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Appendix H
Optimization

In this appendix, we briefly review optimization. First, we’ll take up linear
programming then we’ll review nonlinear programming.1

H.1 Linear programming

A linear program (LP) is any optimization frame which can be described
by a linear objective function and linear constraints. Linear refers to choice
variables, say x, of no greater than first degree (a"ne transformations which
allow for parallel lines are included). Prototypical examples are

max
x&0

&Tx

s.t. Ax # r

or

min
x&0

&Tx

s.t. Ax % r

1For additional details, consult, for instance, Luenberger and Ye, 2010, Linear and
Nonlinear Programming, Springer, or Luenberger, 1997 Optimization by Vector Space
Methods, Wiley.
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H.1.1 basic solutions or extreme points

Basic solutions are typically determined from the standard form for an
LP. Standard form involves equality constraints except non-negative choice
variables, x % 0. That is, Ax # r is rewritten in terms of slack variables,
s, such that Ax + s = r. The solution to this program is the same as the
solution to the inequality program.
A basic solution or extreme point is determined from anm!m submatrix

of A composed of m linearly independent columns of A. The set of basic
feasible solutions then is the collection of all basic solutions involving x % 0.

Consider an example. Suppose A =
)
2 1
1 2

*
, r =

)
r1
r2

*
, x =

)
x1
x2

*
and s =

)
s1
s2

*
. Then, Ax + s = r can be written Bxs = r where B ='

A I2
(
, I2 is a 2 ! 2 identity matrix, and xs =

)
x
s

*
. The matrix B

has two linearly independent columns so each basic solution works with two
columns of B, say Bij , and the elements other than i and j of xs are set to
zero. For instance, B12 leads to basic solution x1 = 2r1!r2

3 and x2 = 2r2!r1
3 .

The basic solutions are tabulated below.

Bij x1 x2 s1 s2
B12

2r1!r2
3

2r2!r1
3 0 0

B13 r2 0 r1 " 2r2 0
B14

r1
2 0 0 2r2!r1

2

B23 0 r2
2

2r1!r2
2 0

B24 0 r1 0 r2 " 2r1

To test feasibility consider specific values for r. Suppose r1 = r2 = 10. The
table with a feasibility indicator (1 (xs % 0)) becomes

Bij x1 x2 s1 s2 feasible
B12

10
3

10
3 0 0 yes

B13 10 0 "10 0 no
B14 5 0 0 5 yes
B23 0 5 5 0 yes
B24 0 10 0 "10 no

Notice, when x2 = 0 there is slack in the second constraint (s2 > 0) and
similarly when x1 = 0 there is slack in the first constraint (s1 > 0). Ba-
sic feasible solutions, an algebraic concept, are also referred to by their
geometric counterpart, extreme points.
Identification of basic feasible solutions or extreme points combined with

the fundamental theorem of linear programming substantially reduce the
search for an optimal solution.
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H.1.2 fundamental theorem of linear programming

For a linear program in standard form where A is an m!n matrix of rank
m,
i) if there is a feasible solution, there is a basic feasible solution;
ii) if there is an optimal solution, there is a basic feasible optimal solution.
Further, if more than one basic feasible solution is optimal, the edge

between the basic feasible optimal solutions is also optimal. The theorem
means the search for the optimal solution can be restricted to basic feasible
solutions – a finite number of points.

H.1.3 duality theorems

Optimality programs come in pairs. That is, there is a complementary or
dual program to the primary (primal) program. For instance, the dual to
the maximization program is a minimization program, and vice versa.

primal program dual program
max
x&0

&Tx

s.t. Ax # r

min
!&0

rT#

s.t. AT# % &

or
primal program dual program
min
x&0

&Tx

s.t. Ax % r

max
!&0

rT#

s.t. AT# # &

where # is a vector of shadow prices or dual variable values. The dual of
the dual program is the primal program.

strong duality theorem

If either the primal or dual has an optimal solution so does the other and
their optimal objective function values are equal. If one of the programs is
unbounded the other has no feasible solution.

weak duality theorem

For feasible solutions, the objective function value of the minimization pro-
gram (say, dual) is greater than or equal to the maximization program (say,
primal).
The intuition for the duality theorems is straightforward. Begin with the

constraints
Ax # r AT# % &

Transposing both sides of the first constraint leaves the inequality un-
changed.

xTAT # rT AT# % &
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Now, post-multiply both sides of the first constraint by # and pre-multiply
both sides of the second constraint by xT , since both # and x are nonneg-
ative the inequality is preserved.

xTAT# # rT# xTAT# % xT&

Since xT& is a scalar, xT& = &Tx. Now, combine the results and we have
the relation we were after.

&Tx # xTAT# # rT#

The solution to the dual lies above that for the primal except when they
both reside at the optimum solution, in which case their objective function
values are equal.

H.1.4 example

Suppose we wish to solve

max
x&0

10x+ 12y

s.t

)
2 1
1 2

* )
x
y

*
#
)
10
10

*
We only need evaluate the objective function at each of the basic feasible
solutions we earlier identified: 10

/
10
3

0
+12

/
10
3

0
= 220

3 , 10 (5)+12 (0) = 50 =
150
3 , and 10 (0) + 12 (5) = 60 =

180
3 . The optimal solution is x = y =

10
3 .

H.1.5 complementary slackness

Suppose x % 0 is an n element vector containing a feasible primal solution,
# % 0 is an m element vector containing a feasible dual solution, s % 0 is
an m element vector containing primal slack variables, and t % 0 is an n
element vector containing dual slack variables. Then, x and # are optimal
if and only if (element-by-element)

xt = 0

and

#s = 0

These conditions are economically sensible as either the scarce resource
is exhausted (s = 0) or if the resource is plentiful it has no value (# = 0).
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H.2 Nonlinear programming

H.2.1 unconstrained

Nonlinear programs involve nonlinear objective functions. For instance,

max
x

f (x)

If the function is continuously di!erentiable, then a local optimum can be
found by the first order approach. That is, equate the gradient (a vector of
partial derivatives composed of terms, (f(x)(xi

, i = 1, . . . , n where there are
n choice variables, x).

,f (x#) = 0!%%"
(f(x)
(x1
...

(f(x)
(xn

#&&$ =

!%" 0
...
0

#&$
Second order (su"cient) conditions involve the Hessian, a matrix of second
partial derivatives.

H (x#) =

!%%"
(2f(x)
(x1(x1

· · · (2f(x)
(x1(xn

...
. . .

...
(2f(x)
(xn(x1

· · · (2f(x)
(xn(xn

#&&$
For a local minimum, the Hessian is positive definite (the eigenvalues of H
are positive). While for a local maximum, the Hessian is negative definite
(the eigenvalues of H are negative).

H.2.2 convexity and global minima

If f is a convex function (defined below), then the set where f achieves its
local minimum is convex and any local minimum is a global minimum. A
function f is convex if for every x1, x2, and ' , 0 # ' # 1,

f ('x1 + (1" ')x2) # 'f (x1) + (1" ') f (x2)

If x1 -= x2, and 0 < ' < 1,

f ('x1 + (1" ')x2) < 'f (x1) + (1" ') f (x2)

then f is strictly convex. If g = "f and f is (strictly) convex, then g is
(strictly) concave.
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H.2.3 example

Suppose we face the problem

min
x,y

f (x, y) = x2 " 10x+ y2 " 10y + xy

The first order conditions are

,f (x, y) = 0

or

.f

.x
= 2x" 10 + y = 0

.f

.y
= 2y " 10 + x = 0

Since the problem is quadratic and the gradient is composed of linearly
independent equations, a unique solution is immediately identifiable.)

2 1
1 2

* )
x
y

*
=

)
10
10

*
or x = y = 10

3 with objective function value "
100
3 . As the Hessian is positive

definite, this solution is a minimum.

H =

)
2 1
1 2

*
Positive definiteness of the Hessian follows as the eigenvalues of H are
positive. To see this, recall the sum of the eigenvalues equals the trace of
the matrix and the product of the eigenvalues equals the determinant of
the matrix. The eigenvalues of H are 1 and 3, both positive.

H.2.4 constrained – the Lagrangian

Nonlinear programs involve either nonlinear objective functions, constraints,
or both. For instance,

max
x&0

f (x)

s.t. G (x) # r

Suppose the objective function and constraints are continuously di!er-
entiable concave and an optimal solution exists, then the optimal solution
can be found via the Lagrangian. The Lagrangian writes the objective func-
tion less a Lagrange multiplier times each of the constraints. As either the
multiplier is zero or the constraint is binding, each constraint term equals
zero.

L = f (x)" #1 [g1 (x)" r1]" · · ·" #n [gn (x)" rn]
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where G (x) involves n functions, gi (x), i = 1, . . . , n. Suppose x involves
m choice variables. Then, there are m Lagrange equations plus the n con-
straints that determine the optimal solution.

.L
.x1

= 0

...
.L
.xm

= 0

#1 [g1 (x)" r1] = 0

...

#n [gn (x)" rn] = 0

The Lagrange multipliers (shadow prices or dual variable values) repre-
sent the rate of change in the optimal objective function for each of the
constraints.

#i =
.f (r#)

.ri

where r# refers to rewriting the optimal solution x# in terms of the con-
straint values, r. If a constraint is not binding, it’s multiplier is zero as it
has no impact on the optimal objective function value.2

H.2.5 Karash-Kuhn-Tucker conditions

Originally, the Lagrangian only allowed for equality constraints. This was
generalized to include inequality constraints by Karash and separately
Kuhn and Tucker. Of course, some regularity conditions are needed to
ensure optimality. Various necessary and su"cient conditions have been
proposed to deal with the most general settings. The Karash-Kuhn-Tucker
theorem supplies first order necessary conditions for a local optimum (gra-
dient of the Lagrangian and the Lagrange multiplier times the inequality
constraint equal zero when the Lagrange multipliers on the inequality con-
straints are non-negative evaluated at x#). Second order necessary (positive
semi-definite Hessian for the Lagrangian at x#) and su"cient (positive def-
inite Hessian for the Lagrangian at x#) conditions are roughly akin to those
for unconstrained local minima.

2Of course, these ideas regarding the multipliers apply to the shadow prices of linear
programs as well.
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H.2.6 example

Continue with the unconstrained example above with an added constraint.

min
x,y

f (x, y) = x2 " 10x+ y2 " 10y + xy

s.t. xy % 10

Since the unconstrained solution satisfies this constraint, xy = 100
9 > 10,

the solution remains x = y = 10
3 .

However, suppose the problem is

min
x,y

f (x, y) = x2 " 10x+ y2 " 10y + xy

s.t. xy % 20

The constraint is now active. The Lagrangian is

L = x2 " 10x+ y2 " 10y + xy " # (xy " 20)

and the first order conditions are

,L = 0

or

.L

.x
= 2x" 10 + y " #y = 0

.L

.y
= 2y " 10 + x" #x = 0

and constraint equation

# (xy " 20) = 0

A solution to these nonlinear equations is

x = y = 2
$
5

# = 3"
$
5

The objective function value is "29.4427 which, of course, is greater than
the objective function value for the unconstrained problem, "33.3333. The
Hessian is

H =

)
2 1" #

1" # 2

*
with eigenvalues evaluated at the solution, 3"# =

$
5 and 1+# = 4"

$
5,

both positive. Hence, the solution is a minimum.
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H.3 Theorem of the separating hyperplane

The theorem of the separating hyperplane states either there exists a non-
negative y such that Ay = x or there exists # such that AT# % 0 and
#Tx < 0. The theorem is about mutual exclusivity – one or the other is
true not both. This is similar to the way in which orthogonal complements
are mutually exclusive. If one subspace contains all positive vectors the
orthogonal complement cannot contain positive vectors. Otherwise, their
inner products would be positive and inner products of orthogonal sub-
spaces are zero.
The intuition follows from the idea that vector inner products are pro-

portional to the cosine of the angle between them; if the angle is less
(greater) than 90 degrees the cosine is positive (negative). AT# % 0 means
the columns of A are less than or equal to 90 degrees relative a fixed vector
# while #Tx < 0 implies the angle between x and # exceeds 90 degrees. The
separating hyperplane (hyper simply refers to high dimension) is composed
of all vectors orthogonal to a fixed vector #.
Consider a simple example.

Example 16 (simple example) Suppose A = I and x =
)
2
3

*
, then

y = 2

)
1
0

*
+ 3

)
0
1

*
and there exists no # from which to form a plane

separating the positive quadrant from x. On the other hand, suppose x =)
"2
3

*
– x lies outside the positive quadrant and # =

)
1
0

*
satisfies the

theorem’s alternative, AT# =
)
1
0

*
% 0 and #Tx = "2 < 0.

Next, consider a simple accounting (incidence matrix) example. That is,
a case in which A has a nullspace and a left nullspace.

Example 17 (simple accounting example) If A =

!" "1 0 1
1 "1 0
0 1 "1

#$
and x =

!" 1
2
"3

#$, then y =
!" 2
0
3

#$ + k
!" 1
1
1

#$ and any k % 0 satisfies

Ay = x and y % 0. Hence, there exists no separating plane based on #.

On the other hand, suppose A =

!" "1 0 "1
1 "1 0
0 1 1

#$. Now, y =
!" 2

0
"3

#$+
k

!" 1
1
"1

#$ and no k satisfies Ay = x and y % 0. Any number of #s exist.
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For example, # =

!" 0
0
1

#$ produces AT# =
!" 0
1
1

#$ % 0 and #Tx = "3 < 0.
Hence, any # =

!" 0
0
1

#$+k
!" 1
1
1

#$ (drawing on the left nullspace of A) where
k > "1 satisfies the theorem’s alternative.


