Campbell and Stanley [1963]) — the problem of identifying
treatment parameter(s) in a given environment.
(P-2) Forecasting the impact of policies implemented in one environment by ex-

trapolating to other environments via counterfactuals. This is the external validity
problem (Campbell and Stanley [1963]).
(P-3) Forecasting the impact of policies never historically experienced to vari-

ous environments via counterfactuals. This is the most ambitious policy evaluation
problem.
The study of policy evaluation frequently draws on some form of policy invari-

ance. Policy invariance allows us to characterize outcomes without fully specify-
ing the structural model including incentives, assignment mechanisms, and choice
rules. The following policy invariance conditions support this relaxation.1

(PI-1) For a given choice of treatment, outcomes are invariant to variations in
incentive schedules or assignment mechanisms. PI-1 is a strong condition. It says
that randomized assignment or threatening with a gun to gain cooperation has
no impact on outcomes for a given treatment choice (see Heckman and Vytlacil
[2007b] for evidence counter to the condition).
(PI-2) The actual mechanism used to assign treatment does not impact out-

comes. This rules out general equilibrium effects (see Abbring and Heckman
[2007]).
(PI-3) Utilities are unaffected by variations in incentive schedules or assignment

mechanisms. This is the analog to (PI-1) but for utilities or subjective evaluations
in place of outcomes. Again, this is a strong condition (see Heckman and Vytlacil
[2007b] for evidence counter to the condition).
(PI-4) The actual mechanism used to assign treatment does not impact utilities.

This is the analog to (PI-2) but for utilities or subjective evaluations in place of
outcomes. Again, this rules out general equilibrium effects.
It’s possible to satisfy (PI-1) and (PI-2) but not (PI-3) and (PI-4) (see Heckman

and Vytlacil [2007b]). Next, we discuss marginal treatment effects and begin the
exploration of how they unify policy evaluation.
Briefly, Heckman and Vytlacil’s [2005] local instrumental variable (LIV) esti-

mator is a more ambitious endeavor than the methods discussed in previous chap-
ters. LIV estimates the marginal treatment effect (MTE) under standard IV condi-
tions. MTE is the treatment effect associated with individuals who are indifferent
between treatment and no treatment. Heckman and Vytlacil identify weighted dis-
tributions (Rao [1986] and Yitzhaki [1996]) that connectMTE to a variety of other
treatment effects including ATE, ATT, ATUT, LATE, and policy-relevant treatment
effects (PRTE).
MTE is a generalization of LATE as it represents the treatment effect for those

individuals who are indifferent between treatment and no treatment.

MTE = E [Y1 ! Y0 | X = x, VD = vD]

1Formal statements regarding policy invariance are provided in Heckman and Vytlacil [2007a].



11.2 Setup 277

Or, the marginal treatment effect can alternatively be defined by a transforma-
tion of unobservable V by UD = FV |X (V ) so that we can work with UD "
Unif [0, 1]

MTE = E [Y1 ! Y0 | X = x, UD = uD]

11.2 Setup

The setup is the same as the previous chapters. We repeat it for convenience.
Suppose the DGP is
outcome equations:

Yj = µj (X) + Vj , j = 0, 1

selection equation:
D! = µD (Z)! VD

observable response:

Y = DY1 + (1!D)Y0
= µ0 (X) + (µ1 (X)! µ0 (X))D + V0 + (V1 ! V0)D

where

D =
1 D! > 0
0 otherwise

and Y1 is (potential) outcome with treatment while Y0 is the outcome without
treatment. The outcomes model is the Neyman-Fisher-Cox-Rubin model of po-
tential outcomes (Neyman [1923], Fisher [1966], Cox ]1958], and Rubin [1974]).
It is also Quandt’s [1972] switching regression model or Roy’s income distribution
model (Roy [1951] or Heckman and Honore [1990]).
The usual exclusion restriction and uniformity applies. That is, if instrument

changes from z to z" then everyone either moves toward or away from treatment.
Again, the treatment effects literature is asymmetric; heterogeneous outcomes are
permitted but homogeneous treatment is required for identification of estimators.
Next, we repeat the generalized Roy model — a useful frame for interpreting
causal effects.

11.3 Generalized Roy model

Roy [1951] introduced an equilibrium model for work selection (hunting or fish-
ing).2 An individual’s selection into hunting or fishing depends on his/her aptitude

2The basic Roy model involves no cost of treatment. The extended Roy model includes only ob-
served cost of treatment. While the generalized Roy model includes both observed and unobserved
cost of treatment (see Heckman and Vytlacil [2007a, 2007b]).
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as well as supply of and demand for product of labor. A modest generalization of
the Roy model is a common framing of self-selection that forms the basis for
assessing treatment effects (Heckman and Robb [1986]).
Based on the DGP above, we identify the constituent pieces of the selection

model.
Net benefit (or utility) from treatment is

D! = µD (Z)! VD
= Y1 ! Y0 ! c (W )! Vc
= µ1 (X)! µ0 (X)! c (W ) + V1 ! V0 ! VC

Gross benefit of treatment is

µ1 (X)! µ0 (X)

Cost associated with treatment is3

c (W ) + VC

Observable cost associated with treatment is

c (W )

Observable net benefit of treatment is

µ1 (X)! µ0 (X)! c (W )

Unobservable net benefit of treatment is

!VD = V1 ! V0 ! VC

where the observables are
!
X Z W

"
, typically Z contains variables not in

X orW andW is the subset of observables that speak to cost of treatment.

11.4 Identification

Marginal treatment effects are defined conditional on the regressors X and unob-
served utility VD

MTE = E [Y1 ! Y0 | X = x, VD = vD]

or transformed unobserved utility UD.

MTE = E [Y1 ! Y0 | X = x, UD = uD]

HV describe the following identifying conditions.

3The model is called the original or basic Roy model if the cost term is omitted. If the cost is
constant (VC = 0 so that cost is the same for everyone) it is called the extended Roy model.
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Condition 11.1 {U0, U1, VD} are independent of Z conditional on X (condi-

tional independence),

Condition 11.2 µD (Z) is a nondegenerate random variable conditional on X
(rank condition),

Condition 11.3 the distribution of VD is continuous,

Condition 11.4 the values of E [|Y0|] and E [|Y1|] are finite (finite means),

Condition 11.5 0 < Pr (D = 1 | X) < 1 (common support).

These are the base conditions forMTE. They are augmented below to facilitate
interpretation.4 Condition 11.7 applies specifically to policy-relevant treatment
effects where p and p" refer to alternative policies.

Condition 11.6 Let X0 denote the counterfactual value of X that would be ob-

served if D is set to 0. X1 is defined analogously. Assume Xd = X for d = 0, 1.
(The XD are invariant to counterfactual manipulations.)

Condition 11.7 The distribution of (Y0,p, Y1,p, VD,p) conditional on Xp = x is
the same as the distribution of(Y0,p! , Y1,p! , VD,p!) conditional onXp" = x (policy
invariance of the distribution).

Under the above conditions,MTE can be estimated by local IV (LIV)

LIV = !E[Y |X=x,P (Z)=p]
!p p=uD

where P (Z) # Pr (D | Z). To see the connection betweenMTE and LIV rewrite
the numerator of LIV

E [Y | X = x, P (Z) = p] = E [Y0 + (Y1 ! Y0)D | X = x, P (Z) = p]

by conditional independence and Bayes’ theorem we have

E [Y0 | X = x] + E [Y1 ! Y0 | X = x,D = 1]Pr (D = 1 | Z = z)

transforming VD such that UD is distributed uniform[0, 1] produces

E [Y0 | X = x] +

# p

0

E [Y1 ! Y0 | X = x, UD = uD] duD

Now, the partial derivative of this expression with respect to p evaluated at p = uD
is

!E[Y |X=x,P (Z)=p]
!p p=uD

= E [Y1 ! Y0 | X = x, UD = uD]

4The conditions remain largely the same for MTE analysis of alternative settings including multi-
level discrete treatment, continuous treatment, and discrete outcomes. Modifications are noted in the
discussions of each.
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Hence, LIV identifiesMTE.
With homogeneous response, MTE is constant and equal to ATE, ATT, and

ATUT. With unobservable heterogeneity, MTE is typically a nonlinear function
of uD (where uD continues to be distributed uniform[0, 1]). The intuition for this
is individuals who are less likely to accept treatment require a larger potential gain
from treatment to induce treatment selection than individuals who are more likely
to participate.

11.5 MTE connections to other treatment effects

Heckman and Vytlacil show that MTE can be connected to other treatment ef-
fects (TE) by weighted distributions hTE (·) (Rao [1986] and Yitzhaki [1996]).5

Broadly speaking and with full support

TE (x) =

# 1

0

MTE (x, uD)hTE (x, uD) duD

and integrating out x yields the population moment

Average (TE) =

# 1

0

TE (x) dF (x)

If full support exists, then the weight distribution for the average treatment effect
is

hATE (x, uD) = 1

Let f be the density function of observed utility W̃ = µD (Z), then the weighted
distribution to recover the treatment effect on the treated fromMTE is

hTT (x, uD) =

$# 1

uD

f (p | X = x) dp

%
1

E [p | X = x]

=
Pr
&
P
&
W̃
'
> uD | X = x

'

( 1
0
Pr
&
P
&
W̃
'
> uD | X = x

'
dud

where P
&
W̃
'
# Pr

&
D = 1 | W̃ = w

'
. Similarly, the weighted distribution to

recover the treatment effect on the untreated fromMTE is

hTUT (x, uD) =

$# uD

0

f (p | X = x) dp

%
1

E [1! p | X = x]

=
Pr
&
P
&
W̃
'
$ uD | X = x

'

( 1
0
Pr
&
P
&
W̃
'
$ uD | X = x

'
dud

5Weight functions are nonnegative and integrate to one (like density functions).
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Figure 11.1 depicts MTE (!MTE (uD)) and weighted distributions for treatment
on treated hTT (uD) and treatment on the untreated hTUT (uD) with regressors
suppressed.

Figure 11.1:MTE and weight functions for other treatment effects

Applied work determines the weights by estimating

Pr
&
P
&
W̃
'
> uD | X = x

'

SincePr
&
P
&
W̃
'
> uD | X = x

'
= Pr

&
I
)
P
&
W̃
'
> uD

*
= 1 | X = x

'
where

I [·] is an indicator function, we can use our selection or choice model (say, probit)
to estimate

Pr
&
I
)
P
&
W̃
'
> uD

*
= 1 | X = x

'

for each value of uD. As the weighted distributions integrate to one, we use their
sum to determine the normalizing constant (the denominator). The analogous idea
applies to hTUT (x, uD).
However, it is rare that full support is satisfied as this implies both treated and

untreated samples would be evidenced at all probability levels for some model
of treatment (e.g., probit). Often, limited support means the best we can do is
estimate a local average treatment effect.

LATE (x) =
1

u" ! u

# u!

u

MTE (x, uD) duD

In the limit as the interval becomes arbitrarily small LATE converges toMTE.
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11.5.1 Policy-relevant treatment effects vs. policy effects

What is the average gross gain from treatment following policy intervention?
This is a common question posed in the study of accounting. Given uniformity
(one way flows into or away from participation in response to a change in instru-
ment) and policy invariance, IV can identify the average treatment effect for pol-
icy a compared with policy a", that is, a policy-relevant treatment effect (PRTE).
Policy invariance means the policy impacts the likelihood of treatment but not
the potential outcomes (that is, the distributions of {y1a, y0a, VDa | Xa = x} and
{y1a! , y0a! , VDa! | Xa! = x} are equal).
The policy-relevant treatment effect is

PRTE = E [Y | X = x, a]! E [Y | X = x, a"]

=

# 1

0

MTE (x, uD)
!
FP (a!)|X (uD | x)! FP (a)|X (uD | x)

"
duD

where FP (a)|X (uD | x) is the distribution of P , the probability of treatment con-
ditional on X = x, and the weight function is hPRTE (x, uD).6

hPRTE (x, uD) =
!
FP (a!)|X (uD | x)! FP (a)|X (uD | x)

"

Intuition for the above connection can be seen as follows, where conditioning on
X is implicit.

E [Y | a] =

# 1

0

E [Y | P (Z) = p] dFP (a) (p)

=

# 1

0

+ ( 1
0
%[0,p] (uD)E (Y1 | U = uD)

+%
(p,1]

(uD)E (Y0 | U = u) duD

,
dFP (a) (p)

=

# 1

0

+ !
1! FP (a) (uD)

"
E [Y1 | U = uD]

+FP (a) (uD)E [Y0 | U = uD]

,
duD

6Heckman and Vytlacil [2005] also identify the per capita weight for policy-relevant treatment as

Pr
!
P
!
W̃
"
! uD | X = x, a!

"
" Pr

!
P
!
W̃
"
! uD | X = x, a

"

# 1
0 Pr

!
P
!
W̃
"
! uD | X = x, a!

"
dud "

# 1
0 Pr

!
P
!
W̃
"
! uD | X = x, a

"
dud
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where %A (uD) is an indicator function for the event uD & A. Hence, comparing
policy a to a", we have

E [Y | X = x, a]! E [Y | X = x, a"]

=

# 1

0

+ !
1! FP (a) (uD)

"
E [Y1 | U = uD]

+FP (a) (uD)E [Y0 | U = uD]

,
duD

!
# 1

0

+ !
1! FP (a!) (uD)

"
E [Y1 | U = uD]

+FP (a!) (uD)E [Y0 | U = uD]

,
duD

=

# 1

0

!
FP (a!) (uD)! FP (a) (uD)

"
E [Y1 ! Y0 | U = uD] duD

=

# 1

0

!
FP (a!) (uD)! FP (a) (uD)

"
MTE (U = uD) duD

On the other hand, we might be interested in the policy effect or net effect
of a policy change rather than the treatment effect. In which case it is perfectly
sensible to estimate the net impact with some individuals leaving and some en-
tering, this is a policy effect not a treatment effect. The policy effect parameter is
E [Y | Za! = z

"]! E [Y | Za = z]

= E [Y1 ! Y0 | D (z") > D (z)] Pr (D (z") > D (z))
!E [Y1 ! Y0 | D (z") $ D (z)] Pr (D (z") $ D (z))

Notice the net impact may be positive, negative, or zero as two way flows are
allowed (see Heckman and Vytlacil [2006]).

11.5.2 Linear IV weights

As mentioned earlier, HV argue that linear IV produces a complex weighting of
effects that can be difficult to interpret and depends on the instruments chosen.
This argument is summarized by their linear IV weight distribution. Let J (Z) be
any function of Z such that Cov [J (Z) , D] '= 0. The population analog of the IV
estimator is Cov[J(Z),Y ]Cov[J(Z),D] . Consider the numerator.

Cov [J (Z) , Y ] = E [(J (Z)! E [J (Z)])Y ]
= E [(J (Z)! E [J (Z)]) (Y0 +D (Y1 ! Y0))]
= E [(J (Z)! E [J (Z)])D (Y1 ! Y0)]
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Define J̃ (Z) = J (Z)! E [J (Z)]. Then, Cov [J (Z) , Y ]

= E
)
J̃ (Z)D (Y1 ! Y0)

*

= E
)
J̃ (Z) I [UD $ P (Z)] (Y1 ! Y0)

*

= E
)
J̃ (Z) I [UD $ P (Z)]E [(Y1 ! Y0) | Z, VD]

*

= E
)
J̃ (Z) I [UD $ P (Z)]E [(Y1 ! Y0) | VD]

*

= EVD

)
EZ

)
J̃ (Z) I [UD $ P (Z)] | UD

*
E [(Y1 ! Y0) | UD]

*

=

# 1

0

E
)
J̃ (Z) | P (Z) ( uD

*
Pr (P (Z) ( uD)

)E [(Y1 ! Y0) | UD = uD] duD

=

# 1

0

!MTE (x, uD)E
)
J̃ (Z) | P (Z) ( uD

*
Pr (P (Z) ( uD) duD

where P (Z) is propensity score utilized as an instrument.
For the denominator we have, by iterated expectations,

Cov [J (Z) , D] = Cov [J (Z) , P (Z)]

Hence,

hIV (x, uD) =
E
)
J̃ (Z) | P (Z) ( uD

*
Pr (P (Z) ( uD)

Cov [J (Z) , P (Z)]

where Cov [J (Z) , P (Z)] '= 0. Heckman, Urzua, and Vytlacil [2006] illustrate
the sensitivity of treatment effects identified via linear IV to choice of instruments.

11.5.3 OLS weights

It’s instructive to identify the effect exogenous dummy variable OLS estimates
as a function of MTE. While not a true weighted distribution (as the weights
can be negative and don’t necessarily sum to one), for consistency we’ll write
hOLS (x, uD) =

1 + E[Y1|x,uD]hATT (x,uD)#E[v0|x,uD]hATUT (x,uD)
MTE(x,uD)

MTE (x, uD) '= 0

0 otherwise
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Table 11.1: Comparison of identification conditions for common econometric
strategies (adapted from Heckman and Navarro-Lozano’s [2004] table 3)

Method Exclusion required?
Separability of observables

and unobservables
in outcome equations?

Matching no no
Control
function

yes,
for nonparametric identification

conventional,
but not required

IV (linear) yes yes
LIV yes no

Method Functional form required?
Marginal = Average
(givenX,Z)?

Matching no yes
Control
function

conventional,
but not required

no

IV (linear) no
no

(yes, in standard case)
LIV no no

Method
Key identification conditions for means

(assuming separability)

Matching
E [U1 | X,D = 1, Z] = E [U1 | X,Z]
E [U0 | X,D = 1, Z] = E [U0 | X,Z]

Control
function

E [U0 | X,D = 1, Z]
and E [U1 | X,D = 1, Z]

can be varied independently of µ0 (X) and µ1 (X) , respectively,
and intercepts can be identified through limit arguments
(identification at infinity), or symmetry assumptions

IV (linear)

E [U0 +D (U1 ! U0) | X,Z] = E [U0 +D (U1 ! U0) | X]
(ATE)

E [U0 +D (U1 ! U0)! E [U0 +D (U1 ! U0) | X] | P (W ) , X]
= E [U0 +D (U1 ! U0)! E [U0 +D (U1 ! U0) | X] | X]

(ATT)
LIV (U0, U1, UD) independent of Z | X

Method
Key identification conditions

for propensity score
Matching 0 < Pr (D = 1 | Z,X) < 1

Control
function

0 " Pr (D = 1 | Z,X) " 1
is a nontrivial function of Z for eachX

IV (linear) not needed

LIV

0 < Pr (D = 1 | X) < 1
0 " Pr (D = 1 | Z,X) " 1

is a nontrivial function of Z for eachX
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11.6 Comparison of identification strategies

Following Heckman and Navarro-Lozano [2004], we compare and report in ta-
ble 11.1 treatment effect identification strategies for four common econometric
approaches: matching (especially, propensity score matching), control functions
(selection models), conventional (linear) instrumental variables (IV), and local in-
strumental variables (LIV).
All methods define treatment parameters on common support — the intersec-

tion of the supports of X givenD = 1 and X givenD = 0, that is,

Support (X | D = 1) * Support (X | D = 0)

LIV employs common support of the propensity score — overlaps in P (X,Z) for
D = 0 and D = 1. Matching breaks down if there exists an explanatory variable
that serves as a perfect classifier. On the other hand, control functions exploit limit
arguments for identification,7 hence, avoiding the perfect classifier problem. That
is, identification is secured when P (X,Z) = 1 for some Z = z but there exists
P (X,Z) < 1 for someZ = z". Similarly, when P (W ) = 0, whereW = (X,Z),
for some Z = z there exists P (X,Z) > 0 for some Z = z"".

11.7 LIV estimation

We’ve laid the groundwork for the potential of marginal treatment effects to ad-
dress various treatment effects in the face of unobserved heterogeneity, it’s time
to discuss estimation. Earlier, we claimed LIV can estimate MTE

!E[Y |X=x,P (Z)=p]
!p p=uD

= E [Y1 ! Y0 | X = x, UD = uD]

For the linear separable model we have

Y1 = ! + "+X#1 + V1

and
Y0 = ! +X#0 + V0

Then,

E [Y | X = x, P (Z) = p] = X#0 +X (#1 ! #0) Pr (Z) + $ (p)

where

$ (p) = "Pr (Z)+E [v0 | Pr (Z) = p]+E [v1 ! v0 | D = 1,Pr (Z) = p] Pr (Z)

Now, LIV simplifies to

LIV = X (#1 ! #0) +
!"(p)
!p p=uD

7This is often called "identification at infinity."
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Since MTE is based on the partial derivative of expected outcome with respect
to p

%

%p
E [Y | X = x, P (Z) = p] = X (#1 ! #0) +

%$ (p)

%p
,

the objective is to estimate (#1 ! #0) and the derivative of $ (p). Heckman, Urzua,
and Vytlacil’s [2006] local IV estimation strategy employs a relaxed distribu-
tional assignment based on the data and accommodates unobservable heterogene-
ity. LIV employs nonparametric (local linear kernel density; see chapter 6) regres-
sion methods.
LIV Estimation proceeds as follows:
Step 1: Estimate the propensity score, P (Z), via probit, nonparametric discrete

choice, etc.
Step 2: Estimate #0 and (#1 ! #0) by employing a nonparametric version of

FWL (double residual regression). This involves a local linear regression (LLR) of
each regressor inX andX +P (Z) onto P (Z). LLR forXk (the kth regressor) is
{&0k (p) , &1k (p)} =

argmin
{#0(p),#1(p)}

-
.

/

n0

j=1

(Xk (j)! &0 ! &1 (P (Zj)! p))
2
K

+
P (Zj)! p

h

,12

3

where K (W ) is a (Gaussian, biweight, or Epanechnikov) kernel evaluated atW .
The bandwidth h is estimated by leave-one out generalized cross-validation based
on the nonparametric regression ofXk (j) onto (&0k + &1kp).
For each regressor in X and X + P (Z) and for the response variable y esti-

mate the residuals from LLR. Denote the matrix of residuals from the regressors
(ordered with X followed byX + P (Z)) as eX and the residuals from Y , eY .
Step 3: Estimate [#0,#1 ! #0] from a no-intercept linear regression of eY onto

eX . That is,
)
4#0, !#1 ! #0

*T
=
!
eTXeX

"#1
eTXeY .

Step 4: For E [Y | X = x, P (Z) = p], we’ve effectively estimated #0Xi +
(#1 ! #0)Xi + P (Zi). What remains is to estimate the derivative of $ (p). We
complete nonparametric FWL by defining the restricted response as follows.

Ỹi = Yi !4#0Xi !
&
!#1 ! #0

'
Xi + P (Zi)

The intuition for utilizing the restricted response is as follows. In the textbook
linear model case

Y = X# + Z' + (

FWL produces
E [Y | X,Z] = PZY + (I ! PZ)Xb

where b is theOLS estimator for # and PZ is the projection matrixZ(ZTZ)#1ZT .
Rewriting we can identify the estimator for ', g, from

E [Y | X,Z] = Xb+ PZ (Y !Xb) = Xb+ Zg
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Hence, g =
5
ZTZ

6#1
ZT (Y !Xb). That is, g is estimated from a regression

of the restricted response (Y !Xb) onto the regressor Z. LIV employs the non-
parametric analog.

Step 5: Estimate &1 (p) =
!"(p)
!p by LLR of Yi!4#0Xi!

&
!#1 ! #0

'
Xi+P (Zi)

onto P (Zi) for each observation i in the set of overlaps. The set of overlaps is the
region for whichMTE is identified — the subset of common support of P (Z) for
D = 1 and D = 0.
Step 6: The LIV estimator of MTE(x, uD) is

&
!#1 ! #0

'
X +!&1 (p).

MTE depends on the propensity score p as well as X . In the homogeneous
response setting, MTE is constant and MTE = ATE = ATT = ATUT .
While in the heterogeneous response setting, MTE is nonlinear in p.

11.8 Discrete outcomes

Aakvik, Heckman, and Vytlacil [2005] (AHV) describe an analogous MTE ap-
proach for the discrete outcomes case. The setup is analogous to the continuous
case discussed above except the following modifications are made to the potential
outcomes model.

Y1 = µ1 (X,U1)

Y0 = µ0 (X,U0)

A linear latent index is assumed to generate discrete outcomes

µj (X,Uj) = I
!
X#j ( Uj

"

AHV describe the following identifying conditions.

Condition 11.8 (U0, VD) and (U1, VD) are independent of (Z,X) (conditional
independence),

Condition 11.9 µD (Z) is a nondegenerate random variable conditional on X
(rank condition),

Condition 11.10 (V0, VD) and (V1, VD) are continuous,

Condition 11.11 the values ofE [|Y0|] andE [|Y1|] are finite (finite means is triv-
ially satisfied for discrete outcomes),

Condition 11.12 0 < Pr (D = 1 | X) < 1.
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Mean treatment parameters for dichotomous outcomes are

MTE (x, u) = Pr (Y1 = 1 | X = x, UD = u)

!Pr (Y0 = 1 | X = x, UD = u)

ATE (x) = Pr (Y1 = 1 | X = x)! Pr (Y0 = 1 | X = x)

ATT (x,D = 1) = Pr (Y1 = 1 | X = x,D = 1)

!Pr (Y0 = 1 | X = x,D = 1)

ATUT (x,D = 0) = Pr (Y1 = 1 | X = x,D = 0)

!Pr (Y0 = 1 | X = x,D = 0)

AHV also discuss and empirically estimate treatment effect distributions utilizing
a (single) factor-structure strategy for model unobservables.8

11.8.1 Multilevel discrete and continuous endogenous treatment

To this point, our treatment effects discussion has been limited to binary treatment.
In this section, we’ll briefly discuss extensions to the multilevel discrete (ordered
and unordered) case (Heckman and Vytlacil [2007b]) and continuous treatment
case (Florens, Heckman, Meghir, and Vytlacil [2003] and Heckman and Vytlacil
[2007b]). Identification conditions are similar for all cases of multinomial treat-
ment.
FHMV and HV discuss conditions under which control function, IV, and LIV

equivalently identify ATE via the partial derivative of the outcome equation with
respect to (continuous) treatment. This is essentially the homogeneous response
case. In the heterogenous response case, ATE can be identified by a control func-
tion or LIV but under different conditions. LIV allows relaxation of the standard
single index (uniformity) assumption. Refer to FHMV for details. Next, we re-
turn to HV’sMTE framework and briefly discuss how it applies to ordered choice,
unordered choice, and continuous treatment.

Ordered choice

Consider an ordered choice model where there are S choices. Potential outcomes
are

Ys = µs (X,Us) for s = 1, . . . , S

Observed choices are

Ds = 1 [Cs#1 (Ws#1) < µD (Z)! VD < Cs (Ws)]

for latent index U = µD (Z) ! VD and cutoffs Cs (Ws) where Z shift the index
generally andWs affect s-specific transitions. Intuitively, one needs an instrument

8Carneiro, Hansen, and Heckman [2003] extend this by analyzing panel data, allowing for multiple
factors, and more general choice processes.



290 11. Marginal treatment effects

(or source of variation) for each transition. Identifying conditions are similar to
those above.

Condition 11.13 (Us, VD) are independent of (Z,W ) conditional on X for s =
1, . . . , S (conditional independence),

Condition 11.14 µD (Z) is a nondegenerate random variable conditional on (X,W )
(rank condition),

Condition 11.15 the distribution of VD is continuous,

Condition 11.16 the values of E [|Ys|] are finite for s = 1, . . . , S (finite means),

Condition 11.17 0 < Pr (Ds = 1 | X) < 1 for s = 1, . . . , S (in large samples,
there are some individuals in each treatment state).

Condition 11.18 For s = 1, . . . , S ! 1, the distribution of Cs (Ws) conditional
on (X,Z) and the other Cj (Wj), j = 1, . . . S, j '= s, is nondegenerate and
continuous.

The transition-specificMTE for the transition from s to s+ 1 is

!
MTE
s,s+1 (x, v) = E [Ys+1 ! Ys | X = x, VD = v] for s = 1, . . . , S ! 1

Unordered choice

The parallel conditions for evaluating causal effects in multilevel unordered dis-
crete treatment models are:

Condition 11.19 (Us, VD) are independent of Z conditional onX for s = 1, . . . ,
S (conditional independence),

Condition 11.20 for each Zj there exists at least one element Z
[j] that is not an

element of Zk, j '= k, and such that the distribution of µD (Z) conditional on5
X,Z [#j]

6
is not degenerate,

or

Condition 11.21 for each Zj there exists at least one element Z
[j] that is not an

element of Zk, j '= k, and such that the distribution of µD (Z) conditional on5
X,Z [#j]

6
is continuous.

Condition 11.22 the distribution of VD is continuous,

Condition 11.23 the values of E [|Ys|] are finite for s = 1, . . . , S (finite means),

Condition 11.24 0 < Pr (Ds = 1 | X) < 1 for s = 1, . . . , S (in large samples,
there are some individuals in each treatment state).

The treatment effect is Yj ! Yk where j '= k. And regime j can be compared
with the best alternative, say k, or other variations.
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Continuous treatment

Continue with our common setup except assume outcome Yd is continuous in d.
This implies that for d and d" close so are Yd and Yd! . The average treatment effect
can be defined as

ATEd (x) = E

$
%

%d
Yd | X = x

%

The average treatment effect on treated is

ATTd (x) = E

$
%

%d1
Yd1 | D = d2, X = x

%
|
d=d1=d2

And the marginal treatment effect is

MTEd (x, u) = E

$
%

%d
Yd | X = x, UD = u

%

See Florens, Heckman, Meghir, and Vytlacil [2003] and Heckman and Vytlacil
[2007b, pp.5021-5026] for additional details regarding semiparametric identifica-
tion of treatment effects.

11.9 Distributions of treatment effects

A limitation of the discussion to this juncture is we have focused on popula-
tion means of treatment effects. This prohibits discussion of potentially important
properties such as the proportion of individuals who benefit or who suffer from
treatment.
Abbring and Heckman [2007] discuss utilization of factor models to identify

the joint distribution of outcomes (including counterfactual distributions) and ac-
cordingly the distribution of treatment effects Y1!Y0. Factor models are a type of
replacement function (Heckman and Robb [1986]) where conditional on the fac-
tors, outcomes and choice equations are independent. That is, we rely on a type of
conditional independence for identification. A simple one-factor model illustrates.
Let ) be a scalar factor that produces dependence amongst the unobservables (un-
observables are assumed to be independent of (X,Z)). LetM be a proxy measure
for ) whereM = µM (X) + "M) + (M

V0 = "0) + (0

V1 = "1) + (1

VD = "D) + (D

(0, (1, (D, (M are mutually independent and independent of ), all with mean zero.
To fix the scale of the unobserved factor, normalize one coefficient (loading) to,
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say, "M = 1. The key is to exploit the notion that all of the dependence arises
from ).

Cov [Y0,M | X,Z] = "0"M*
2
$

Cov [Y1,M | X,Z] = "1"M*
2
$

Cov [Y0, D
! | X,Z] = "0

"D

*UD
*2$

Cov [Y1, D
! | X,Z] = "1

"D

*UD
*2$

Cov [D!,M | X,Z] =
"D

*UD
"M*

2
$

From the ratio of Cov [Y1, D! | X,Z] to Cov [D!,M | X,Z], we find "1 ("M =

1 by normalization). From Cov[Y1,D
"|X,Z]

Cov[Y0,D"|X,Z] =
%1
%0
, we determine "0. Finally, from

either Cov [Y0,M | X,Z] or Cov [Y1,M | X,Z] we determine scale *2$. Since
Cov [Y0, Y1 | X,Z] = "0"1*

2
$, the joint distribution of objective outcomes is

identified.
See Abbring and Heckman [2007] for additional details, including use of prox-

ies, panel data and multiple factors for identification of joint distributions of sub-
jective outcomes, and references.

11.10 Dynamic timing of treatment

The foregoing discussion highlights one time (now or never) static analysis of
the choice of treatment. In some settings it’s important to consider the impact
of acquisition of information on the option value of treatment. It is important to
distinguish what information is available to decision makers and when and what
information is available to the analyst. Distinctions between ex ante and ex post
impact and subjective versus objective gains to treatment are brought to the fore.
Policy invariance (P-1 through P-4) as well as the distinction between the eval-

uation problem and the selection problem lay the foundation for identification.
The evaluation problem is one where we observe the individual in one treatment
state but wish to determine the individual’s outcome in another state. The selection
problem is one where the distribution of outcomes for an individual we observe
in a given state is not the same as the marginal outcome distribution we would
observe if the individual is randomly assigned to the state. Policy invariance sim-
plifies the dynamic evaluation problem to (a) identifying the dynamic assignment
of treatments under the policy, and (b) identifying dynamic treatment effects on
individual outcomes.
Dynamic treatment effect analysis typically takes the form of a duration model

(or time to treatment model; see Heckman and Singer [1986] for an early and ex-
tensive review of the problem). A variety of conditional independence, matching,
or dynamic panel data analyses supply identification conditions. Discrete-time and
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continuous-time as well as reduced form and structural approaches have been pro-
posed. Abbring and Heckman [2007] summarize this work, and provide additional
details and references.

11.11 General equilibrium effects

Policy invariance pervades the previous discussion. Sometimes policies or pro-
grams to be evaluated are so far reaching to invalidate policy invariance. Inter-
actions among individuals mediated by markets can be an important behavioral
consideration that invalidates the partial equilibrium restrictions discussed above
and mandates general equilibrium considerations (for example, changing prices
and/or supply of inputs as a result of policy intervention). As an example, Heck-
man, Lochner, and Tabor [1998a, 1998b, 1998c] report that static treatment effects
overstate the impact of college tuition subsidy on future wages by ten times com-
pared to their general equilibrium analysis. See Abbring and Heckman [2007] for
a review of the analysis of general equilibrium effects.
In any social setting, policy invariance conditions PI-2 and PI-4 are very strong.

They effectively claim that untreated individuals are unaffected by who does re-
ceive treatment. Relaxation of invariance conditions or entertainment of general
equilibrium effects is troublesome for standard approaches like difference - in -
difference estimators as the "control group" is affected by policy interventions but
a difference-in-difference estimator fails to identify the impact. Further, in stark
contrast to conventional uniformity conditions of microeconometric treatment ef-
fect analysis, general equilibrium analysis must accommodate two way flows.

11.12 Regulated report precision example

LIV estimation of marginal treatment effects is illustrated for the regulated report
precision example from chapter 10. We don’t repeat the setup here but rather refer
the reader to chapters 2 and 10. Bayesian data augmentation and analysis of mar-
ginal treatment effects are discussed and illustrated for regulated report precision
in chapter 12.

11.12.1 Apparent nonnormality and MTE

We explore the impact of apparent nonnormality on the analysis of report pre-
cision treatment effects. In our simulation, "d is observed by the owner prior to
selecting report precision, "Ld is drawn from an exponential distribution with rate
1
0.02 (reciprocal of the mean), "

H
d is drawn from an exponential distribution with

rate 1
0.04 , " is drawn from an exponential distribution with rate 1

0.03 and ' is
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drawn from an exponential distribution with rate 15 .
9 This means the unobservable

(by the analyst) portion of the choice equation is apparently nonnormal. Setting
parameters are summarized below.

Stochastic parameters
"Ld " exp

5
1
0.02

6

"Hd " exp
5

1
0.04

6

" " exp
5

1
0.03

6

' " exp
5
1
5

6

#L " N (7, 1)

#H " N (7, 1)

First, we report benchmark OLS results and results from IV strategies developed
in chapter 10. Then, we apply LIV to identify MTE-estimated average treatment
effects.

OLS results

Benchmark OLS simulation results are reported in table 11.2 and sample statistics
for average treatment effects in table 11.3. Although there is little difference be-
tween ATE and OLS, OLS estimates of other average treatment effects are poor,
as expected. Further, OLS cannot detect outcome heterogeneity. IV strategies may
be more effective.

Ordinate IV control model

The ordinate control function regression is

E [Y | s,D,+] = #0 + #1 (s! s) + #2D (s! s) + #3+ (Z)) + #4D

and is estimated via two stage IV where instruments

{,, (s! s) ,m (s! s) ,+ (Z)) ,m}

are employed and

m = Pr
5
D = 1 | Z =

!
, w1 w2

"6

is estimated via probit. The coefficient on D, #4, estimates ATE. Simulation re-
sults are reported in table 11.4. Although, on average, the rank ordering of ATT

9Probability as logic implies that if we only know the mean and support is nonnegative, then we
conclude !d has an exponential distribution. Similar reasoning implies knowledge of the variance
leads to a Gaussian distribution (see Jaynes [2003] and chapter 13).
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Table 11.2: Continuous report precision but observed binary OLS parameter
estimates for apparently nonnormal DGP

statistic #0 #1 #2
mean 635.0 0.523 !.006
median 635.0 0.526 !0.066
std.dev. 1.672 0.105 0.148
minimum 630.1 0.226 !0.469
maximum 639.6 0.744 0.406

statistic #3 (estATE) estATT estATUT
mean 4.217 4.244 4.192
median 4.009 4.020 4.034
std.dev. 2.184 2.183 2.187
minimum !1.905 !1.887 !1.952
maximum 10.25 10.37 10.13
E [Y | s,D] = #0 + #1 (s! s) + #2D (s! s) + #3D

Table 11.3: Continuous report precision but observed binary average treatment
effect sample statistics for apparently nonnormal DGP

statistic ATE ATT ATUT
mean !1.053 62.04 !60.43
median !1.012 62.12 !60.44
std.dev. 1.800 1.678 1.519
minimum !6.007 58.16 !64.54
maximum 3.787 65.53 !56.94

Table 11.4: Continuous report precision but observed binary ordinate control IV
parameter estimates for apparently nonnormal DGP

statistic #0 #1 #2 #3
mean 805.7 !2.879 5.845 54.71
median 765.9 !2.889 5.780 153.3
std.dev. 469.8 1.100 1.918 1373
minimum !482.7 !5.282 0.104 !3864
maximum 2135 0.537 10.25 3772

statistic #4 (estATE) estATT estATUT
mean !391.4 !369.6 !411.7
median !397.9 !336.5 !430.7
std.dev. 164.5 390.4 671.2
minimum !787.4 !1456 !2190
maximum 130.9 716.0 1554
E [Y | s,D,+] = #0 + #1 (s! s) + #2D (s! s) + #3+ (Z)) + #4D
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Table 11.5: Continuous report precision but observed binary inverse Mills IV
parameter estimates for apparently nonnormal DGP

statistic #0 #1 #2 #3 #4
mean 636.7 0.525 0.468 2.074 0.273
median 636.1 0.533 0.467 0.610 !4.938
std.dev. 30.61 0.114 0.114 39.74 41.53
minimum 549.2 0.182 0.108 !113.5 !118.4
maximum 724.4 0.809 0.761 116.0 121.4

statistic #5 (estATE) estATT estATUT
mean 2.168 0.687 3.555
median 5.056 0.439 12.26
std.dev. 48.44 63.22 66.16
minimum !173.4 !181.4 !192.9
maximum 117.8 182.6 190.5

E [Y | s,D,-] = #0 + #1 (1!D) (s! s) + #2D (s! s)
+#3 (1!D)-

H + #4D-
L + #5D

and ATUT is consistent with the sample statistics,.the ordinate control function
treatment effect estimates are inconsistent (biased downward) and extremely vari-
able, In other words, the evidence suggests nonnormality renders the utility of a
normality-based ordinate control function approach suspect.

Inverse-Mills IV model

Heckman’s inverse-Mills ratio regression is

E [Y | s,D,-] = #0 + #1 (1!D) (s! s) + #2D (s! s)
+#3 (1!D)-

H + #4D-
L + #5D

where s is the sample average of s, -H = ! &(Z$)
1#!(Z$) , -

L = &(Z$)
!(Z$) , and )

is the estimated parameters from a probit regression of precision choice D on
Z =

!
, w1 w2

"
(, is a vector of ones). The coefficient on D, #5, is the

estimate of the average treatment effect, ATE. Simulation results including esti-
mated average treatment effects on treated (estATT) and untreated (estATUT) are
reported in table 11.5. The inverse-Mills estimates of the treatment effects are
inconsistent and sufficiently variable that we may not detect nonzero treatment ef-
fects — though estimated treated effects are not as variable as those estimated by
the ordinate control IV model. Further, the inverse-Mills results suggest greater
homogeneity (all treatment effects are negative, on average) which suggests we
likely would be unable to identify outcome heterogeneity based on this control
function strategy.

MTE estimates via LIV

Next, we employ Heckman’s MTE approach for estimating the treatment effects
via a semi-parametric local instrumental variable estimator (LIV). Our LIV semi-
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Table 11.6: Continuous report precision but observed binary LIV parameter
estimates for apparently nonnormal DGP

statistic #1 #2 estATE estATT estATUT
mean 1.178 !1.390 17.98 14.73 25.79
std.dev. 0.496 1.009 23.54 26.11 38.08
minimum 0.271 !3.517 !27.63 !32.86 !55.07
maximum 2.213 0.439 64.67 69.51 94.19

E [Y | s,D, &1 (p)] = #1 (s! s) + #2D (s! s) + &1 (p)

parametric approach only allows us to recover estimates from the outcome equa-
tions for #1 and #2 where the reference regression is

E [Y | s,D, &1 (p)] = #1 (s! s) + #2D (s! s) + &1 (p)

We employ semi-parametric methods to estimate the outcome equation. Estimated
parameters and treatment effects based on bootstrapped semi-parametric weighted
MTE are in table 11.6.10 While the MTE results may more closely approximate
the sample statistics than their parametric counterpart IV estimators, their high
variance and apparent bias compromises their utility. Could we reliably detect
endogeneity or heterogeneity? Perhaps — however the ordering of the estimated
treatment effects doesn’t correspond well with sample statistics for the average
treatment effects.
Are these results due to nonnormality of the unobservable features of the se-

lection equation? Perhaps, but a closer look suggests that our original thinking
applied to this DGP is misguided. While expected utility associated with low (or
high) inverse report precision equilibrium strategies are distinctly nonnormal, se-
lection involves their relative ranking or, in other words, the unobservable of in-
terest comes from the difference in unobservables. Remarkably, their difference
(VD) is not distinguishable from Gaussian draws (based on descriptive statistics,
plots, etc.).
Then, what is the explanation? It is partially explained by the analyst observ-

ing binary choice when there is a multiplicity of inverse report precision choices.
However, we observed this in an earlier case (see chapter 10) with a lesser impact
than demonstrated here. Rather, the feature that stands out is the quality of the
instruments. The same instruments are employed in this "nonnormal" case as pre-
viously employed but, apparently, are much weaker instruments in this allegedly
nonnormal setting. In table 11.7 we report the analogous sample correlations to
those reported in chapter 10 for Gaussian draws. Correlations between the instru-
ments, w1 and w2, and treatment, D, are decidedly smaller than the examples
reported in chapter 10. Further, " and ' offer little help.

10Unlike other simulations which are developed within R, these results are produced using Heck-
man, Urzua, and Vytlacil’sMTE program. Reported results employ a probit selection equation. Similar
results obtain when either a linear probability or nonparametric regression selection equation is em-
ployed.
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Table 11.7: Continuous report precision but observed binary sample correlations
for apparently nonnormal DGP

statistic r
5
", UL

6
r
5
", UH

6
r
5
', UL

6
r
5
', UH

6

mean !0.004 0.000 0.005 !0.007
median !0.005 !0.001 0.007 !0.006
std.dev. 0.022 0.024 0.023 0.022
minimum !0.081 !0.056 !0.048 !0.085
maximum 0.054 0.064 0.066 0.039

statistic r (", D) r (', D) r (w1, D) r (w2, D)
mean 0.013 !0.046 !0.114 0.025
median 0.013 !0.046 !0.113 0.024
std.dev. 0.022 0.021 0.012 0.014
minimum !0.042 !0.106 !0.155 !0.011
maximum 0.082 0.017 !0.080 0.063

Stronger instruments

To further explore this explanation, we create a third and stronger instrument, w3,
and utilize it along with w1 in the selection equation where W =

!
w1 w3

"
.

This third instrument is the residuals of a binary variable

%
5
EU

5
*L2 ,*

L
2

6
> EU

5
*H2 ,*

L
2

66

regressed onto UL and UH where % (·) is an indicator function. Below we report
in table 11.8 ordinate control function results. Average treatment effect sample
statistics for this simulation including the OLS effect are reported in table 11.9.
Although the average treatment effects are attenuated a bit toward zero, these re-
sults are a marked improvement of the previous, wildly erratic results. Inverse-
Mills results are reported in table 11.10. These results correspond quite well with
treatment effect sample statistics. Hence, we’re reminded (once again) the value
of strong instruments for logically consistent analysis cannot be over-estimated.
Finally, we report in table 11.11 LIV-estimated average treatment effects de-

rived fromMTE with this stronger instrument,w3. Again, the results are improved
relative to those with the weaker instruments but as before the average treatment
effects are attenuated.11 Average treatment on the untreated along with the aver-
age treatment effect correspond best with their sample statistics. Not surprisingly,
the results are noisier than the parametric results. For this setting, we conclude
that strong instruments are more important than relaxed distributional assignment
(based on the data) for identifying and estimating various average treatment ef-
fects.

11Reported results employ a probit regression for the selection equations (as is the case for the
foregoing parametric analyses). Results based on a nonparametric regression for the treatment equation
are qualitatively unchanged.
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Table 11.8: Continuous report precision but observed binary stronger ordinate
control IV parameter estimates for apparently nonnormal DGP

statistic #0 #1 #2 #3
mean 596.8 0.423 0.024 137.9
median 597.0 0.414 0.025 138.2
std.dev. 4.168 0.140 0.238 14.87
minimum 586.8 !0.012 !0.717 90.56
maximum 609.8 0.829 0.728 179.2

statistic #4 (estATE) estATT estATUT
mean !2.494 40.35 !43.77
median !2.449 40.07 !43.58
std.dev. 2.343 !4.371 5.598
minimum !8.850 28.50 !58.91
maximum 4.162 52.40 !26.60
E [Y | s,D,+] = #0 + #1 (s! s) + #2D (s! s) + #3+ (W)) + #4D

Table 11.9: Continuous report precision but observed binary average treatment
effect sample statistics for apparently nonnormal DGP

statistic ATE ATT ATUT OLS
mean !0.266 64.08 !62.26 0.578
median !0.203 64.16 !62.30 0.764
std.dev. 1.596 1.448 1.584 2.100
minimum !5.015 60.32 !66.64 !4.980
maximum 3.746 67.48 !57.38 6.077

Table 11.10: Continuous report precision but observed binary stronger inverse
Mills IV parameter estimates for apparently nonnormal DGP

statistic #0 #1 #2 #3 #4
mean 608.9 0.432 0.435 !48.27 61.66
median 608.9 0.435 0.438 !48.55 61.60
std.dev. 1.730 0.099 0.086 2.743 3.949
minimum 603.8 0.159 0.238 !54.85 51.27
maximum 613.3 0.716 0.652 !40.70 72.70

statistic #5 (estATE) estATT estATUT
mean !8.565 57.61 !72.28
median !8.353 57.44 !72.28
std.dev. 2.282 3.294 4.628
minimum !15.51 48.44 !85.37
maximum !2.814 67.11 !60.39

E [Y | s,D,-] = #0 + #1 (1!D) (s! s) + #2D (s! s)
+#3 (1!D)-

H + #4D-
L + #5D
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Table 11.11: Continuous report precision but observed binary stronger LIV
parameter estimates for apparently nonnormal DGP

statistic #1 #2 estATE estATT estATUT
mean 0.389 0.220 !7.798 9.385 !24.68
std.dev. 0.159 0.268 9.805 14.17 16.38
minimum 0.107 !0.330 !26.85 !17.69 !57.14
maximum 0.729 0.718 11.58 37.87 !26.85
statistic OLS ATE ATT ATUT
mean 3.609 1.593 63.76 !61.75
median 3.592 1.642 63.91 !61.70
std.dev. 2.484 1.894 1.546 1.668
minimum !3.057 !4.313 59.58 !66.87
maximum 11.28 5.821 67.12 !58.11

E [Y | s,D, &1] = #1 (s! s) + #2D (s! s) + &1 (p)

11.13 Additional reading

There are numerous contributions to this literature. We suggest beginning with
Heckman’s [2001] Nobel lecture, Heckman and Vytlacil [2005, 2007a, 2007b],
and Abbring and Heckman [2007]. These papers provide extensive discussions
and voluminous references. This chapter has provided at most a thumbnail sketch
of this extensive and important work. A FORTRAN program and documentation
for estimating Heckman, Urzua, and Vytlacil’s [2006] marginal treatment effect
can be found at URL: http://jenni.uchicago.edu/underiv/.


