
10
Treatment effects: IV

In this chapter we continue the discussion of treatment effects but replace ignor-
able treatment strategies in favor of instrumental variables and exclusion restric-
tions. Intuitively, instrumental variables are a standard econometric response to
omitted, correlated variables so why not employ them to identify and estimate
treatment effects. That is, we look for instruments that are highly related to the
selection or treatment choice but unrelated to outcome. This is a bit more subtle
than standard linear IV because of the counterfactual issue. The key is that ex-
clusion restrictions allow identification of the counterfactuals as an individual’s
probability of receiving treatment can be manipulated without affecting potential
outcomes.
We emphasize we’re looking for good instruments. Recall that dropping vari-

ables from the outcome equations that should properly be included creates an
omitted, correlated variable problem. There doesn’t seemmuch advantage of swap-
ping one malignant inference problem for another — the selection problem can
also be thought of as an omitted, correlated variable problem.

10.1 Setup
The setup is the same as the previous chapter. We repeat it for convenience then
relate it to common average treatment effects and the Roy model to facilitate in-
terpretation. Suppose the DGP is
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208 10. Treatment effects: IV

outcomes:1
Yj = µj (X) + Vj , j = 0, 1

selection mechanism:2
D = µD (Z) VD

and observable response:

Y = DY1 + (1D)Y0
= µ0 (X) + (µ1 (X) µ0 (X))D + V0 + (V1  V0)D

where
D =

1 D > 0
0 otherwise

and Y1 is (potential) outcome with treatment and Y0 is (potential) outcome without
treatment. The outcomes model is the Neyman-Fisher-Cox-Rubin model of poten-
tial outcomes (Neyman [1923], Fisher [1966], Cox ]1958], and Rubin [1974]). It
is also Quandt’s [1972] switching regression model or Roy’s income distribution
model (Roy [1951] or Heckman and Honore [1990]).

10.2 Treatment effects
We address the same treatment effects but add a couple of additional effects
to highlight issues related to unobservable heterogeneity. Heckman and Vytlacil
[2005] describe the recent focus of the treatment effect literature as the heteroge-
neous response to treatment amongst otherwise observationally equivalent indi-
viduals. Unobservable heterogeneity is a serious concern whose analysis is chal-
lenging if not down right elusive.
In the binary case, the treatment effect is the effect on outcome of treatment

compared with no treatment, = Y1Y0. Some typical treatment effects include:
ATE, ATT, ATUT, LATE, and MTE. ATE refers to the average treatment effect, by
iterated expectations, we can recover the unconditional average treatment effect
from the conditional average treatment effect

ATE = EX [ATE (X)]

= EX [E [ | X = x]] = E [Y1  Y0]

1Separating outcome into a constant and stochastic parts, yields

Yj = µj + Uj

Sometimes it will be instructive to write the stochastic part as a linear function ofX

Uj = Xj + Vj

2To facilitate discussion, we stick with binary choice for most of the discussion. We extend the
discussion to multilevel discrete and continuous treatment later in chapter 11.
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In other words, the average effect of treatment on outcome compared with no
treatment for a random draw from the population.
ATT refers to the average treatment effect on the treated,

ATT = EX [ATT (X)]

= EX [E [ | X = x,D = 1]] = E [Y1  Y0 | D = 1]

In other words, the average effect of treatment on outcome compared with no
treatment for a random draw from the subpopulation selecting (or assigned) treat-
ment.
ATUT refers to the average treatment effect on the untreated,

ATUT = EX [ATUT (X)]

= EX [E [ | X = x,D = 0]] = E [Y1  Y0 | D = 0]

In other words, the average effect of treatment on outcome compared with no
treatment for a random draw from the subpopulation selecting (or assigned) no
treatment.
For a binary instrument (to keep things simple), the local average treatment

effect or LATE is

LATE = EX [LATE (X)]

= EX [E [ | X = x,D1 D0 = 1]] = E [Y1  Y0 | D1 D0 = 1]

whereDj refers to the observed treatment conditional on the value j of the binary
instrument. LATE refers to the local average or marginal effect of treatment on
outcome compared with no treatment for a random draw from the subpopulation
of "compliers" (Imbens and Angrist [1994]). That is, LATE is the (discrete) mar-
ginal effect on outcome for those individuals who would not choose treatment if
the instrument takes a value of zero but would choose treatment if the instrument
takes a value of one.
MTE (the marginal treatment effect) is a generalization of LATE as it represents

the treatment effect for those individuals who are indifferent between treatment
and no treatment.

MTE = E [Y1  Y0 | X = x, VD = vD]

or following transformation UD = FV |X (V ), where FV |X (V ) is the (cumula-
tive) distribution function, we can work with UD  Uniform [0, 1]

MTE = E [Y1  Y0 | X = x, UD = uD]

Treatment effect implications can be illustrated in terms of the generalized Roy
model. The Roy model interpretation is discussed next.
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10.3 Generalized Roy model
Roy [1951] introduced an equilibrium labor model where workers select between
hunting and fishing. An individual’s selection into hunting or fishing depends on
his aptitude as well as supply of and demand for labor.3 A modest generalization
of the Roy model is a common framing of selection that frequently forms the basis
for assessing treatment effects (Heckman and Robb [1986]).
Based on the DGP above, we identify the constituent pieces of the selection

model.
Net benefit (or utility) from treatment is

D = µD (Z) VD
= Y1  Y0  c (W ) Vc
= µ1 (X) µ0 (X) c (W ) + V1  V0  Vc

Gross benefit of treatment is4

µ1 (X) µ0 (X)

Cost associated with treatment is

c (W ) + Vc

Observable cost associated with treatment is

c (W )

Observable net benefit of treatment is

µ1 (X) µ0 (X) c (W )

Unobservable net benefit of treatment is

VD = V1  V0  Vc

where the observables are

X Z W


, typically Z contains variables not in

X orW , andW is the subset of observables that speaks to cost of treatment.
Given a rich data generating process like above, the challenge is to develop

identification strategies for the treatment effects of interest. The simplest IV ap-
proaches follow from the strongest conditions for the data and typically imply ho-
mogeneous response. Accommodating heterogeneous response holds economic
appeal but also constitutes a considerable hurdle.

3Roy argues that self-selection leads to lesser earnings inequality than does random assignment.
See Heckman and Honore [1990] for an extended discussion of the original Roy model including
identification under various probability distribution assignments on worker skill (log skill).

4For linear outcomes, we have µ1 (X) µ0 (X) = (µ1 +X1) (µ0 +X0).
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10.4 Homogeneous response
Homogeneous response is attractive when pooling restrictions across individu-
als (or firms) are plausible. Homogeneous response implies the stochastic por-
tion, Uj , is the same for individuals receiving treatment and not receiving treat-
ment, U1 = U0. This negates the interaction term, (U1  U0)D, in observed out-
come and consequently rules out individual-specific gains. Accordingly, ATE =
ATT = ATUT = MTE. Next, we review treatment effect identification condi-
tions for a variety of homogeneous response models with endogenous treatment.

10.4.1 Endogenous dummy variable IV model
Endogenous dummy variable IV regression is a standard approach but not as ro-
bust in the treatment effect setting as we’re accustomed in other settings. Let L
be a linear projection of the leading argument into the column space of the condi-
tioning variables where X includes the unity vector , that is,

L (Y | X) = X

XTX

1
XTY

= PXY

and Zi be a vector of instruments. Identification conditions are

Condition 10.1 U1 = U0 where Uj = Xj + Vj , j = 0, 1,

Condition 10.2 L (U0 | X,Z) = L (U0 | X), and

Condition 10.3 L (D | X,Z) = L (D | X).

Condition 10.1 is homogeneous response while conditions 10.2 and 10.3 are
exclusion restrictions. Conditions 10.1 and 10.2 imply observed outcome is

Y = µ0 + (µ1  µ0)D +X0 + V0

which can be written
Y =  + D +X0 + V0

where  = ATE and V0 = U0  L (U0 | X,Z). As D and V0 are typically
correlated (think of the Roy model interpretation), we effectively have an omitted,
correlated variable problem and OLS is inconsistent.
However, condition 10.2 means that Z is properly excluded from the outcome

equation. Unfortunately, this cannot be directly tested.5 Under the above condi-
tions, standard two stage least squares instrumental variable (2SLS-IV) estimation
(see chapter 3) with {, X, Z} as instruments provides a consistent and asymptot-
ically normal estimate for ATE. That is, the first stage discrete choice (say, logit

5Though we might be able to employ over-identifying tests of restrictions if we have multiple
instruments. Of course, these tests assume that at least one is a legitimate instrument.
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or probit) regression is

D = 0 +X1 + Z2  VD

and the second stage regression is

Y =  +  D +X0 + V0

where D = ̂0+X ̂1+Z̂2, predicted values from the first stage discrete choice
regression.

10.4.2 Propensity score IV
Stronger conditions allow for a more efficient IV estimator. For instance, suppose
the data satisfies the following conditions.

Condition 10.4 U1 = U0,

Condition 10.5 E [U0 | X,Z] = E (U0 | X),

Condition 10.6 Pr (D = 1 | X,Z) = Pr (D = 1 | X) plus
Pr (D = 1 | X,Z) = G (X,Z, ) is a known parametric form (usually probit or
logit), and

Condition 10.7 V ar [U0 | X,Z] = 20.

The outcome equation is

Y =  + D +X0 + V0

If we utilize {, G (X,Z, ) , X} as instruments, 2SLS-IV is consistent asymptot-
ically normal (CAN). Not only is this propensity score approach more efficient
given the assumptions, but it is also more robust. Specifically, the link function
doesn’t have to be equal to G for 2SLS-IV consistency but it does for OLS (see
Wooldridge [2002], ch. 18).

10.5 Heterogeneous response and treatment effects
Frequently, homogeneity is implausible, U1 = U0. Idiosyncrasies emerge in both
what is observed, say X0 = X1, (relatively straightforward to address) and
what the analyst cannot observe, V0 = V1, (more challenging to address). Then
observed outcome contains an individual-specific gain (U1  U0)D and, usually,
ATE = ATT = ATUT = MTE. In general, the linear IV estimator (using Z
or G as instruments) does not consistently estimate ATE (or ATT) when response
is heterogeneous, U1 = U0. Next, we explore some IV estimators which may
consistently estimate ATE even though response is heterogeneous.
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10.5.1 Propensity score IV and heterogeneous response
First, we return to the propensity score and relax the conditions to accommodate
heterogeneity. Let Uj = Xj + Vj where E [Vj | X,Z] = 0. Identification con-
ditions are

Condition 10.8 conditional mean redundancy, E [U0 | X,Z] = E [U0 | X] and
E [U1 | X,Z] = E [U1 | X],

Condition 10.9 X1 X0 = (X  E [X]) ,

Condition 10.10 V1 = V0, and

Condition 10.11 Pr (D = 1 | X,Z) = Pr (D = 1 | X) and
Pr (D = 1 | X,Z) = G (X,Z, ) where again G is a known parametric form
(usually probit or logit).

If we utilize

, G (X,Z, ) , X X


as instruments in the regression

Y = µ0 +X0 + D +

X X


D + V0

2SLS-IV is consistent asymptotically normal (CAN).
We can relax the above a bit if we replace condition 10.10, V1 = V0, by condi-

tional mean independence

E [D (V1  V0) | X,Z] = E [D (V1  V0)]

While probably not efficient, consistently identifies ATE for this two-stage propen-
sity score IV strategy utilizing {, G,X,G (X  E [X])} as instruments.

10.5.2 Ordinate control function IV and heterogeneous response
Employing control functions to address the omitted, correlated variable problem
created by endogenous selection is popular. We’ll review two identification strate-
gies: ordinate and inverse Mills IV control functions. The second one pioneered by
Heckman [1979] is much more frequently employed. Although the first approach
may be more robust.
Identification conditions are

Condition 10.12 conditional mean redundancy, E [U0 | X,Z]
= E [U0 | X] and E [U1 | X,Z] = E [U1 | X],

Condition 10.13 g1 (X) g0 (X) = X1 X0 = (X  E [X]) ,

Condition 10.14 V1  V0 is independent of {X,Z} and
E [D | X,Z, V1  V0] = h (X,Z) + k (V1  V0) for some functions h and k,

Condition 10.15 Pr (D = 1 | X,Z, V1  V0)
=  (0 +X1 + Z2 +  (V1  V0)), 2 = 0, and
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Condition 10.16 V1  V0  N

0, 2


.

The model of observed outcome

Y = µ0 + D +X0 +D (X  E [X])  + + error

can be estimated by two-stage IV using instruments

{,, X, (X  E [X]) ,}

where  is the cumulative standard normal distribution function and  is the or-
dinate from a standard normal each evaluated at [Xi, Zi] from probit. With full
commonX support, ATE is consistently estimated by  since  is a control func-
tion obtained via IV assumptions (hence the label ordinate control function).

10.5.3 Inverse Mills control function IV and heterogeneous
response

Heckman’s inverse Mills control function is closely related to the ordinate control
function. Identification conditions are

Condition 10.17 conditional mean redundancy, E [U0 | X,Z]
= E [U0 | X] and E [U1 | X,Z] = E [U1 | X],

Condition 10.18 g1 (X) g0 (X) = (X  E [X]) ,

Condition 10.19 (VD, V1, V0) is independent of {X,Z} with joint normal distri-
bution, especially V  N (0, 1), and

Condition 10.20 D = I [0 +X1 + Z2  VD > 0] where I is an indicator
function equal to one when true and zero otherwise.

While this can be estimated via MLE, Heckman’s two-stage procedure is more
common. First, estimate  via a probit regression of D on W = {, X, Z} and
identify observations with common support (that is, observations for which the
regressors, X , for the treated overlap with regressors for the untreated). Second,
regress Y onto


, D,X,D (X  E [X]) , D







, (1D)


1 



for the overlapping subsample. With full support, the coefficient on D is a con-
sistent estimator of ATE; with less than full common support, we have a local
average treatment effect.6

6We should point out here that this second stage OLS does not provide valid estimates of standard
errors. As Heckman [1979] points out there are two additional concerns: the errors are heteroskedastic
(so an adjustment such as White suggested is needed) and  has to be estimated (so we must account
for this added variation). Heckman [1979] identifies a valid variance estimator for this two-stage pro-
cedure.
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The key ideas behind treatment effect identification via control functions can
be illustrated by reference to this case.

E [Yj | X,D = j] = µj +Xj + E [Vj | D = j]

Given the conditions, E [Vj | D = j] = 0 unless Corr (Vj , VD) = jVD = 0. For
jVD = 0,

E [V1 | D = 1] = 1VD1E [VD | VD > W]

E [V0 | D = 1] = 0VD0E [VD | VD > W]

E [V1 | D = 0] = 1VD1E [VD | VD  W]

and
E [V0 | D = 0] = 0VD0E [VD | VD  W]

The final term in each expression is the expected value of a truncated standard
normal random variate where

E [VD | VD > W] =
 (W)

1  (W)
=
 (W)

 (W)

and
E [VD | VD  W] = 

 (W)
 (W)

= 
 (W)

1  (W)

Putting this together, we have

E [Y1 | X,D = 1] = µ1 +X1 + 1VD1
 (W)

 (W)

E [Y0 | X,D = 0] = µ0 +X0  0VD0
 (W)

1  (W)

and counterfactuals

E [Y0 | X,D = 1] = µ0 +X0 + 0VD0
 (W)

 (W)

and
E [Y1 | X,D = 0] = µ1 +X1  1VD1

 (W)

1  (W)

The affinity for Heckman’s inverse Mills ratio approach can be seen in its esti-
mation simplicity and the ease with which treatment effects are then identified. Of
course, this doesn’t justify the identification conditions — only our understanding
of the data can do that.

ATT (X,Z) = µ1  µ0 +X (1  0) +

1VD1  0VD0

  (W)
 (W)
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by iterated expectations (with full support), we have

ATT = µ1  µ0 + E [X] (1  0) +

1VD1  0VD0


E


 (W)

 (W)



Also,

ATUT (X,Z) = µ1  µ0 +X (1  0)

1VD1  0VD0

  (W)

1  (W)

by iterated expectations, we have

ATUT = µ1  µ0 +E [X] (1  0)

1VD1  0VD0


E


 (W)

1  (W)



Since

ATE (X,Z) = Pr (D = 1 | X,Z)ATT (X,Z)
+Pr (D = 0 | X,Z)ATUT (X,Z)

=  (W)ATT (X,Z) + (1  (W))ATUT (X,Z)

we have

ATE (X,Z) = µ1  µ0 +X (1  0)
+

1V 1  0VD0


 (W)


1V 1  0VD0


 (W)

= µ1  µ0 +X (1  0)

by iterated expectations (with full common support), we have

ATE = µ1  µ0 + E [X] (1  0)

Wooldridge [2002, p. 631] suggests identification of

ATE = µ1  µ0 + E [X] (1  0)

via  in the following regression

E [Y | X,Z] = µ0 + D +X0 +D (X  E [X]) (1  0)

+D1VD1
 (W)

 (W)
 (1D) 0VD0

 (W)

1  (W)

This follows from the observable response

Y = D (Y1 | D = 1) + (1D) (Y0 | D = 0)

= (Y0 | D = 0) +D [(Y1 | D = 1) (Y0 | D = 0)]

and applying conditional expectations

E [Y1 | X,D = 1] = µ1 +X1 + 1VD1
 (W)

 (W)

E [Y0 | X,D = 0] = µ0 +X0  0VD0
 (W)

1  (W)

Simplification produces Wooldridge’s result.
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10.5.4 Heterogeneity and estimating ATT by IV
Now we discuss a general approach for estimating ATT by IV in the face of unob-
servable heterogeneity.

ATT (X) = E [Y1  Y0 | X,D = 1]

= µ1  µ0 + E [U1  U0 | X,D = 1]

Identification (data) conditions are

Condition 10.21 E [U0 | X,Z] = E [U0 | X],

Condition 10.22 E [U1  U0 | X,Z,D = 1] = E [U1  U0 | X,D = 1], and

Condition 10.23 Pr (D = 1 | X,Z) = Pr (D = 1 | X) and
Pr (D = 1 | X,Z) = G (X,Z; ) is a known parametric form (usually probit or
logit).

Let

Yj = µj + Uj

= µj + gj (X) + Vj

and write

Y = µ0 + g0 (X) +D {(µ1  µ0) + E [U1  U0 | X,D = 1]}
+D {(U1  U0) E [U1  U0 | X,D = 1]}+ V0

= µ0 + g0 (X) +ATT (X)D + a+ V0

where a = D {(U1  U0) E [U1  U0 | X,D = 1]}. Let r = a + V0, the data
conditions imply E [r | X,Z] = 0. Now, suppose µ0 (X) = 0 + h (X)0 and
ATT (X) = +f (X)  for some functions h (X) and f (X). Then, we can write

Y = 0 + h (X)0 + D +Df (X)  + r

where 0 = µ0 + 0. The above equation can be estimated by IV using any
functions of {X,Z} as instruments. Averaging  + f (X)  over observations
with D = 1 yields a consistent estimate for ATT ,


Di( i+f(Xi))

Di
. By similar

reasoning, ATUT can be estimated by averaging over the D = 0 observations,


Di( i+f(Xi))

(1Di)
.

10.5.5 LATE and linear IV
Concerns regarding lack of robustness (logical inconsistency) of ignorable treat-
ment, or, for instance, the sometimes logical inconsistency of normal probability
assignment to unobservable expected utility (say, with Heckman’s inverse Mills
IV control function strategy) have generated interest in alternative IV approaches.
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One that has received considerable attention is linear IV estimation of local aver-
age treatment effects (LATE; Imbens and Angrist [1994]). We will focus on the
binary instrument case to highlight identification issues and aid intuition. First, we
provide a brief description then follow with a more extensive treatment. As this
is a discrete version of the marginal treatment effect, it helps provide intuition for
how instruments, more generally, can help identify treatment effects.
For binary instrument Z,

LATE = E [Y1  Y0 | D1 D0 = 1]

where D1 = (D | Z = 1) and D0 = (D | Z = 0). That is, LATE is the ex-
pected gain from treatment of those individuals who switch from no treatment
to treatment when the instrument Z changes from 0 to 1. Angrist, Imbens, and
Rubin [1996] refer to this subpopulation as the "compliers". This treatment effect
is only identified for this subpopulation and because it involves counterfactuals
the subpopulation cannot be identified from the data. Nonetheless, the approach
has considerable appeal as it is reasonably robust even in the face of unobservable
heterogeneity.

Setup

The usual exclusion restriction (existence of instrument) applies. Identification
conditions are

Condition 10.24 {Y1, Y0} independent of Z,

Condition 10.25 D1  D0 for each individual, and

Condition 10.26 Pr (D = 1 | Z = 1) = Pr (D = 1 | Z = 0).

Conditions 10.24 and 10.26 are usual instrumental variables conditions. Con-
ditional 10.25 is a uniformity condition. For the subpopulation of "compliers" the
instrument induces a change to treatment when Z takes a value of 1 but not when
Z = 0.

Identification

LATE provides a straightforward opportunity to explore IV identification of treat-
ment effects. Identification is a thought experiment regarding whether an esti-
mand, the population parameter associated with an estimator, can be uniquely
identified from the data. IV approaches rely on exclusion restrictions to identify
population characteristics of counterfactuals. Because of the counterfactual prob-
lem, it is crucial to our IV identification thought experiment that we be able to
manipulate treatment choice without impacting outcomes. Hence, the exclusion
restriction or existence of an instrument (or instruments) is fundamental. Once
identification is secured we can focus on matters of estimation (such as consis-
tency and efficiency). Next, we discuss IV identification of LATE. This is followed
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by discussion of the implication of exclusion restriction failure for treatment effect
identification.
For simplicity there are no covariates and two points of support Zi = 1 and

Zi = 0 where

Pr (Di = 1 | Zi = 1) > Pr (Di = 1 | Zi = 0)

Compare the outcome expectations

E [Yi | Zi = 1] E [Yi | Zi = 0]
= E [DiY1i + (1Di)Y0i | Zi = 1]

E [DiY1i + (1Di)Y0i | Zi = 0]

{Y1, Y0} independent of Z implies

E [Yi | Zi = 1] E [Yi | Zi = 0]
= E [D1iY1i + (1D1i)Y0i] E [D0iY1i + (1D0i)Y0i]

rearranging yields

E [(D1i D0i)Y1i  (D1i D0i)Y0i]

combining terms produces

E [(D1i D0i) (Y1i  Y0i)]

utilizing the sum and product rules of Bayes’ theorem gives

Pr (D1i D0i = 1)E [Y1i  Y0i | D1i D0i = 1]
Pr (D1i D0i = 1)E [Y1i  Y0i | D1i D0i = 1]

How do we interpret this last expression? Even for a strictly positive causal ef-
fect of D on Y for all individuals, the average treatment effect is ambiguous as it
can be positive, zero, or negative. That is, the treatment effect of those who switch
from nonparticipation to participation when Z changes from 0 to 1 can be off-
set by those who switch from participation to nonparticipation. Therefore, iden-
tification of average treatment effects requires additional data conditions. LATE
invokes uniformity in response to the instrument for all individuals. Uniformity
eliminates the second term above as Pr (D1i D0i = 1) = 0. Then, we can
replace Pr (D1i D0i = 1) with E [Di | Zi = 1] E [Di | Zi = 0] and

(E [Yi | Zi = 1] E [Yi | Zi = 0])
= Pr (D1i D0i = 1)E [Y1i  Y0i | D1i D0i = 1]
= (E [Di | Zi = 1] E [Di | Zi = 0])E [Y1i  Y0i | D1i D0i = 1]
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From the above we can write

E [Yi | Zi = 1] E [Yi | Zi = 0]
E [Di | Zi = 1] E [Di | Zi = 0]

=
Pr (D1i D0i = 1)E [Y1i  Y0i | D1i D0i = 1]

E [Di | Zi = 1] E [Di | Zi = 0]

=
(E [Di | Zi = 1] E [Di | Zi = 0])E [Y1i  Y0i | D1i D0i = 1]

E [Di | Zi = 1] E [Di | Zi = 0]
= E [Y1i  Y0i | D1i D0i = 1]

and since
LATE = E [Y1i  Y0i | D1i D0i = 1]

we can identify LATE by extracting

E [Yi | Zi = 1] E [Yi | Zi = 0]
E [Di | Zi = 1] E [Di | Zi = 0]

from observables. This is precisely what standard 2SLS-IV estimates with a binary
instrument (developed more fully below).
As IV identification of treatment effects differs from standard applications of

linear IV,7 this seems an appropriate juncture to explore IV identification. The
foregoing discussion of LATE identification provides an attractive vehicle to il-
lustrate the nuance of identification with an exclusion restriction. Return to the
above approach, now suppose condition 10.24 fails, {Y1, Y0} not independent of
Z. Then,

E [Yi | Zi = 1] E [Yi | Zi = 0]
= E [D1iY1i + (1D1i)Y0i | Zi = 1]

E [D0iY1i + (1D0i)Y0i | Zi = 0]

but {Y1, Y0} not independent of Z implies

E [Yi | Zi = 1] E [Yi | Zi = 0]
= E [D1iY1i + (1D1i)Y0i | Zi = 1]

E [D0iY1i + (1D0i)Y0i | Zi = 0]
= {E [D1iY1i | Zi = 1] E [D0iY1i | Zi = 0]}

 {E [D1iY0i | Zi = 1] E [D0iY0i | Zi = 0]}
+ {E [Y0i | Zi = 1] E [Y0i | Zi = 0]}

Apparently, the first two terms cannot be rearranged and simplified to identify
any treatment effect and the last term does not vanish (recall from above when
{Y1, Y0} independent of Z, this term equals zero). Hence, when the exclusion

7Heckman and Vytlacil [2005, 2007a, 2007b] emphasize this point.
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restriction fails we apparently cannot identify any treatment effects without ap-
pealing to other strong conditions.
Sometimes LATE can be directly connected to other treatment effects. For ex-

ample, if Pr (D0 = 1) = 0, then LATE = ATT . Intuitively, the only variation in
participation and therefore the only source of overlaps from which to extrapolate
from factuals to counterfactuals occurs when Zi = 1.When treatment is accepted,
we’re dealing with compliers and the group of compliers participate when Zi = 1.
Hence, LATE = ATT .
Also, if Pr (D1 = 1) = 1, then LATE = ATUT . Similarly, the only variation

in participation and therefore the only source of overlaps from which to extrap-
olate from factuals to counterfactuals occurs when Zi = 0. When treatment is
declined, we’re dealing with compliers and the group of compliers don’t partici-
pate when Zi = 0. Hence, LATE = ATUT .

Linear IV estimation

As indicated above, LATE can be estimated via standard 2SLS-IV. Here, we de-
velop the idea more completely. For Z binary, the estimand for the regression of
Y on Z is

E [Y | Z = 1] E [Y | Z = 0]
1 0

= E [Y | Z = 1] E [Y | Z = 0]

and the estimand for the regression of D on Z is

E [D | Z = 1] E [D | Z = 0]
1 0

= E [D | Z = 1] E [D | Z = 0]

Since Z is a scalar the estimand for IV estimation is their ratio

E [Y | Z = 1] E [Y | Z = 0]
E [D | Z = 1] E [D | Z = 0]

which is the result utilized above to identify LATE, the marginal treatment effect
for the subpopulation of compliers. Next, we explore some examples illustrating
IV estimation of LATE with a binary instrument.

Tuebingen-style examples

We return to the Tuebingen-style examples introduced in chapter 8 by supple-
menting them with a binary instrument Z. Likelihood assignment to treatment
choice maintains the state-by-state probability structure. Uniformity dictates that
we assign zero likelihood that an individual is a defier,8

pD  Pr (s,D0 = 1, D1 = 0) = 0.0

8This assumption preserves the identification link between LATE and IV estimation. Uniformity is
a natural consequence of an index-structured propensity score, say Pr (Di |Wi) = G


WT
i 

. Case

1b below illustrates how the presence of defiers in the sample confounds IV identification of LATE.
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Then, we assign the likelihoods that an individual is a complier,

pC  Pr (s,D0 = 0, D1 = 1)

an individual never selects treatment,

pN  Pr (s,D0 = 0, D1 = 0)

and an individual always selects treatment,

pA  Pr (s,D0 = 1, D1 = 1)

such that state-by-state

p1  Pr (s,D1 = 1) = pC + pA

p0  Pr (s,D0 = 1) = pD + pA
q1  Pr (s,D1 = 0) = pD + pN
q0  Pr (s,D0 = 0) = pC + pN

Since (Yj | D = 1, s) = (Yj | D = 0, s) for j = 0 or 1, the exclusion restriction
is satisfied if

Pr (s | Z = 1) = Pr (s | Z = 0)

and

Pr (s | Z = 1) = p1 + q1

= pC + pA + pD + pN

equals

Pr (s | Z = 0) = p0 + q0

= pD + pA + pC + pN

probability assignment for compliance determines the remaining likelihood struc-
ture given Pr (s,D), Pr (Z), and pD = 0. For instance,

Pr (s,D = 0, Z = 0) = (pC + pN ) Pr (Z = 0)

and
Pr (s,D = 0, Z = 1) = (pD + pN ) Pr (Z = 1)

since

Pr (s,D = 0) = (pC + pN ) Pr (Z = 0) + (pD + pN ) Pr (Z = 1)

implies
pN = Pr (s,D = 0) pC Pr (Z = 0) pD Pr (Z = 1)

By similar reasoning,

pA = Pr (s,D = 1) pC Pr (Z = 1) pD Pr (Z = 0)

Now we’re prepared to explore some specific examples.
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Table 10.1: Tuebingen IV example treatment likelihoods for case 1: ignorable
treatment

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.0 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.0128 0.0 0.0512
never treated: Pr (s,D0 = 0, D1 = 0) 0.01824 0.32 0.55296
always treated: Pr (s,D0 = 1, D1 = 1) 0.00896 0.0 0.03584

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

Table 10.2: Tuebingen IV example outcome likelihoods for case 1: ignorable
treatment

state (s) one two three

Pr


Y,D, s,
Z = 0


0.021728 0.006272 0.224 0.0 0.422912 0.025088

Pr


Y,D, s,
Z = 1


0.005472 0.006528 0.096 0.0 0.165888 0.026112

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

Case 1

Given Pr (Z = 1) = 0.3, treatment likelihood assignments for case 1 are de-
scribed in table 10.1. Then, from

Pr (s,D = 1) = (pC + pA) Pr (Z = 1) + (pD + pA) Pr (Z = 0)

= Pr (D = 1, Z = 1) + Pr (D = 1, Z = 0)

and

Pr (s,D = 0) = (pD + pN ) Pr (Z = 1) + (pC + pN ) Pr (Z = 0)

= Pr (D = 0, Z = 1) + Pr (D = 0, Z = 0)

the DGP for case 1, ignorable treatment, is identified in table 10.2. Various treat-
ment effects including LATE and the IV-estimand for case 1 are reported in table
10.3. Case 1 illustrates homogeneous response — all treatment effects, includ-
ing LATE, are the same. Further, endogeneity of treatment is ignorable as Y1 and
Y0 are conditionally mean independent of D; hence, OLS identifies the treatment
effects.

Case 1b

Suppose everything remains the same as above except treatment likelihood in-
cludes a nonzero defier likelihood as defined in table 10.4. This case highlights
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Table 10.3: Tuebingen IV example results for case 1: ignorable treatment

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 0.6 p = Pr (D = 1) = 0.064

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.6
Pr (D = 1 | Z = 1) = 0.1088

Pr (D = 1 | Z = 0) = 0.0448
E [Y1 | D = 1] = 1.0
E [Y1 | D = 0] = 1.0

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.6 E [Y1] = 1.0

ATT = E [Y1  Y0 | D = 1] = 0.6 E [Y0 | D = 1] = 1.6
ATUT = E [Y1  Y0 | D = 0] = 0.6 E [Y0 | D = 0] = 1.6

ATE = E [Y1  Y0] = 0.6 E [Y0] = 1.6

Table 10.4: Tuebingen IV example treatment likelihoods for case 1b: uniformity
fails

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.0 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.0064 0.0 0.0256
never treated: Pr (s,D0 = 0, D1 = 0) 0.02083 0.32 0.56323
always treated: Pr (s,D0 = 1, D1 = 1) 0.00647 0.0 0.02567

defiers: Pr (s,D0 = 1, D1 = 0) 0.0063 0.0 0.0255

Pr (Z = 1) = 0.3
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Table 10.5: Tuebingen IV example treatment likelihoods for case 2:
heterogeneous response

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (D0 = 0, D1 = 1) 0.01 0.096 0.0512
never treated: Pr (D0 = 0, D1 = 0) 0.0202 0.1568 0.55296
always treated: Pr (D0 = 1, D1 = 1) 0.0098 0.0672 0.03584

defiers: Pr (D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

the difficulty of identifying treatment effects when uniformity of selection with
respect to the instrument fails even though in this ignorable treatment setting all
treatment effects are equal. Uniformity failure means some individuals who were
untreated when Z = 0 opt for treatment when Z = 1 but other individuals who
were treated when Z = 0 opt for no treatment when Z = 1.
From the identification discussion, the difference in expected observed outcome

when the instrument changes is

E [Yi | Zi = 1] E [Yi | Zi = 0]
= Pr (D1i D0i = 1)E [Y1i  Y0i | D1i D0i = 1]

+Pr (D1i D0i = 1)E [ (Y1i  Y0i) | D1i D0i = 1]
= 0.032 (0.6) + 0.0318 (0.6038) = 0.0

The effects
E [Y1i  Y0i | D1i D0i = 1] = 0.6

and
E [ (Y1i  Y0i) | D1i D0i = 1] = 0.6038

are offsetting and seemingly hopelessly confounded. 2SLS-IV estimates

E [Yi | Zi = 1] E [Yi | Zi = 0]
E [Di | Zi = 1] E [Di | Zi = 0]

=
0.0

0.0002
= 0.0

which differs fromLATE = E [Y1i  Y0i | Di (1)Di (0) = 1] = 0.6. There-
fore, we may be unable to identify LATE, the marginal treatment effect for com-
pliers, via 2SLS-IV when defiers are present in the sample.

Case 2

Case 2 perturbs the probabilities resulting in non-ignorable, inherently endoge-
nous treatment and heterogeneous treatment effects. Treatment adoption likeli-
hoods, assuming the likelihood an individual is a defier equals zero andPr (Z = 1) =
0.3, are assigned in table 10.5. These treatment likelihoods imply the data struc-
ture in table 10.6. Various treatment effects including LATE and the IV-estimand
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Table 10.6: Tuebingen IV example outcome likelihoods for case 2:
heterogeneous response

state (s) one two three

Pr


Y,D, s,
Z = 0


0.021728 0.006272 0.224 0.0 0.422912 0.025088

Pr


Y,D, s,
Z = 1


0.005472 0.006528 0.096 0.0 0.165888 0.026112

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

Table 10.7: Tuebingen IV example results for case 2: heterogeneous response

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 0.2621 p = Pr (D = 1) = 0.16

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.2621
Pr (D = 1 | Z = 1) = 0.270

Pr (D = 1 | Z = 0) = 0.113
E [Y1 | D = 1] = 1.0
E [Y1 | D = 0] = 1.0

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.669 E [Y1] = 1.0

ATT = E [Y1  Y0 | D = 1] = 0.24 E [Y0 | D = 1] = 1.24
ATUT = E [Y1  Y0 | D = 0] = 0.669 E [Y0 | D = 0] = 1.669

ATE = E [Y1  Y0] = 0.6 E [Y0] = 1.6
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Table 10.8: Tuebingen IV example treatment likelihoods for case 2b: LATE =
ATT

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.3 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.04 0.32 0.17067
never treated: Pr (s,D0 = 0, D1 = 0) 0.0 0.0 0.46933
always treated: Pr (s,D0 = 1, D1 = 1) 0.0 0.0 0.0

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

Table 10.9: Tuebingen IV example outcome likelihoods for case 2b: LATE = ATT

state (s) one two three
Pr (Y,D, s, Z = 0) 0.028 0.0 0.224 0.0 0.448 0.0
Pr (Y,D, s, Z = 1) 0.0 0.012 0.0 0.096 0.1408 0.0512

D 0 1 0 1 0 1
Y 0 1 1 1 2 1
Y0 0 0 1 1 2 2
Y1 1 1 1 1 1 1

for case 2 are reported in table 10.7. In contrast to case 1, for case 2 all treatment
effects (ATE, ATT, ATUT, and LATE) differ which, of course, means OLS can-
not identify all treatment effects (though it does identify ATUT in this setting).
Importantly, the IV-estimand identifies LATE for the subpopulation of compliers.

Case 2b

If we perturb the probability structure such that

Pr (D = 1 | Z = 0) = 0

then LATE = ATT .9 For Pr (Z = 1) = 0.3, treatment adoption likelihoods
are assigned in table 10.8. Then, the data structure is as indicated in table 10.9.
Various treatment effects including LATE and the IV-estimand for case 2b are
reported in table 10.10. With this perturbation of likelihoods but maintenance of
independence between Z and (Y1, Y0), LATE=ATT and LATE is identified via the
IV-estimand but is not identified via OLS. Notice the evidence on counterfactuals
draws from Z = 1 as no one adopts treatment when Z = 0.

Case 3

Case 3 maintains the probability structure of case 2 but adds some variation to out-
comes with treatment Y1. For Pr (Z = 1) = 0.3, treatment adoption likelihoods

9We also perturbed Pr (D = 1 | s = one) = 0.3 rather than 0.32 to maintain the exclusion re-
striction and a proper (non-negative) probability distribution.



228 10. Treatment effects: IV

Table 10.10: Tuebingen IV example results for case 2b: LATE = ATT

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 0.246 p = Pr (D = 1) = 0.1592

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.246
Pr (D = 1 | Z = 1) = 0.5307

Pr (D = 1 | Z = 0) = 0.0
E [Y1 | D = 1] = 1.0
E [Y1 | D = 0] = 1.0

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.667 E [Y1] = 1.0

ATT = E [Y1  Y0 | D = 1] = 0.246 E [Y0 | D = 1] = 1.246
ATUT = E [Y1  Y0 | D = 0] = 0.667 E [Y0 | D = 0] = 1.667

ATE = E [Y1  Y0] = 0.6 E [Y0] = 1.6

Table 10.11: Tuebingen IV example treatment likelihoods for case 3: more
heterogeneity

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.01 0.096 0.0512
never treated: Pr (s,D0 = 0, D1 = 0) 0.0202 0.1568 0.55296
always treated: Pr (s,D0 = 1, D1 = 1) 0.0098 0.0672 0.03584

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0
Pr (Z = 1) = 0.3

are assigned in table 10.11. Then, the data structure is defined in table 10.12 where
Z0 refers to Z = 0 and Z1 refers to Z = 1. Various treatment effects including
LATE and the IV-estimand for case 3 are reported in table 10.13. OLS doesn’t
identify any treatment effect but the IV-estimand identifies the discrete marginal
treatment effect, LATE, for case 3.

Case 3b

Suppose the probability structure of case 3 is perturbed such that

Pr (D = 1 | Z = 1) = 1

then LATE=ATUT.10 ForPr (Z = 1) = 0.3, treatment adoption likelihoods are as-
signed in table 10.14. Then, the data structure is as defined in table 10.15. Various
treatment effects including LATE and the IV-estimand for case 3b are reported in
table 10.16. The IV-estimand identifies LATE and LATE = ATUT since treat-

10We assign Pr (D = 1 | s = three) = 0.6 rather than 0.08 to preserve the exclusion restriction.
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Table 10.12: Tuebingen IV example outcome likelihoods for case 3: more
heterogeneity

state (s) one two three

Pr





Y
D
s
Z0



 0.02114 0.00686 0.17696 0.04704 0.422912 0.025088

Pr





Y
D
s
Z1



 0.00606 0.00594 0.04704 0.04896 0.165888 0.026112

D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 1 1 0 0

Table 10.13: Tuebingen IV example results for case 3: more heterogeneity

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 0.588 p = Pr (D = 1) = 0.16

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.588
Pr (D = 1 | Z = 1) = 0.270

Pr (D = 1 | Z = 0) = 0.113
E [Y1 | D = 1] = 0.68
E [Y1 | D = 0] = 0.299

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.989 E [Y1] = 0.36

ATT = E [Y1  Y0 | D = 1] = 0.56 E [Y0 | D = 1] = 1.24
ATUT = E [Y1  Y0 | D = 0] = 1.369 E [Y0 | D = 0] = 1.669

ATE = E [Y1  Y0] = 1.24 E [Y0] = 1.6

ment is always selected when Z = 1. Also, notice OLS is close to ATE even
though this is a case of inherent endogeneity. This suggests comparing ATE with
OLS provide an inadequate test for the existence of endogeneity.

Case 4

Case 4 employs a richer set of outcomes but the probability structure for (D,Y, s)
employed in case 1 and yields the Simpson’s paradox result noted in chapter 8. For
Pr (Z = 1) = 0.3, assignment of treatment adoption likelihoods are described in
table 10.17. Then, the data structure is identified in table 10.18. Various treatment
effects including LATE and the IV-estimand for case 4 are reported in table 10.19.
OLS estimates a negative effect while all the standard average treatment effects
are positive. Identification conditions are satisfied and the IV-estimand identifies
LATE.
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Table 10.14: Tuebingen IV example treatment likelihoods for case 3b: LATE =
ATUT

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.6
compliers: Pr (s,D0 = 0, D1 = 1) 0.038857 0.32 0.365714
never treated: Pr (s,D0 = 0, D1 = 0) 0.0 0.0 0.0
always treated: Pr (s,D0 = 1, D1 = 1) 0.001143 0.0 0.274286

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

Table 10.15: Tuebingen IV example outcome likelihoods for case 3b: LATE =
ATUT

state (s) one two three
Pr (Y,D, s, Z = 0) 0.0272 0.0008 0.224 0.0 0.256 0.192
Pr (Y,D, s, Z = 1) 0.0 0.0012 0.0 0.096 0.0 0.192

D 0 1 0 1 0 1
Y 0 1 1 1 2 0
Y0 0 0 1 1 2 2
Y1 1 1 1 1 0 0

Case 4b

For Z = D and Pr (Z = 1) = Pr (D = 1) = 0.16, case 4b explores viola-
tion of the exclusion restriction. Assignment of treatment adoption likelihoods are
described in table 10.20. However, as indicated earlier the exclusion restriction
apparently can only be violated in this binary instrument setting if treatment al-
ters the outcome distributions. To explore the implications of this variation, we
perturb outcomes with treatment slightly as defined in table 10.21. Various treat-
ment effects including LATE and the IV-estimand for case 4b are reported in table
10.22. Since the exclusion restriction is not satisfied the IV-estimand fails to iden-
tify LATE. In fact, OLS and 2SLS-IV estimates are both negative while ATE and
LATE are positive. As Z = D, the entire population consists of compliers, and it
is difficult to assess the counterfactuals as there is no variation in treatment when
either Z = 0 or Z = 1. Hence, it is critical to treatment effect identification that
treatment not induce a shift in the outcome distributions but rather variation in the
instruments produces a change in treatment status only.

Case 5

Case 5 involves Pr (z = 1) = 0.3, and non-overlapping support:

Pr (s = one,D = 0) = 0.04

Pr (s = two,D = 1) = 0.32
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Table 10.16: Tuebingen IV example results for case 3b: LATE = ATUT

Results Key components
LATE = E [Y1  Y0 | D1 D0] = 1]

= 0.9558 p = Pr (D = 1) = 0.4928

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.9558
Pr (D = 1 | Z = 1) = 1.0

Pr (D = 1 | Z = 0) = 0.2754
E [Y1 | D = 1] = 0.2208
E [Y1 | D = 0] = 0.4953

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 1.230 E [Y1] = 0.36

ATT = E [Y1  Y0 | D = 1] = 1.5325 E [Y0 | D = 1] = 1.7532
ATUT = E [Y1  Y0 | D = 0] = 0.9558 E [Y0 | D = 0] = 1.4511

ATE = E [Y1  Y0] = 1.24 E [Y0] = 1.6

Table 10.17: Tuebingen IV example treatment likelihoods for case 4: Simpson’s
paradox

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.01 0.096 0.0512
never treated: Pr (s,D0 = 0, D1 = 0) 0.0202 0.1568 0.55296
always treated: Pr (s,D0 = 1, D1 = 1) 0.0098 0.0672 0.03584

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

and

Pr (s = three,D = 0) = 0.64

as assigned in table 10.23.
There is no positive complier likelihood for this setting. The intuition for this

is as follows. Compliers elect no treatment when the instrument takes a value of
zero but select treatment when the instrument is unity. With the above likelihood
structure there is no possibility for compliance as each state is singularly treatment
or no treatment irrespective of the instrument as described in table 10.24.
Various treatment effects including LATE and the IV-estimand for case 5 are

reported in table 10.25. Case 5 illustrates the danger of lack of common support.
Common support concerns extend to other standard ignorable treatment and IV
identification approaches beyond LATE. Case 5b perturbs the likelihoods slightly
to recover IV identification of LATE.
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Table 10.18: Tuebingen IV example outcome likelihoods for case 4: Simpson’s
paradox

state (s) one two three

Pr





Y
D
s
Z0



 0.02114 0.00686 0.17696 0.04704 0.422912 0.025088

Pr





Y
D
s
Z1



 0.00606 0.00594 0.04704 0.04896 0.165888 0.026112

D 0 1 0 1 0 1
Y 0.0 1.0 1.0 1.0 2.0 2.3
Y0 0.0 0.0 1.0 1.0 2.0 2.0
Y1 1.0 1.0 1.0 1.0 2.3 2.3

Table 10.19: Tuebingen IV example results for case 4: Simpson’s paradox

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 0.161
p = Pr (D = 1) = 0.16

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.161
Pr (D = 1 | Z = 1) = 0.27004

Pr (D = 1 | Z = 0) = 0.11284
E [Y1 | D = 1] = 1.416
E [Y1 | D = 0] = 1.911

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.253 E [Y1] = 1.832

ATT = E [Y1  Y0 | D = 1] = 0.176 E [Y0 | D = 1] = 1.24
ATUT = E [Y1  Y0 | D = 0] = 0.243 E [Y0 | D = 0] = 1.669

ATE = E [Y1  Y0] = 0.232 E [Y0] = 1.6

Case 5b

Case 5b perturbs the probabilities slightly such that

Pr (s = two,D = 1) = 0.3104

and
Pr (s = two,D = 0) = 0.0096

as depicted in table 10.26; everything else remains as in case 5. This slight per-
turbation accommodates treatment adoption likelihood assignments as defined in
table 10.27. Various treatment effects including LATE and the IV-estimand for
case 5b are reported in table 10.28. Even though there is a very small subpopula-
tion of compliers, IV identifies LATE. The common support issue was discussed in
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Table 10.20: Tuebingen IV example treatment likelihoods for case 4b: exclusion
restriction violated

state (s) one two three
Pr (s) 0.04 0.32 0.64

Pr (D = 1 | s) 0.32 0.3 0.08
compliers: Pr (s,D0 = 0, D1 = 1) 0.04 0.32 0.64
never treated: Pr (s,D0 = 0, D1 = 0) 0.0 0.0 0.0
always treated: Pr (s,D0 = 1, D1 = 1) 0.0 0.0 0.0

defiers: Pr (s,D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.16

Table 10.21: Tuebingen IV example outcome likelihoods for case 4b: exclusion
restriction violated

state (s) one two three

Pr


Y,D, s,
Z = 0


0.0336 0.0 0.2688 0.0 0.5376 0.0

Pr


Y,D, s,
Z = 1


0.0 0.0064 0.0 0.0512 0.0 0.1024

D 0 1 0 1 0 1
Y 0.0 3.0 1.0 1.0 2.0 1.6
Y0 0.0 0.0 1.0 1.0 2.0 2.0
Y1 1.0 1.0 1.0 1.0 2.3 1.6

the context of the asset revaluation regulation example in chapter 9 and comes up
again in the discussion of regulated report precision example later in this chapter.

Discussion of LATE

Linear IV estimation of LATE has considerable appeal. Given the existence of in-
struments, it is simple to implement (2SLS-IV) and robust; it doesn’t rely on strong
distributional conditions and can accommodate unobservable heterogeneity. How-
ever, it also has drawbacks. We cannot identify the subpopulation of compliers due
to unobservable counterfactuals. If the instruments change, it’s likely that the treat-
ment effect (LATE) and the subpopulation of compliers will change. This implies
that different analysts are likely to identify different treatment effects — an issue
of concern to Heckman and Vytlacil [2005]. Continuous or multi-level discrete in-
struments and/or regressors produce a complicated weighted average of marginal
treatment effects that are again dependent on the particular instrument chosen as
discussed in the next chapter. Finally, the treatment effect literature is asymmet-
ric. Outcome heterogeneity can be accommodated but uniformity (or homogene-
ity) of treatment is fundamental. This latter limitation applies to all IV approaches
including local IV (LIV) estimation ofMTE which is discussed in chapter 11.
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Table 10.22: Tuebingen IV example results for case 4b: exclusion restriction
violated

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 0.160
p = Pr (D = 1) = 0.16

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0.216
Pr (D = 1 | Z = 1) = 1.0

Pr (D = 1 | Z = 0) = 0.0
E [Y1 | D = 1] = 1.192
E [Y1 | D = 0] = 1.911

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.477 E [Y1] = 1.796

ATT = E [Y1  Y0 | D = 1] = 0.048 E [Y0 | D = 1] = 1.24
ATUT = E [Y1  Y0 | D = 0] = 0.243 E [Y0 | D = 0] = 1.669

ATE = E [Y1  Y0] = 0.196 E [Y0] = 1.6

Table 10.23: Tuebingen IV example outcome likelihoods for case 5: lack of
common support

state (s) one two three
Pr (Y,D, s, Z = 0) 0.028 0.0 0.0 0.224 0.448 0.0
Pr (Y,D, s, Z = 1) 0.012 0.0 0.0 0.096 0.192 0.0

D 0 1 0 1 0 1
Y 0 1 1 2 2 0
Y0 0 0 1 1 2 2
Y1 1 1 2 2 0 0

Censored regression and LATE

Angrist [2001] discusses identification of LATE in the context of censored re-
gression.11 He proposes a non-negative transformation exp (X) combined with
linear IV to identify a treatment effect. Like the discussion of LATE above, the ap-
proach is simplest and most easily interpreted when the instrument is binary and
there are no covariates. Angrist extends the discussion to cover quantile treatment
effects based on censored quantile regression combined with Abadie’s [2000]
causal IV.

11This is not to be confused with sample selection. Here, we refer to cases in which the observed
outcome follows a switching regression that permits identification of counterfactuals.
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Table 10.24: Tuebingen IV example treatment likelihoods for case 5: lack of
common support

state one two three
compliers: Pr (D0 = 0, D1 = 1) 0.0 0.0 0.0
never treated: Pr (D0 = 0, D1 = 0) 0.04 0.0 0.64
always treated: Pr (D0 = 1, D1 = 1) 0.0 0.32 0.0

defiers: Pr (D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.3

Table 10.25: Tuebingen IV example results for case 5: lack of common support

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= NA
p = Pr (D = 1) = 0.32

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 0
0

Pr (D = 1 | Z = 1) = 0.32

Pr (D = 1 | Z = 0) = 0.32
E [Y1 | D = 1] = 2.0

E [Y1 | D = 0] = 0.0588

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.118 E [Y1] = 0.68

ATT = E [Y1  Y0 | D = 1] = 1.0 E [Y0 | D = 1] = 1.0
ATUT = E [Y1  Y0 | D = 0] = 1.824 E [Y0 | D = 0] = 1.882

ATE = E [Y1  Y0] = 0.92 E [Y0] = 1.6

For (Y0i, Y1i) independent of (Di | Xi, D1i > D0i) Abadie defines the causal
IV effect, LATE.

LATE = E [Yi | Xi, Di = 1, D1i > D0i]
E [Yi | Xi, Di = 0, D1i > D0i]

= E [Y1i  Y0i | Xi, D1i > D0i]

Then, for binary instrument Z, Abadie shows

E

E [Yi | Xi, Di, D1i > D0i]XT

i b aDi
2
| D1i > D0i



=
E

i

E [Yi | Xi, Di, D1i > D0i]XT

i b aDi
2

Pr (D1i > D0i)

where

i = 1
Di (1 Zi)

Pr (Zi = 0 | Xi)


(1Di)Zi
Pr (Zi = 1 | Xi)
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Table 10.26: Tuebingen IV example outcome likelihoods for case 5b: minimal
common support

state (s) one two three
Pr (Y,D, s, Z = 0) 0.028 0.0 0.0082 0.21518 0.448 0.0
Pr (Y,D, s, Z = 1) 0.012 0.0 0.00078 0.09522 0.192 0.0

D 0 1 0 1 0 1
Y 0 1 1 2 2 0
Y0 0 0 1 1 2 2
Y1 1 1 2 2 0 0

Table 10.27: Tuebingen IV example outcome likelihoods for case 5b: minimal
common support

state one two three
compliers: Pr (D0 = 0, D1 = 1) 0.0 0.01 0.0
never treated: Pr (D0 = 0, D1 = 0) 0.04 0.0026 0.64
always treated: Pr (D0 = 1, D1 = 1) 0.0 0.3074 0.0

defiers: Pr (D0 = 1, D1 = 0) 0.0 0.0 0.0

Pr (Z = 1) = 0.30

Since i can be estimated from the observable data, one can employ minimum
“weighted” least squares to estimate a and b. That is,

min
a,b
E

i

Yi XT

i b aDi
2

Notice for compliers Zi = Di (for noncompliers, Zi = Di) and i always equals
one for compliers and is unequal to one (in fact, negative) for noncompliers. In-
tuitively, Abadie’s causal IV estimator weights the data such that the residuals are
small for compliers but large (in absolute value) for noncompliers. The coeffi-
cient onD, a, is the treatment effect. We leave remaining details for the interested
reader to explore. In chapter 11, we discuss a unified strategy, proposed by Heck-
man and Vytlacil [2005, 2007a, 2007b] and Heckman and Abbring [2007], built
around marginal treatment effects for addressing means as well as distributions of
treatment effects.

10.6 Continuous treatment
Suppressing covariates, the average treatment effect for continuous treatment can
be defined as

ATE = E




d
Y


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Table 10.28: Tuebingen IV example results for case 5b: minimal common support

Results Key components
LATE = E [Y1  Y0 | D1 D0 = 1]

= 1.0
p = Pr (D = 1) = 0.3104

IV  estimand = E[Y |Z=1]E[Y |Z=0]
E[D|Z=1]E[D|Z=0]

= 1.0
Pr (D = 1 | Z = 1) = 0.3174

Pr (D = 1 | Z = 0) = 0.3074
E [Y1 | D = 1] = 2.0
E [Y1 | D = 0] = 0.086

OLS =
E [Y1 | D = 1]
E [Y0 | D = 0]

= 0.13 E [Y1] = 0.68

ATT = E [Y1  Y0 | D = 1] = 1.0 E [Y0 | D = 1] = 1.0
ATUT = E [Y1  Y0 | D = 0] = 1.784 E [Y0 | D = 0] = 1.870

ATE = E [Y1  Y0] = 0.92 E [Y0] = 1.6

Often, the more economically-meaningful effect, the average treatment effect on
treated for continuous treatment is

ATT = E




d
Y | D = d



Wooldridge [1997, 2003] provides conditions for identifying continuous treat-
ment effects via 2SLS-IV. This is a classic correlated random coefficients set-
ting (see chapter 3) also pursued by Heckman [1997] and Heckman and Vyt-
lacil [1998] (denoted HV in this subsection). As the parameters or coefficients are
random, the model accommodates individual heterogeneity. Further, correlation
between the treatment variable and the treatment effect parameter accommodates
unobservable heterogeneity.
Let y be the outcome variable and D be a vector of G treatment variables.12

The structural model13 written in expectation form is

E [y | a, b,D] = a+ bD

or in error form, the model is

y = a+ bD+ e

where E [e | a, b,D] = 0. It’s instructive to rewrite the model in error form for
random draw i

yi = ai +Dibi + ei

The model suggests that the intercept, ai, and slopes, bij , j = 1, . . . , G, can be
individual-specific and depend on observed covariates or unobserved heterogene-
ity. Typically, we focus on the average treatment effect,   E [b] = E [bi], as b

12For simplicity as well as clarity, we’ll stick with Wooldridge’s [2003] setting and notation.
13The model is structural in the sense that the partial effects ofDj on the mean response are identi-

fied after controlling for the factor determining the intercept and slope parameters.
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is likely a function of unobserved heterogeneity and we cannot identify the vector
of slopes, bi, for any individual i.
Suppose we haveK covariates x and L instrumental variables z. As is common

with IV strategies, identification utilizes an exclusion restriction. Specifically, the
identification conditions are

Condition 10.27 The covariates x and instruments z are redundant for the out-
come y.

E [y | a,b,D,x, z] = E [y | a,b,D]

Condition 10.28 The instruments z are redundant for a and b conditional on x.

E [a | x, z] = E [a | x] = 0 + x
E [bj | x, z] = E [bj | x] = 0j + (x E [x]) j , j = 1, . . . , G

Let the error form of a and b be
a = 0 + x + c, E [c | x, z] = 0
bj = 0j + (x E [x]) j + j , E [j | x, z] = 0, j = 1, . . . , G

When plugged into the outcome equation this yields

y = 0+x+D0+D1 (x E [x]) 1+ . . .+DG (x E [x]) G+c+Dv+e

where v = (1, . . . , G)T . The composite errorDv is problematic as, generally,
E [Dv | x, z] = 0 but as discussed by Wooldridge [1997] and HV [1998], it is
possible that the conditional covariances do not depend on (x, z). This is the third
identification condition.

Condition 10.29 The conditional covariances between D and v do not depend
on (x, z).

E [Djj | x, z] = j  Cov (Dj , j) = E [Djj ] , j = 1, . . . , G

Let 0 = 1 + · · · + G and r = Dv  E [Dv | x, z] and write the outcome
equation as

y = (0 + 0)+x+D0+D1 (x E [x]) 1+. . .+DG (x E [x]) G+c+r+e

Since the composite error u  c+ r + e has zero mean conditional on (x, z), we
can use any function of (x, z) as instruments in the outcome equation

y = 0 + x +D0 +D1 (x E [x]) 1 + . . .+DG (x E [x]) G + u

Wooldridge [2003, p. 189] argues 2SLS-IV is more robust than HV’s plug-in
estimator and the standard errors are simpler to obtain. Next, we revisit the third
accounting setting from chapter 2, regulated report precision, and explore various
treatment effect strategies within this richer accounting context.
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10.7 Regulated report precision
Now, consider the report precision example introduced in chapter 2. Recall reg-
ulators set a target report precision as regulation increases report precision and
improves the owner’s welfare relative to private precision choice. However, regu-
lation also invites transaction design (commonly referred to as earnings manage-
ment) which produces deviations from regulatory targets. The owner’s expected
utility including the cost of transaction design, d


b̂ 22

2
, is

EU (2) = µ 
21̄

2
2

21 + ̄
2
2

 
41

21 + 

2
2



(21 + ̄
2
2)
2  


b 22

2  d

b̂ 22

2

Outcomes Y are reflected in exchange values or prices and accordingly reflect
only a portion of the owner’s expected utility.

Y = P (̄2) = µ+
21

21 + ̄
2
2

(s µ) 
21̄

2
2

21 + ̄
2
2

In particular, cost may be hidden from the analysts’ view; cost includes the ex-
plicit cost of report precision, 


b 22

2, cost of any transaction design, d
b̂ 22

2
, and the owner’s risk premia,  

4
1(

2
1+

2
2)

(21+̄22)
2 . Further, outcomes (prices)

reflect realized draws from the accounting system, s, whereas the owner’s ex-
pected utility is based on anticipated reports and her knowledge of the distribution
for (s, EU). The causal effect of treatment (report precision choice) on outcomes
is the subject under study and is almost surely endogenous. Our analysis enter-
tains variations of treatment data including binary choice that is observed (by the
analyst) binary, a continuum of choices that is observed binary, and continuous
treatment that is observed from a continuum of choices.

10.7.1 Binary report precision choice
Suppose there are two types of owners, those with low report precision cost pa-
rameter Ld , and those with high report precision cost parameter Hd . An owner
chooses report precision based on maximizing her expected utility, a portion of
which is unobservable (to the analyst). For simplicity, we initially assume report
precision is binary and observable to the analyst.

Base case

Focus attention on the treatment effect of report precision. To facilitate this exer-
cise, we simulate data by drawing 200 samples of 2, 000 observations for normally
distributed reports with mean µ and variance 21 + 22. Parameter values are tab-
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ulated below

.

Base case parameter values
µ = 1, 000
21 = 100

L = H =  = 7
b = 150
b = 128.4
 = 2.5
 = 0.02

Ld  N

0.02, 0.0052



Hd  N

0.04, 0.012



The random jd draws are not observed by firm owners until after their report
precision choices are made.14 On the other hand, the analyst observes jd draws
ex post but their mean is unknown.15 The owner chooses inverse report precision
(report variance)


L2
2
= 133.5,


H2
2
= 131.7


to maximize her expected

utility given her type, E

Ld

, or E


Hd

.

The report variance choices described above are the Nash equilibrium strate-
gies for the owner and investors. That is, for Ld , investors’ conjecture


L2
2
=

133.5 and the owner’s best response is

L2
2
= 133.5. While for Hd , investors’

conjecture

H2
2
= 131.7 and the owner’s best response is


H2
2
= 131.7.

Hence, the owner’s expected utility associated with low variance reports given
Ld is (EU1 | D = 1) = 486.8 while the owner’s expected utility associated
with high variance reports given Ld is lower, (EU0 | D = 1) = 486.6. Also,
the owner’s expected utility associated with high variance reports given Hd is
(EU0 | D = 0) = 487.1 while the owner’s expected utility associated with low
variance reports given Hd is lower, (EU1 | D = 0) = 486.9.
Even though treatment choice is driven by cost of transaction design, d, ob-

servable outcomes are traded values, P , and don’t reflect cost of transaction de-
sign. To wit, the observed treatment effect on the treated is

TT =

PL | D = 1




PH | D = 1


= (Y1 | D = 1) (Y0 | D = 1)

=


µ+

21

21 +

̄L2
2

sL  µ


 

21

̄L2
2

21 +

̄L2
2






µ+

21

21 +

̄L2
2

sH  µ


 

21

̄L2
2

21 +

̄L2
2



Since E

sL  µ


= E


sH  µ


= 0,

E [TT ] = ATT = 0

14For the simulation, type is drawn from a Bernoulli distribution with probability 0.5.
15Consequently, even if other parameters are observed by the analyst, there is uncertainty associated

with selection due to jd.
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Also, the observed treatment effect on the untreated is

TUT =

PL | D = 0




PH | D = 0


= (Y1 | D = 0) (Y0 | D = 0)

=


µ+

21

21 +

̄H2
2

sL  µ


 

21

̄H2
2

21 +

̄H2
2






µ+

21

21 +

̄H2
2

sH  µ


 

21

̄H2
2

21 +

̄H2
2



and
E [TUT ] = ATUT = 0

Therefore, the average treatment effect is

ATE = 0

However, the OLS estimand is

OLS = E

PL | D = 1




PH | D = 0



= E [(Y1 | D = 1) (Y0 | D = 0)]

=


µ+

21

21 +

̄L2
2E


sL  µ


 

21

̄L2
2

21 +

̄L2
2






µ+

21

21 +

̄H2
2E


sH  µ


 

21

̄H2
2

21 +

̄H2
2



= 
21

̄H2
2

21 +

̄H2
2  

21

̄L2
2

21 +

̄L2
2

For the present example, the OLS bias is nonstochastic




21

̄H2
2

21 +

̄H2
2 

21

̄L2
2

21 +

̄L2
2


= 2.33

Suppose we employ a naive (unsaturated) regression model, ignoring the OLS
bias,

E [Y | s,D] = 0 + 1s+ 2D

or even a saturated regression model that ignores the OLS bias

E [Y | s,D] = 0 + 1s+ 2Ds+ 3D

where
D = 1 if EUL > EUH

0 if EUL < EUH
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Table 10.29: Report precision OLS parameter estimates for binary base case

statistic 0 1 2 (estATE)
mean 172.2 0.430 2.260
median 172.2 0.430 2.260
std.dev. 0.069 0.0001 0.001
minimum 172.0 0.430 2.264
maximum 172.4 0.430 2.257

E [Y | D, s] = 0 + 1s+ 2D

Table 10.30: Report precision average treatment effect sample statistics for
binary base case

statistic ATT ATUT ATE
mean 0.024 0.011 0.006
median 0.036 0.002 0.008
std.dev. 0.267 0.283 0.191
minimum 0.610 0.685 0.402
maximum 0.634 0.649 0.516

EU j = µ j
21


̄j2

2

21 +

̄j2

2  
41


21 +


j2

2


21 +


̄j2

22



b


j2

22
 E


jd


b̂


j2

22

Y = DY L + (1D)Y H

Y j = µ+
21

21 +

̄j2

2

sj  µ


 j

21


̄j2

2

21 +

̄j2

2

and

s = DsL + (1D) sH

sj  N


µ,21 +


j2

2

for j  {L,H}. Estimation results for the above naive regression are reported in
table 10.29. Since this is simulation, we have access to the "missing" data and can
provide sample statistics for average treatment effects. Sample statistics for stan-
dard average treatment effects, ATE, ATT, and ATUT, are reported in table 10.30.
Estimation results for the above saturated regression are reported in table 10.31.
As expected, the results indicate substantial OLS selection bias in both regres-
sions. Clearly, to effectively estimate any treatment effect, we need to eliminate
this OLS selection bias from outcome.
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Table 10.31: Report precision saturated OLS parameter estimates for binary base
case

statistic 0 1 2
mean 602.1 0.432 0.003
median 602.1 0.432 0.003
std.dev. 0.148 0.000 0.000
minimum 601.7 0.432 0.003
maximum 602.6 0.432 0.003
statistic estATT estATUT 3 (estATE)
mean 2.260 2.260 2.260
median 2.260 2.260 2.260
std.dev. 0.001 0.001 0.001
minimum 2.264 2.265 2.264
maximum 2.255 2.256 2.257

E [Y | D, s] = 0 + 1s+ 2Ds+ 3D

Adjusted outcomes

It’s unusual to encounter nonstochastic selection bias.16 Normally, nonstochastic
bias is easily eliminated as it’s captured in the intercept but here the selection bias
is perfectly aligned with the treatment effect of interest. Consequently, we must
decompose the two effects — we separate the selection bias from the treatment
effect. Since the components of selection bias are proportional to the coefficients
on the reports and these coefficients are consistently estimated when selection
bias is nonstochastic, we can utilize the estimates from the coefficients on sL

and sH . For example, the coefficient on sL is sL =
21

21+(̄L2 )
2 . Then,


̄L2
2
=

21(1sL)
sL

and 21(̄
L
2 )

2

21+(̄L2 )
2 = sL

21(1sL)
sL

= 21 (1 sL). Hence, the OLS
selection bias

bias = 


21

̄H2
2

21 +

̄H2
2 

21

̄L2
2

21 +

̄L2
2



can be written
bias = 21 (sL  sH )

This decomposition suggests we work with adjusted outcome

Y  = Y  21 (DsL  (1D)sH )

16Like the asset revaluation setting (chapter 9), the explanation lies in the lack of common support
for identifying counterfactuals. In this base case, cost of transaction design type (L or H) is a perfect
predictor of treatment. That is, Pr (D = 1 | type = L) = 1 and Pr (D = 1 | type = H) = 0. In
subsequent settings, parameter variation leads to common support and selection bias is resolved via
more standard IV approaches.
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The adjustment can be estimated as follows. Estimate sL and sH from the
regression

E

Y | D, sL, sH


= 0 + 1D + sLDs

L + sH (1D) sH

Then, since

Y j = µ+
21

21 +

̄j2

2

sj  µ


 j

21


̄j2

2

21 +

̄j2

2

= µ+ sj

sj  µ


 j21 (1 sj )

we can recover the weight,  = 21, on (1 sj ) utilizing the "restricted"
regression

E


Y  0  sLD


sL  µ



sH (1D)

sH  µ

 | D, sL, sH ,sL ,sH


=  [D (1 sL) + (1D) (1 sH )]

Finally, adjusted outcome is determined by plugging the estimates for , sL , and
sH into

Y  = Y +  (DsL  (1D)sH )
Now, we revisit the saturated regression employing the adjusted outcome Y .

E [Y  | D, s] = 0 + 1 (s µ) + 2D (s µ) + 3D

The coefficient onD, 2,estimates the average treatment effect. Estimation results
for the saturated regression with adjusted outcome are reported in table 10.32.
As there is no residual uncertainty, response is homogeneous and the sample

statistics for standard treatment effects, ATE, ATT, and ATUT, are of very simi-
lar magnitude — certainly within sampling variation. No residual uncertainty (in
adjusted outcome) implies treatment is ignorable.

Heterogeneous response

Now, we explore a more interesting setting. Everything remains as in the base case
except there is unobserved (by the analyst) variation in  the parameter controlling
the discount associated with uncertainty in the buyer’s ability to manage the assets.
In particular, L,H are independent normally distributed with mean 7 and unit
variance.17 These L,H draws are observed by the owner in conjunction with
the known mean for Ld ,Ld when selecting report precision. In this setting, it is
as if the owners choose equilibrium inverse-report precision, L2 or H2 , based on
the combination of L and Ld or 

H and Hd with greatest expected utility.18

17Independent identically distributed draws of  for L-type and H-type firms ensure the variance-
covariance matrix for the unobservables/errors is nonsingular.
18Notice the value of  does not impact the value of the welfare maximizing report variance. There-

fore, the optimal inverse report precision choices correspond to

, , E


jd


as in the base case

but the binary choice L2 or H2 does depend on j .
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Table 10.32: Report precision adjusted outcome OLS parameter estimates for
binary base case

statistic 0 1 2
mean 1000 0.432 0.000
median 1000 0.432 0.000
std.dev. 0.148 0.000 0.001
minimum 999.6 0.432 0.004
maximum 1001 0.432 0.003

statistic estATT estATUT 3 (estATE)
mean 0.000 0.000 0.000
median 0.000 0.000 0.000
std.dev. 0.001 0.002 0.001
minimum 0.004 0.005 0.004
maximum 0.005 0.004 0.003
E [Y  | D, s] = 0 + 1 (s s) + 2D (s s) + 3D

Therefore, unlike the base case, common support is satisfied, i.e., there are no
perfect predictors of treatment, 0 < Pr


D = 1 | j ,jd


< 1. Plus, the choice

equation and price regressions have correlated, stochastic unobservables.19 In fact,
this correlation in the errors20 creates a classic endogeneity concern addressed by
Heckman [1974, 1975, 1978, 1979].
First, we define average treatment effect estimands for this heterogeneity set-

ting, then we simulate results for various treatment effect identification strategies.
The average treatment effect on the treated is

ATT = E

Y1  Y0 | D = 1,H ,L



= E




µ+

21
21+(̄L2 )

2


sL  µ


 L

21(̄
L
2 )

2

21+(̄L2 )
2



µ+

21
21+(̄L2 )

2


sH  µ


 H

21(̄
L
2 )

2

21+(̄L2 )
2







=

H  L

 21

̄L2
2

21 +

̄L2
2

19The binary nature of treatment may seem a bit forced with response heterogeneity. This could be
remedied by recognizing that owners’ treatment choice is continuous but observed by the analyst to be
binary. In later discussions, we explore such a setting with a richer DGP.
20The two regression equations and the choice equation have trivariate normal error structure.



246 10. Treatment effects: IV

The average treatment effect on the untreated is

ATUT = E

Y1  Y0 | D = 0,H ,L



= E


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21
21+(̄H2 )

2


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
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21(̄
H
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2
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2



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
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
 H
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2

21+(̄H2 )
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





=

H  L

 21

̄H2
2

21 +

̄H2
2

OLS

Our first simulation for this heterogeneous setting attempts to estimate average
treatment effects via OLS

E [Y | s,D] = 0 + 1 (s s) + 2 (s s)D + 3D

Following Wooldridge, the coefficient onD, 3, is the model-based average treat-
ment effect (under strong identification conditions). Throughout the remaining
discussion (s s) is the regressor of interest (based on our structural model). The
model-based average treatment effect on the treated is

estATT = 3 +


i

Di (si  s)2

i

Di

and the model-based average treatment effect on the untreated is

estATUT = 3 


i

Di (si  s)2

i

(1Di)

Simulation results, including model-based estimates and sample statistics for
standard treatment effects, are reported in table 10.33. Average treatment effect
sample statistics from the simulation for this binary heterogenous case are re-
ported in table 10.34. Not surprisingly, OLS performs poorly. The key OLS identi-
fication condition is ignorable treatment but this is not sustained by theDGP. OLS
model-based estimates of ATE are not within sampling variation of the average
treatment effect. Further, the data are clearly heterogeneous and OLS (ignorable
treatment) implies homogeneity.

IV approaches

Poor instruments

Now, we consider various IV approaches for addressing endogeneity. First, we
explore various linear IV approaches. The analyst observes D and Ld if D = 1
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Table 10.33: Report precision adjusted outcome OLS parameter estimates for
binary heterogeneous case

statistic 0 1 2
mean 634.2 0.430 0.003
median 634.2 0.429 0.007
std.dev. 1.534 0.098 0.137
minimum 629.3 0.197 0.458
maximum 637.7 0.744 0.377

statistic 3 (estATE) estATT estATUT
mean 2.227 2.228 2.225
median 2.236 2.257 2.207
std.dev. 2.208 2.210 2.207
minimum 6.672 6.613 6.729
maximum 3.968 3.971 3.966
E [Y | s,D] = 0 + 1 (s s) + 2 (s s)D + 3D

Table 10.34: Report precision average treatment effect sample statistics for
binary heterogeneous case

statistic ATE ATT ATUT
mean 0.189 64.30 64.11
median 0.298 64.19 64.10
std.dev. 1.810 1.548 1.462
minimum 4.589 60.47 67.80
maximum 4.847 68.38 60.90
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Table 10.35: Report precision poor 2SLS-IV estimates for binary heterogeneous
case

statistic 0 1 2
mean 634.2 0.433 0.010
median 634.4 0.439 0.003
std.dev. 1.694 0.114 0.180
minimum 629.3 0.145 0.455
maximum 638.2 0.773 0.507

statistic 3 (estATE) estATT estATUT
mean 2.123 2.125 2.121
median 2.212 2.217 2.206
std.dev. 2.653 2.650 2.657
minimum 7.938 7.935 7.941
maximum 6.425 6.428 6.423
E [Y | s,D] = 0 + 1 (s s) + 2 (s s)D + 3D

or Hd if D = 0. Suppose the analyst employs d = DLd + (1D)
H
d as an

"instrument." As desired, d is related to report precision selection, unfortunately
d is not conditionally mean independent, E


yj | s,d


= E


yj | s


. To see

this, recognize the outcome errors are a function of j and while jd and 
j are

independent, only d and not jd is observed. Since d and 
j are related through

selection D, d is a poor instrument. Two stage least squares instrumental vari-
able estimation (2SLS-IV) produces the results reported in table 10.35 where 3
is the model estimate for ATE. These results differ little from the OLS results ex-
cept the IV model-based interval estimates of the treatment effects are wider as
is expected even of a well-specified IV model. The results serve as a reminder
of how little consolation comes from deriving similar results from two or more
poorly-specified models.

Weak instruments

Suppose we have a "proper" instrument z in the sense that z is conditional mean
independent. For purposes of the simulation, we construct the instrument z as the
residuals from a regression of d onto

UL = 

L  E []


D

21

L2
2

21 +

L2
2 + (1D)

21

H2
2

21 +

H2
2



and

UH = 

H  E []


D

21

L2
2

21 +

L2
2 + (1D)

21

H2
2

21 +

H2
2



But, we wish to explore the implications for treatment effect estimation if the
instrument is only weakly related to treatment. Therefore, we create a noisy in-
strument by adding an independent normal random variable  with mean zero and
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Table 10.36: Report precision weak 2SLS-IV estimates for binary heterogeneous
case

statistic 0 1 2
mean 628.5 0.605 2.060
median 637.3 0.329 0.259
std.dev. 141.7 7.678 15.52
minimum 856.9 73.00 49.60
maximum 915.5 24.37 153.0

statistic 3 (estATE) estATT estATUT
mean 8.770 8.139 9.420
median 6.237 6.532 6.673
std.dev. 276.8 273.2 280.7
minimum 573.3 589.4 557.7
maximum 2769 2727 2818
E [Y | s,D] = 0 + 1 (s s) + 2 (s s)D + 3D

standard deviation 0.1. This latter perturbation ensures the instrument is weak.
This instrument z +  is employed to generate model-based estimates of some
standard treatment effects via 2SLS-IV. Results are provided in table 10.36 where
3 is the model estimate for ATE. The weak IV model-estimates are extremely
noisy. Weak instruments frequently are suspected to plague empirical work. In a
treatment effects setting, this can be a serious nuisance as evidenced here.

A stronger instrument

Suppose z is available and employed as an instrument. Model-based treatment
effect estimates are reported in table 10.37 where 3 is the model estimate for
ATE. These results are far less noisy but nonetheless appear rather unsatisfactory.
The results, on average, diverge from sample statistics for standard treatment ef-
fects and provide little or no evidence of heterogeneity. Why? As Heckman and
Vytlacil [2005, 2007] discuss, it is very difficult to identify what treatment effect
linear IV estimates and different instruments produce different treatment effects.
Perhaps then, it is not surprising that we are unable to connect the IV treatment
effect to ATE, ATT, or ATUT.

Propensity score as an instrument

A popular ignorable treatment approach implies homogeneous response21 and
uses the propensity score as an instrument. We estimate the propensity score via a
probit regression ofD onto instruments z and z , where z is (as defined above)
the residuals of d = DLd + (1D)Hd onto UL and UH and z is the resid-
uals from a regression of 2 = DL2 + (1D)H2 onto UL and UH . Now, use

21An exception, propensity score with heterogeneous response, is discussed in section 10.5.1. How-
ever, this IV-identification strategy doesn’t accommodate the kind of unobservable heterogeneity
present in this report precision setting.
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Table 10.37: Report precision stronger 2SLS-IV estimates for binary
heterogeneous case

statistic 0 1 2
mean 634.3 0.427 0.005
median 634.2 0.428 0.001
std.dev. 2.065 0.204 0.376
minimum 629.2 0.087 0.925
maximum 639.8 1.001 1.005

statistic 3 (estATE) estATT estATUT
mean 2.377 2.402 2.351
median 2.203 2.118 2.096
std.dev. 3.261 3.281 3.248
minimum 10.15 10.15 10.15
maximum 6.878 6.951 6.809
E [Y | s,D] = 0 + 1 (s s) + 2 (s s)D + 3D

the estimated probabilitiesm = Pr (D = 1 | z, z) in place ofD to estimate the
treatment effects.

E [Y | s,D] = 0 + 1 (s s) + 2 (s s)m+ 3m

Model-based estimates of the treatment effects are reported in table 10.38 with
3 corresponding to ATE. These results also are very unsatisfactory and highly
erratic. Poor performance of the propensity score IV for estimating average treat-
ment effects is not surprising as the data are inherently heterogeneous and the key
propensity score IV identification condition is ignorability of treatment.22 Next,
we explore propensity score matching followed by two IV control function ap-
proaches.

Propensity score matching

Propensity score matching estimates of average treatment effects are reported in
table 10.39.23 While not as erratic as the previous results, these results are also
unsatisfactory. Estimated ATT and ATUT are the opposite sign of one another
as expected but reversed of the underlying sample statistics (based on simulated
counterfactuals). This is not surprising as ignorability of treatment is the key iden-
tifying condition for propensity score matching.

Ordinate IV control function

Next, we consider an ordinate control function IV approach. The regression is

E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

22Ignorable treatment implies homogeneous response, ATE = ATT = ATUT , except for com-
mon support variations.
23Propensity scores within 0.02 are matched using Sekhon’s [2008] matching R package.
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Table 10.38: Report precision propensity score estimates for binary
heterogeneous case

statistic 0 1 2 3
mean 634.4 0.417 0.024 2.610
median 634.3 0.401 0.039 2.526
std.dev. 1.599 0.151 0.256 2.075
minimum 630.9 0.002 0.617 7.711
maximum 638.9 0.853 0.671 2.721

statistic estATE estATT estATUT
mean 74.64 949.4 799.8
median 7.743 386.1 412.8
std.dev. 1422 2400 1503
minimum 9827 20650 57.75
maximum 7879 9.815 17090
E [Y | s,m] = 0 + 1 (s s) + 2 (s s)m+ 3m

Table 10.39: Report precision propensity score matching estimates for binary
heterogeneous case

statistic estATE estATT estATUT
mean 2.227 39.88 35.55
median 2.243 39.68 35.40
std.dev. 4.247 5.368 4.869
minimum 14.00 52.00 23.87
maximum 12.43 25.01 46.79
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Table 10.40: Report precision ordinate control IV estimates for binary
heterogeneous case

statistic 0 1 2 3
mean 598.6 0.410 0.030 127.6
median 598.5 0.394 0.049 127.1
std.dev. 3.503 0.139 0.237 12.08
minimum 590.0 0.032 0.595 91.36
maximum 609.5 0.794 0.637 164.7

statistic 4 (estATE) estATT estATUT
mean 2.184 33.41 37.91
median 2.130 33.21 37.83
std.dev. 1.790 3.831 3.644
minimum 6.590 22.27 48.56
maximum 2.851 43.63 26.01
E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

and is estimated via IV where instruments {, (s s) ,m (s s) , (Z) ,m} are
employed and m = Pr


D = 1 | Z =


 z z


is estimated via probit.

ATE is estimated via 4, the coefficient on D. Following the general IV identifi-
cation of ATT, ATT is estimated as

estATT = 4 +


Di3 (Zi)

Di

and ATUT is estimated as

estATUT = 4 

Di3 (Zi)
(1Di)

Simulation results are reported in table 10.40. The ordinate control function re-
sults are clearly the most promising so far but still underestimate the extent of
heterogeneity. Further, an important insight is emerging. If we only compare OLS
and ATE estimates, we might conclude endogeneity is a minor concern. However,
estimates of ATT and ATUT and their support of self-selection clearly demonstrate
the false nature of such a conclusion.

Inverse-Mills IV

Heckman’s control function approach, utilizing inverse-Mills ratios as the control
function for conditional expectations, employs the regression

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3 (1D)

H + 4D
L + 5D

where s is the sample average of s, H =  (Z)
1(Z) , 

L = (Z)
(Z) , and  is the

estimated parameter vector from a probit regression of report precision choice D
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Table 10.41: Report precision inverse Mills IV estimates for binary
heterogeneous case

statistic 0 1 2 3 4
mean 603.2 0.423 0.433 56.42 56.46
median 603.1 0.416 0.435 56.72 56.63
std.dev. 1.694 0.085 0.089 2.895 2.939
minimum 598.7 0.241 0.188 65.40 48.42
maximum 607.8 0.698 0.652 47.53 65.59

statistic 5 (estATE) estATT estATUT
mean 2.155 59.65 64.14
median 2.037 59.59 64.09
std.dev. 1.451 2.950 3.039
minimum 6.861 51.36 71.19
maximum 1.380 67.19 56.10

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3 (1D)

H + 4D
L + 5D

on Z =

 z z


( is a vector of ones). The coefficient on D, 5, is the

model-based estimate of the average treatment effect, ATE. The average treatment
effect on the treated is estimated as

ATT = 5 + (2  1)E [s s] + (4  3)E

L


While the average treatment effect on the untreated is estimated as

ATUT = 5 + (2  1)E [s s] + (4  3)E

H


Simulation results including model-estimated average treatment effects on treated
(estATT) and untreated (estATUT) are reported in table 10.41. The inverse-Mills
treatment effect estimates correspond nicely with their sample statistics. Next, we
explore a variation on treatment.

10.7.2 Continuous report precision but observed binary
Heterogeneous response

Now, suppose the analyst only observes high or low report precision but there is
considerable variation across firms. In other words, wide variation in parameters
across firms is reflected in a continuum of report precision choices.24 Specifically,
variation in the cost of report precision parameter , the discount parameter asso-
ciated with the buyer’s uncertainty in his ability to manage the asset, , and the

24It is not uncommon for analysts to observe discrete choices even though there is a richer under-
lying choice set. Any discrete choice serves our purpose here, for simplicity we work with the binary
case.
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owner’s risk premium parameter  produces variation in owners’ optimal report
precision 1

2
.

Variation in d is again not observed by the owners prior to selecting report
precision. However, d is observed ex post by the analyst where Ld is normally
distributed with mean 0.02 and standard deviation 0.005, while Hd is normally
distributed with mean 0.04 and standard deviation 0.01. There is unobserved (by
the analyst) variation in  the parameter controlling the discount associated with
uncertainty in the buyer’s ability to manage the assets such that  is indepen-
dent normally distributed with mean 7 and variance 0.2. Independent identically
distributed draws of  are taken for L-type and H-type firms so that the variance-
covariance matrix for the unobservables/errors is nonsingular. On the contrary,
draws for "instruments"  (normally distributed with mean 0.03 and standard
deviation 0.005) and  (normally distributed with mean 5 and standard devia-
tion 1) are not distinguished by type to satisfy IV assumptions. Otherwise, condi-
tional mean independence of the outcome errors and instruments is violated.25 For
greater unobservable variation (that is, variation through the  term), the weaker
are the instruments, and the more variable is estimation of the treatment effects.
Again, endogeneity is a first-order consideration as the choice equation and price
(outcome) regression have correlated, stochastic unobservables.

OLS

First, we explore treatment effect estimation via the following OLS regression

E [Y | s,D] = 0 + 1 (s s) + 2D (s s) + 3D

Simulation results are reported in table 10.42. Average treatment effect sample
statistics from the simulation are reported in table 10.43. In this setting, OLS ef-
fectively estimates the average treatment effect, ATE, for a firm/owner drawn at
random. This is readily explained by noting the sample statistic estimated by OLS
is within sampling variation of the sample statistic for ATE but ATE is indistin-
guishable from zero. However, if we’re interested in response heterogeneity and
other treatment effects, OLS, not surprisingly, is sorely lacking. OLS provides in-
consistent estimates of treatment effects on the treated and untreated and has al-
most no diagnostic power for detecting response heterogeneity — notice there is
little variation in OLS-estimated ATE, ATT, and ATUT.

Propensity score as an instrument

Now, we estimate the propensity score via a probit regression of D onto instru-
ments  and , and use the estimated probabilities

m = Pr (D = 1 | z, z)

25As we discuss later, these conditions are sufficient to establish  and  as instruments — though
weak instruments.
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Table 10.42: Continuous report precision but observed binary OLS parameter
estimates

statistic 0 1 2
mean 634.3 0.423 0.004
median 634.3 0.425 0.009
std.dev. 1.486 0.096 0.144
minimum 630.7 0.151 0.313
maximum 638.4 0.658 0.520

statistic 3 (estATE) estATT estATUT
mean 1.546 1.544 1.547
median 1.453 1.467 1.365
std.dev. 2.083 2.090 2.078
minimum 8.108 8.127 8.088
maximum 5.170 5.122 5.216
E [Y | s,D] = 0 + 1 (s s) + 2D (s s) + 3D

Table 10.43: Continuous report precision but observed binary average treatment
effect sample statistics

statistic ATE ATT ATUT
mean 0.194 64.60 64.20
median 0.215 64.55 64.18
std.dev. 1.699 1.634 1.524
minimum 4.648 60.68 68.01
maximum 4.465 68.70 60.18
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Table 10.44: Continuous report precision but observed binary propensity score
parameter estimates

statistic 0 1 2 3
mean 612.2 0.095 0.649 42.80
median 619.9 0.309 0.320 24.43
std.dev. 248.2 4.744 9.561 499.2
minimum 1693 29.80 46.64 1644
maximum 1441 23.35 60.58 4661

statistic estATE estATT estATUT
mean 1.558 1.551 1.565
median 1.517 1.515 1.495
std.dev. 2.086 2.090 2.085
minimum 8.351 8.269 8.437
maximum 5.336 5.300 5.370
E [Y | s,m] = 0 + 1 (s s) + 2 (s s)m+ 3m

Table 10.45: Continuous report precision but observed binary propensity score
matching parameter estimates

statistic estATE estATT estATUT
mean 1.522 1.612 1.430
median 1.414 1.552 1.446
std.dev. 2.345 2.765 2.409
minimum 7.850 8.042 8.638
maximum 6.924 9.013 4.906

in place of D to estimate the treatment effects.

E [Y | s,m] = 0 + 1 (s s) + 2 (s s)m+ 3m

Model-based estimates of the treatment effects are reported in 10.44. These results
again are very unsatisfactory and highly variable. As before, poor performance of
the propensity score IV for estimating average treatment effects is not surprising
as the data are inherently heterogeneous and the key propensity score IV identifi-
cation condition is ignorability of treatment (conditional mean redundancy).

Propensity score matching

Propensity score matching estimates of average treatment effects are reported in
table 10.45.26 While not as erratic as the previous results, these results are also
unsatisfactory. Estimated ATT and ATUT are nearly identical even though the data
are quite heterogeneous. The poor performance is not surprising as ignorability

26Propensity scores within 0.02 are matched using Sekhon’s [2008] R matching package. Other bin
sizes (say, 0.01) produce similar results though fewer matches..



10.7 Regulated report precision 257

Table 10.46: Continuous report precision but observed binary ordinate control IV
parameter estimates

statistic 0 1 2 3
mean 11633 5.798 10.68 30971
median 772.7 0.680 0.497 390.8
std.dev. 176027 36.08 71.36 441268
minimum 2435283 58.78 663.3 1006523
maximum 404984 325.7 118.6 6106127

statistic 4 (estATE) estATT estATUT
mean 173.7 12181 12505
median 11.21 168.6 176.3
std.dev. 1176 176015 175648
minimum 11237 407049 2431259
maximum 2598 2435846 390220
E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

of treatment (conditional stochastic independence, or at least, conditional mean
independence) is the key identifying condition for propensity score matching.

Ordinate IV control

Now, we consider two IV approaches for addressing endogeneity. The ordinate
control function regression is

E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

and is estimated via IV where instruments

{, (s s) ,m (s s) , (Z) ,m}

are employed and

m = Pr

D = 1 | Z =


  



is estimated via probit. ATE is estimated via 4, the coefficient on D. Simulation
results are reported in table 10.46. The ordinate control function results are incon-
sistent and extremely noisy. Apparently, the instruments,  and , are sufficiently
weak that the propensity score is a poor instrument. If this conjecture holds, we
should see similar poor results in the second IV control function approach as well.

Inverse-Mills IV

The inverse-Mills IV control function regression is

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3D

H + 4 (1D)
L + 5D
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Table 10.47: Continuous report precision but observed binary inverse Mills IV
parameter estimates

statistic 0 1 2 3 4
mean 633.7 0.423 0.427 0.926 55.41
median 642.2 0.424 0.418 9.178 11.44
std.dev. 198.6 0.096 0.106 249.9 407.9
minimum 1141 0.152 0.164 2228 3676
maximum 1433 0.651 0.725 1020 1042

statistic 5 (estATE) estATT estATUT
mean 43.38 0.061 86.87
median 23.46 16.03 17.39
std.dev. 504.2 399.1 651.0
minimum 1646 1629 1663
maximum 12.50 3556 5867

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3D

H + 4 (1D)
L + 5D

where s is the sample average of s, H =  (Z)
1(Z) , 

L = (Z)
(Z) , and  is

the estimated parameters from a probit regression of precision choice D on Z =
  


( is a vector of ones). The coefficient onD, 5, is the estimate of

the average treatment effect, ATE. The average treatment effect on the treated is
estimated as

ATT = 5 + (2  1)E [s s] + (4  3)E

L


While the average treatment effect on the untreated is estimated as

ATUT = 5 + (2  1)E [s s] + (4  3)E

H


Simulation results including estimated average treatment effects on treated (es-
tATT) and untreated (estATUT) are reported in table 10.47. While not as variable
as ordinate control function model estimates, the inverse-Mills IV estimates are
inconsistent and highly variable. It’s likely, we are unable to detect endogeneity
or diagnose heterogeneity based on this strategy as well.
The explanation for the problem lies with our supposed instruments,  and .

Conditional mean independence may be violated due to variation in report pre-
cision or the instruments may be weak. That is, optimal report precision is in-
fluenced by variation in  and  and variation in report precision is reflected in
outcome error variation

UL = 

L  E []


D

21

̄L2
2

21 +

̄L2
2 + (1D)

21

̄H2
2

21 +

̄H2
2



and

UH = 

H  E []


D

21

̄L2
2

21 +

̄L2
2 + (1D)

21

̄H2
2

21 +

̄H2
2


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Table 10.48: Continuous report precision but observed binary sample correlations

statistic r

, UL


r

, UH


r

, UL


r

, UH



mean 0.001 0.002 0.003 0.000
median 0.001 0.004 0.003 0.001
std.dev. 0.020 0.024 0.023 0.024
minimum 0.052 0.068 0.079 0.074
maximum 0.049 0.053 0.078 0.060

statistic r (, D) r (, D) r (w1, D) r (w2, D)
mean 0.000 0.001 0.365 0.090
median 0.001 0.003 0.365 0.091
std.dev. 0.021 0.025 0.011 0.013
minimum 0.046 0.062 0.404 0.049
maximum 0.050 0.075 0.337 0.122

To investigate the poor instrument problem we report in table 10.48 sample cor-
relation statistics r (·, ·) for  and  determinants of optimal report precision with
unobservable outcome errors UL and UH . We also report sample correlations
between potential instruments, , , w1, w2, and treatment D to check for weak
instruments. The problem with the supposed instruments,  and , is apparently
that they’re weak and not that they’re correlated with UL and UH . On the other
hand, w1 and w2 (defined below) hold some promise. We experiment with these
instruments next.

Stronger instruments

To further investigate this explanation, we employ stronger instruments, w1 (the
component of d independent of UL and UH ) and w2 (the component of D2 
DL2 + (1D)H2 independent of UL and UH ),27 and reevaluate propensity
score as an instrument.28

Propensity score as an instrument. Now, we use the estimated probabilities

m = Pr (D = 1 | w1, w2)

from the above propensity score in place ofD to estimate the treatment effects.

E [Y | s,m] = 0 + 1 (s s) + 2 (s s)m+ 3m

Model-based estimates of the treatment effects are reported in table 10.49. These
results again are very unsatisfactory and highly variable. As before, poor perfor-
mance of the propensity score IV for estimating average treatment effects is not
surprising as the data are inherently heterogeneous and the key propensity score

27For purposes of the simulation, these are constructed from the residuals of regressions of d and
D2 on unobservables UH and UL.
28A complementary possibility is to search for measures of nonpecuniary satisfaction as instruments.

That is, measures which impact report precision choice but are unrelated to outcomes.
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Table 10.49: Continuous report precision but observed binary stronger propensity
score parameter estimates

statistic 0 1 2 3
mean 637.1 0.419 0.012 7.275
median 637.1 0.419 0.007 7.215
std.dev. 2.077 0.203 0.394 3.455
minimum 631.8 0.183 0.820 16.61
maximum 1441 23.35 60.58 4661

statistic estATE estATT estATUT
mean 70.35 99.53 41.10
median 69.73 97.19 41.52
std.dev. 12.92 21.04 7.367
minimum 124.0 188.0 58.59
maximum 5.336 5.300 5.370
E [Y | s,m] = 0 + 1 (s s) + 2 (s s)m+ 3m

Table 10.50: Continuous report precision but observed binary stronger propensity
score matching parameter estimates

statistic estATE estATT estATUT
mean 2.291 7.833 13.80
median 2.306 8.152 13.74
std.dev. 2.936 3.312 3.532
minimum 6.547 17.00 5.189
maximum 12.38 4.617 24.94

IV identification condition is ignorability of treatment (conditional mean indepen-
dence).

Propensity score matching

Propensity score matching estimates of average treatment effects are reported in
table 10.50.29 While not as erratic as the previous results, these results are also
unsatisfactory. Estimated ATT and ATUT are opposite their sample statistics. The
poor performance is not surprising as ignorability of treatment is the key identify-
ing condition for propensity score matching.

Ordinate IV control function. The ordinate control function regression is

E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

and is estimated via IV where instruments

{, (s s) ,m (s s) , (Z) ,m}

29Propensity scores within 0.02 are matched.
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Table 10.51: Continuous report precision but observed binary stronger ordinate
control IV parameter estimates

statistic 0 1 2 3
mean 616.0 0.419 0.010 66.21
median 616.5 0.418 0.006 65.24
std.dev. 7.572 0.202 0.381 24.54
minimum 594.0 0.168 0.759 1.528
maximum 635.5 0.885 1.236 147.3

statistic 4 (estATE) estATT estATUT
mean 11.91 12.52 36.35
median 11.51 12.31 36.53
std.dev. 4.149 7.076 12, 14
minimum 24.68 5.425 77.47
maximum 2.564 32.37 4.535
E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

are employed and

m = Pr

D = 1 | Z =


 w1 w2



is estimated via probit. ATE is estimated via 4, the coefficient on D. Simu-
lation results are reported in table 10.51. The ordinate control function results
are markedly improved relative to those obtained with poor instruments,  and
. Model-estimated average treatment effects are biased somewhat toward zero.
Nonetheless, the ordinate control IV approach might enable us to detect endogene-
ity via heterogeneity even though OLS and ATE are within sampling variation of
one another. The important point illustrated here is that the effectiveness of IV
control function approaches depend heavily on strong instruments. It’s important
to remember proper instruments in large part have to be evaluated ex ante — sam-
ple evidence is of limited help due to unobservability of counterfactuals.

Inverse-Mills IV

The inverse-Mills IV regression is

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3D

H + 4 (1D)
L + 5D

where s is the sample average of s, H =  (Z)
1(Z) , 

L = (Z)
(Z) , and 

is the estimated parameters from a probit regression of precision choice D on
Z =


 w1 w2


( is a vector of ones). The coefficient on D, 5, is the

estimate of the average treatment effect, ATE. Simulation results including es-
timated average treatment effects on treated (estATT) and untreated (estATUT)
are reported in table 10.52. While the inverse-Mills IV average treatment effect
estimates come closest of any strategies (so far considered) to maintaining the
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Table 10.52: Continuous report precision but observed binary stronger inverse
Mills IV parameter estimates

statistic 0 1 2 3 4
mean 611.6 0.423 0.428 32.03 80.04
median 611.5 0.431 0.422 32.12 79.84
std.dev. 2.219 0.093 0.099 3.135 6.197
minimum 606.6 0.185 0.204 41.47 62.39
maximum 617.5 0.635 0.721 20.70 98.32

statistic 5 (estATE) estATT estATUT
mean 35.55 43.77 114.8
median 35.11 43.80 114.7
std.dev. 3.868 4.205 8.636
minimum 47.33 30.02 142.0
maximum 26.00 57.97 90.55

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3D

H + 4 (1D)
L + 5D

spread between and direction of ATT and ATUT, all average treatment effect es-
timates are biased downward and the spread is somewhat exaggerated. Neverthe-
less, we are able to detect endogeneity and diagnose heterogeneity by examining
estimated ATT and ATUT. Importantly, this derives from employing strong in-
struments, w1 (the component of d independent of UL and UH ) and w2 (the
component of D2 = DL2 + (1D)H2 independent of UL and UH ). The next
example reexamines treatment effect estimation in a setting where OLS and ATE
differ markedly and estimates of ATE may help detect endogeneity.

Simpson’s paradox

Suppose a firm’s owner receives nonpecuniary and unobservable (to the analyst)
satisfaction associated with report precision choice. This setting highlights a deep
concern when analyzing data — perversely omitted, correlated variables which
produce a Simpson’s paradox result.
Consider Ld is normally distributed with mean 1.0 and standard deviation 0.25,

while Hd is normally distributed with mean 0.04 and standard deviation 0.01.30
As with j , these differences between L and H-type cost parameters are perceived
or observed by the owner; importantly, L has standard deviation 2 while H has
standard deviation 0.2 and each has mean 7. The unpaid cost of transaction design
is passed on to the firm and its investors by L-type owners. Investors are aware of
this (and price the firm accordingly) but the analyst is not (hence it’s unobserved).
L-type owners get nonpecuniary satisfaction from transaction design such that
their personal cost is only 2% of Ld


b 22

2
, while H-type owners receive

30The labels seem reversed, but bear with us.
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no nonpecuniary satisfaction — hence the labels.31 Other features remain as in
the previous setting. Accordingly, expected utility for L-type owners who choose
treatment is

EUL

L2

= µ L

21

̄L2
2

21 +

̄L2
2  

41


21 +


̄L2
2


21 +


̄L2
22



b


L2
22

 0.02Ld

b̂


L2
22

while expected utility for H-type owners who choose no treatment is

EUH

H2

= µ H

21

̄H2
2

21 +

̄H2
2  

41


21 +


̄H2
2


21 +


̄H2
22



b


H2
22

 Hd

b̂


H2
22

Also, outcomes or prices for owners who choose treatment include the cost of
transaction design and accordingly are

Y L = P

̄L2

= µ+

21

21 +

̄L2
2

sL  µ


L

21

̄L2
2

21 +

̄L2
2

L
d


b̂


L2
22

OLS

An OLS regression is

E [Y | s,D] = 0 + 1 (s s) + 2D (s s) + 3D

Simulation results are reported in table 10.53. The average treatment effect sam-
ple statistics from the simulation are reported in table 10.54. Clearly, OLS pro-
duces poor estimates of the average treatment effects. As other ignorable treat-
ment strategies fair poorly in settings of rich heterogeneity, we skip propensity
score strategies and move ahead to control function strategies.

Ordinate IV control

We consider two IV control function approaches for addressing endogeneity. An
ordinate control function regression is

E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

31The difference in variability between L and H creates the spread between ATE and the effect
estimated via OLS while nonpecuniary reward creates a shift in their mean outcomes such that OLS is
positive and ATE is negative.
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Table 10.53: Continuous report precision but observed binary OLS parameter
estimates for Simpson’s paradox DGP

statistic 0 1 2
mean 603.2 0.434 0.014
median 603.2 0.434 0.007
std.dev. 0.409 0.023 0.154
minimum 602.2 0.375 0.446
maximum 604.4 0.497 0.443

statistic 3 (estATE) estATT estATUT
mean 54.03 54.03 54.04
median 53.89 53.89 53.91
std.dev. 2.477 2.474 2.482
minimum 46.17 46.26 46.08
maximum 62.31 62.25 62.37
E [Y | s,D] = 0 + 1 (s s) + 2D (s s) + 3D

Table 10.54: Continuous report precision but observed binary average treatment
effect sample statistics for Simpson’s paradox DGP

statistic ATE ATT ATUT
mean 33.95 57.76 125.4
median 34.06 57.78 125.4
std.dev. 2.482 2.386 2.363
minimum 42.38 51.15 131.3
maximum 26.57 66.49 118.5
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Table 10.55: Continuous report precision but observed binary ordinate control IV
parameter estimates for Simpson’s paradox DGP

statistic 0 1 2 3
mean 561.0 0.441 0.032 266.3
median 561.5 0.479 0.041 263.7
std.dev. 9.703 0.293 0.497 31.41
minimum 533.5 0.442 1.477 182.6
maximum 585.7 1.305 1.615 361.5

statistic 4 (estATE) estATT estATUT
mean 48.72 48.45 145.6
median 49.02 47.97 143.0
std.dev. 8.190 10.43 16.58
minimum 71.88 21.53 198.0
maximum 25.12 84.89 99.13
E [Y | s,D,] = 0 + 1 (s s) + 2D (s s) + 3 (Z) + 4D

and is estimated via IV where instruments

{, s,m (s s)m, (Z) ,m}

are employed and

m = Pr

D = 1 | Z =


 w1 w2



is estimated via probit. ATE is estimated via 4, the coefficient on D. Simula-
tion results are reported in table 10.55. As expected, the ordinate control function
fairs much better than OLS. Estimates of ATUT are biased somewhat away from
zero and, as expected, more variable than the sample statistic, but estimates are
within sampling variation. Nevertheless, the ordinate control IV model performs
better than in previous settings. Next, we compare results with the inverse-Mills
IV strategy.

Inverse-Mills IV

The inverse-Mills IV control function regression is

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3 (1D)

H + 4D
L + 5D

where s is the sample average of s, H =  (Z)
1(Z) , 

L = (Z)
(Z) , and 

is the estimated parameters from a probit regression of precision choice D on
Z =


 w1 w2


( is a vector of ones). The coefficient on D, 5, is the

estimate of the average treatment effect, ATE. Simulation results including esti-
mated average treatment effects on treated (estATT) and untreated (estATUT) are
reported in table 10.56. As with the ordinate control function approach, inverse-
Mills estimates of the treatment effects (especially ATUT) are somewhat biased
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Table 10.56: Continuous report precision but observed binary inverse Mills IV
parameter estimates for Simpson’s paradox DGP

statistic 0 1 2 3 4
mean 603.3 0.434 0.422 0.057 182.8
median 603.2 0.434 0.425 0.016 183.0
std.dev. 0.629 0.023 0.128 0.787 11.75
minimum 601.1 0.375 0.068 2.359 151.8
maximum 604.9 0.497 0.760 1.854 221.7

statistic 5 (estATE) estATT estATUT
mean 74.17 53.95 201.9
median 74.46 53.88 201.3
std.dev. 8.387 2.551 16.58
minimum 99.78 45.64 256.7
maximum 52.65 61.85 159.1

E [Y | s,D,] = 0 + 1 (1D) (s s) + 2D (s s)
+3 (1D)

H + 4D
L + 5D

away from zero and, as expected, more variable than the sample statistics. How-
ever, the model supplies strong evidence of endogeneity (ATE along with ATT and
ATUT differ markedly fromOLS estimates) and heterogeneous response (ATE =
ATT = ATUT ). Importantly, mean and median estimates reveal a Simpson’s
paradox result—OLS estimates a positive average treatment effect while endo-
geneity of selection produces a negative average treatment effect.32

10.7.3 Observable continuous report precision choice
Now we consider the setting where the analyst observes a continuum of choices
based on the investors’ (equilibrium) conjecture of the owner’s report precision
 = 1

21+
2
2
. This plays out as follows. The equilibrium strategy is the fixed point

where the owner’s expected utility maximizing report precision, 1
2 =

1
21+

2
2
,

equals investors’ conjectured best response report precision,  = 1
21+

2
2
. Let con-

jectured report variance be denoted 2  21 + 
2
2. The owner’s expected utility

is

EU (2) = µ 
21̄

2
2

21 + ̄
2
2

 
41

21 + 

2
2



(21 + ̄
2
2)
2  


b 22

2  d

b̂ 22

2

32As noted previously, untabulated results using weak instruments ( and ) reveal extremely erratic
estimates of the treatment effects.
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substitution of 2 for 21 + 22 yields

EU (2) = µ 
21

̄2  21



̄2
 

41
2

̄4



b 2 + 21

2  d

b̂ 2 + 21

2

The first order condition combined with the equilibrium condition is

2 =
b+ db  41

24

+ d

s.t. 2 = 2

As the outcome equation

Y = P

̄22

= µ+

21
21 + ̄

2
2

(s µ) 
21̄

2
2

21 + ̄
2
2

= P () = µ+ 21 (s µ)   
2
1


1 21



is not directly affected by the owner’s report precision choice (but rather by the
conjectured report precision), we exploit the equilibrium condition to define an
average treatment effect

ATE () = E


Y




= 41

and an average treatment effect on the treated33

ATT () = E


Y


|  =  j


= j

4
1

If  differs across firms, as is likely, the outcome equation

Yj =

µ j

2
1


+

21

(sj  µ)  j +


j

4
1


 j

is a random coefficients model. And, if j41 and  j = 1
21+(2j)

2 are related, then
we’re dealing with a correlated random coefficients model.
For our experiment, a simulation based on 200 samples of (balanced) panel

data with n = 200 individuals and T = 10 periods (sample size, nT = 2, 000) is
employed. Three data variations are explored.

33As Heckman [1997] suggests the average treatment effect based on a random draw from the pop-
ulation of firms often doesn’t address a well-posed economic question whether treatment is continuous
or discrete.
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Table 10.57: Continuous treatment OLS parameter estimates and average
treatment effect estimates and sample statistics with only between individual

variation

statistic 0 1 2 (estATE) ATE corr (2i,  i)
mean 300.4 100.3 69916. 70002. 0.001
median 300.4 100.3 69938. 70007. 0.002
std.dev. 7.004 1.990 1616 73.91 0.067
minimum 263.1 93.44 61945. 69779. 0.194
maximum 334.9 106.2 78686. 70203. 0.140

E [Y | s,  ] = 0 + 1 (s s)  + 2

Between individual variation

First, we explore a setting involving only variation in report precision between in-
dividuals. The following independent stochastic parameters characterize the data

Stochastic components
parameters number of draws

  N (0.02, 0.005) n
d  N (0.02, 0.005) n
  N (2.5, 1) n
  N (7, 0.1) n
s  N (1000,) nT

where  is the equilibrium report standard deviation;  varies across firms but is
constant through time for each firm.
First, we suppose treatment is ignorable and estimate the average treatment

effect via OLS.
E [Y | s,  ] = 0 + 1 (s µ)  + 2

Then, we accommodate unobservable heterogeneity (allow treatment and treat-
ment effect to be correlated) and estimate the average treatment effect via 2SLS-
IV.
Hence, the DGP is

Y = 300 + 100 (s µ)  + (70, 000 + ) 

where  = j  E

j

 N (0, 1), j = 1, . . . , n.

OLS

Results for OLS along with sample statistics for ATE and the correlation between
treatment and treatment effect are reported in table 10.57 where 2 is the estimate
of ATE. The OLS results correspond quite well with the DGP and the average
treatment effect sample statistics. This is not surprising given the lack of correla-
tion between treatment and treatment effect.
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Table 10.58: Continuous treatment 2SLS-IV parameter and average treatment
effect estimates with only between individual variation

statistic 0 1 2 (estATE)
mean 300.4 100.3 69916.
median 300.4 100.2 69915.
std.dev. 7.065 1.994 1631
minimum 262.7 93.44 61308.
maximum 337.6 106.2 78781.
E [Y | s,  ] = 0 + 1 (s s)  + 2

2SLS-IV

On the other hand, as suggested by Wooldridge [1997, 2003], 2SLS-IV consis-
tently estimates ATE in this random coefficients setting. We employ the residuals
from regressions of (s µ)  and  on U as instruments, z1 and z2; these are
strong instruments. Results for 2SLS-IV are reported in table 10.58. The IV re-
sults correspond well with the DGP and the sample statistics for ATE. Given the
lack of correlation between treatment and treatment effect, it’s not surprising that
IV (with strong instruments) and OLS results are very similar.

Modest within individual variation

Second, we explore a setting involving within individual as well as between in-
dividuals report variation. Within individual variation arises through modest vari-
ation through time in the cost parameter associated with transaction design. The
following independent stochastic parameters describe the data

Stochastic components
parameters number of draws

  N (0.02, 0.005) n
d  N (0.02, 0.0005) nT

  N (2.5, 1) n
  N (7, 0.1) n

i =  +N (0, 0.0001) nT
s  N (1000,) nT

where  is the equilibrium report standard deviation;  varies across firms and
through time for each firm and unobserved i produces residual uncertainty.

OLS

This setting allows identification ofATE andATT whereATT ( = median [ ]).
First, we estimate the average treatment effects via OLS where individual specific
intercepts and slopes are accommodated.

E [Y | si,  i] =
n

i=1

0i + 1i (si  µ)  i + 2i i
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Table 10.59: Continuous treatment OLS parameter and average treatment effect
estimates for modest within individual report precision variation setting

statistic estATE estATT ( = median [ ])
mean 70306. 70152.
median 70193. 70368.
std.dev. 4625. 2211.
minimum 20419. 64722.
maximum 84891. 75192.
E [Y | si,  i] =

n
i=1 0i + 1i (si  µ)  i + 2i i

Table 10.60: Continuous treatment ATE and ATT sample statistics and
correlation between treatment and treatment effect for modest within individual

report precision variation setting

statistic ATE ATT ( = median [ ]) corr (2it,  it)
mean 70014. 70026 0.0057
median 70014. 69993 0.0063
std.dev. 65.1 974. 0.072
minimum 69850. 67404 0.238
maximum 70169. 72795 0.173

We report the simple average of 2 for estATE, and 2i for the median (of av-
erage  i by individuals) as estATT in table 10.59. That is, we average  i for
each individual, then select the median value of the individual averages as the fo-
cus of treatment on treated. Panel data allow us to focus on the average treatment
effect for an individual but the median reported almost surely involves different
individuals across simulated samples.
Sample statistics for ATE and ATT ( = median [ ]) along with the correla-

tion between treatment and the treatment effect are reported in table 10.60. There
is good correspondence between the average treatment effect estimates and sam-
ple statistics. The interval estimates for ATT are much tighter than those for ATE.
Correlations between treatment and treatment effect suggest there is little to be
gained from IV estimation. We explore this next.

2SLS-IV

Here, we follow Wooldridge [1997, 2003], and estimate average treatment effects
via 2SLS-IV in this random coefficients setting. We employ the residuals from
regressions of (s µ)  and  on U as strong instruments, z1 and z2. Results for
2SLS-IV are reported in table 10.61. The IV results correspond well with the DGP
and the sample statistics for the average treatment effects. Also, as expected given
the low correlation between treatment and treatment effect, IV produces similar
results to those for OLS.
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Table 10.61: Continuous treatment 2SLS-IV parameter and average treatment
effect estimates for modest within individual report precision variation setting

statistic estATE estATT ( = median [ ])
mean 69849. 70150.
median 70096. 70312.
std.dev. 5017 2210
minimum 35410. 64461.
maximum 87738. 75467.
E [Y | si,  i] =

n
i=1 0i + 1i (si  µ)  i + 2i i

More variation

Finally, we explore a setting with greater between individuals report variation as
well as continued within individual variation. The independent stochastic parame-
ters below describe the data

Stochastic components
parameters number of draws

  N (0.02, 0.005) n
d  N (0.02, 0.0005) nT

  N (2.5, 1) n
  N (7, 1) n

i =  +N (0, 0.001) nT
s  N (1000,) nT

where  is the equilibrium report standard deviation;  varies across firms and
through time for each firm and greater unobserved i variation produces increased
residual uncertainty.

OLS

This setting allows identification ofATE andATT whereATT ( = median [ ]).
First, we estimate the average treatment effects via OLS where individual specific
intercepts and slopes are accommodated.

E [Y | si,  i] =
n

i=1

0i + 1i (si  µ)  i + 2i i

We report the simple average of 2i for estATE and 2i for the median of aver-
age  i by individuals as estATT in table 10.62.
Sample statistics for ATE and ATT ( = median [ ]) along with the correla-

tion between treatment and the treatment effect are reported in table 10.63. As
expected with greater residual variation, there is weaker correspondence between
the average treatment effect estimates and sample statistics. Correlations between
treatment and treatment effect again suggest there is little to be gained from IV
estimation. We explore IV estimation next.
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Table 10.62: Continuous treatment OLS parameter and average treatment effect
estimates for the more between and within individual report precision variation

setting

statistic estATE estATT ( = median [ ])
mean 71623. 67870.
median 70011. 68129.
std.dev. 34288. 22360.
minimum 20220. 8934.
maximum 223726. 141028.
E [Y | si,  i] =

n
i=1 0i + 1i (si  µ)  i + 2i i

Table 10.63: Continuous treatment ATE and ATT sample statistics and
correlation between treatment and treatment effect for the more between and

within individual report precision variation setting

statistic ATE ATT ( = median [ ]) corr (2it,  it)
mean 69951. 69720. 0.0062
median 69970. 70230. 0.0129
std.dev. 709. 10454. 0.073
minimum 67639. 34734 0.194
maximum 71896. 103509 0.217

2SLS-IV

Again, we follow Wooldridge’s [1997, 2003] random coefficients analysis, and
estimate average treatment effects via 2SLS-IV. We employ the residuals from
regressions of (s µ)  and  on U as strong instruments, z1 and z2. Results for
2SLS-IV are reported in table 10.64. The IV results are similar to those for OLS as
expected given the near zero correlation between treatment and treatment effect.

Table 10.64: Continuous treatment 2SLS-IV parameter and average treatment
effect estimates for the more between and within individual report precision

variation setting

statistic estATE estATT ( = median [ ])
mean 66247. 67644.
median 68998. 68004.
std.dev. 36587 22309.
minimum 192442. 9387.
maximum 192722. 141180.
E [Y | si,  i] =

n
i=1 0i + 1i (si  µ)  i + 2i i
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10.8 Summary
This chapter has surveyed some IV approaches for identifying and estimating av-
erage treatment effects and illustrated them in a couple of ways. The Tuebingen-
style examples illustrate critical features for IV identification then we added ac-
counting context. The endogenous selection of report precision examples high-
light several key features in the econometric analysis of accounting choice. First,
reliable results follow from carefully linking theory and data. For instance, who
observes which data is fundamental. When the analysis demands instruments (ig-
norable treatment conditions are typically not satisfied by the data in this context),
their identification and collection is critical. Poor instruments (exclusion restric-
tion fails) or weak instruments (weakly associated with selection) can lead to situ-
ations where the "cure" is worse than the symptom. IV results can be less reliable
(more prone to generate logical inconsistencies) than OLS when faced with endo-
geneity if we employ faulty instruments. Once again, we see there is no substitute
for task-appropriate data. Finally, two (or more) poor analyses don’t combine to
produce one satisfactory analysis.

10.9 Additional reading
Wooldridge [2002] (chapter 18 is heavily drawn upon in these pages), Amemiya
[1985, chapter 9], and numerous other econometric texts synthesize IV treatment
effect identification strategies. Recent volumes of Handbook of Econometrics (es-
pecially volumes 5 and 6b) report extensive reviews as well as recent results.


