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Appendix A
Linear algebra basics

A.1 Basic operations

We frequently envision or frame problems as linear systems of equations.1

It is useful to write this compactly in matrix notation, say

Ay = x

where A is an m  n (rows  columns) matrix (a rectangular array of
elements), y is an n-element vector, and x is an m-element vector. This
statement compares the result on the left with that on the right, element-
by-element. The operation on the left is matrix multiplication or each ele-
ment is recovered by a vector inner product of the corresponding row from
A with the vector y. That is, the first element of the product vector Ay is
the vector inner product of the first row A with y, the second element of
the product vector is the inner product of the second row A with y, and
so on. A vector inner product multiplies the same position element of the
leading row and trailing column and sums over the products. Of course, this
means that the operation is only well-defined if the number of columns in
the leading matrix, A, equals the number of rows of the trailing, y. Further,
the product matrix has the same number of rows as the leading matrix and

1G. Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich Col-
lege Publishers, or Introduction to Linear Algebra, Wellesley-Cambridge Press o§ers a
mesmerizing discourse on linear algebra.
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columns of the trailing. For example, let

A =

2

4
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

3

5 ,

y =

2

664

y1
y2
y3
y4

3

775 ,

and

x =

2

4
x1
x2
x3

3

5

then

Ay =

2

4
a11y1 + a12y2 + a13y3 + a14y4
a21y1 + a22y2 + a23y3 + a24y4
a31y1 + a32y2 + a33y3 + a34y4

3

5

The system of equations also covers matrix addition and scalar multiplica-
tion by a matrix in the sense that we can rewrite the equations as

Ay  x = 0

First, multiplication by a scalar or constant simply multiplies each element
of the matrix by the scalar. In this instance, we multiple the elements of x
by 1.

2

4
a11y1 + a12y2 + a13y3 + a14y4
a21y1 + a22y2 + a23y3 + a24y4
a31y1 + a32y2 + a33y3 + a34y4

3

5

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5

2

4
a11y1 + a12y2 + a13y3 + a14y4
a21y1 + a22y2 + a23y3 + a24y4
a31y1 + a32y2 + a33y3 + a34y4

3

5+

2

4
x1
x2
x3

3

5 =

2

4
0
0
0

3

5

Then, we add the m-element vector x to the m-element vector Ay where
same position elements are summed.

2

4
a11y1 + a12y2 + a13y3 + a14y4  x1
a21y1 + a22y2 + a23y3 + a24y4  x2
a31y1 + a32y2 + a33y3 + a34y4  x3

3

5 =

2

4
0
0
0

3

5

Again, the operation is only well-defined for equal size matrices and, unlike
matrix multiplication, matrix addition always commutes. Of course, the
m-element vector (the additive identity) on the right has all zero elements.
By convention, vectors are represented in columns. So how do we repre-

sent an inner product of a vector with itself? We create a row vector by
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transposing the original. Transposition simply puts columns of the original
into same position rows of the transposed. For example, yT y represents the
vector inner product (the product is a scalar) of y with itself where the
superscript T represents transposition.

yT y =

y1 y2 y3 y4



2

664

y1
y2
y3
y4

3

775

= y21 + y
2
2 + y

2
3 + y

2
4

Similarly, we might be interested in ATA.

ATA =

2

664

a11 a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 a34

3

775

2

4
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

3

5

=

2

666664

 
a211 + a221
+a231

! 
a11a12 + a21a22

+a31a32

 
a11a13 + a21a23

+a31a33

 
a11a14 + a21a24

+a31a34




a11a12 + a21a22

+a31a32

  
a212 + a222
+a232

! 
a12a13 + a22a23

+a32a33

 
a12a14 + a22a24

+a32a34




a11a13 + a21a23

+a31a33

 
a12a13 + a22a23

+a32a33

  
a213 + a223
+a233

! 
a13a14 + a23a24

+a33a34




a11a14 + a21a24

+a31a34

 
a12a14 + a22a24

+a32a34

 
a13a14 + a23a24

+a33a34

  
a214 + a224
+a234

!

3

777775

This yields an n n symmetric product matrix. A matrix is symmetric if
the matrix equals its transpose, A = AT . Or, AAT which yields an mm
product matrix.

AAT =

2

4
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34

3

5

2

664

a11 a21 a31
a12 a22 a32
a13 a23 a33
a14 a24 a34

3

775

=

2

6666664


a211 + a

2
12

+a213 + a
2
14

 
a11a21 + a12a22
+a13a23 + a14a24

 
a11a31 + a12a22
+a13a33 + a14a34




a11a21 + a12a22
+a13a23 + a14a24

 
a221 + a

2
22

+a223 + a
2
24

 
a21a31 + a22a32
+a23a33 + a24a34




a11a31 + a12a22
+a13a33 + a14a34

 
a21a31 + a22a32
+a23a33 + a24a34

 
a231 + a

2
32

+a233 + a
2
34



3

7777775
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A.2 Fundamental theorem of linear algebra

With these basic operations in hand, return to

Ay = x

When is there a unique solution, y? The answer lies in the fundamental
theorem of linear algebra. The theorem has two parts.

A.2.1 Part one

First, the theorem says that for every matrix the number of linearly inde-
pendent rows equals the number of linearly independent columns. Linearly
independent vectors are the set of vectors such that no one of them can be
duplicated by a linear combination of the other vectors in the set. A lin-
ear combination of vectors is the sum of scalar-vector products where each
vector may have a di§erent scalar multiplier. For example, Ay is a linear
combination of the columns of A with the scalars in y. Therefore, if there ex-
ists some (n 1)-element vector, w, when multiplied by an (m (n 1))
submatrix of A, call it B, such that Bw produces the dropped column
from A then the dropped column is not linearly independent of the other
columns. To reiterate, if the matrix A has r linearly independent columns it
also has r linearly independent rows. r is referred to as the rank of the ma-
trix and dimension of the rowspace and columnspace (the spaces spanned
by all possible linear combination of the rows and columns, respectively).
Further, r linearly independent rows of A form a basis for its rowspace and
r linearly independent columns of A form a basis for its columnspace.

Accounting example

Consider an incidence matrix describing the journal entry properties of
accounting in its columns (each column has one +1 and 1 in it with
the remaining elements equal to zero) and T accounts in its rows. The
rows capture changes in account balances when multiplied by a transaction
amounts vector y. By convention, we assign +1 for a debit entry and 1
for a credit entry. Suppose

A =

2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

where the rows represent cash, noncash assets, liabilities, and owners’ eq-
uity, for instance. Notice, 1 times the sum of any three rows produces the
remaining row. Since we cannot produce another row from the remaining
two rows, the number of linearly independent rows is 3. By the fundamen-
tal theorem, the number of linearly independent columns must also be 3.
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Let’s check. Suppose the first three columns is a basis for the columnspace.
Column 4 is the negative of column 3, column 5 is the negative of the sum
of columns 1 and 3, and column 6 is the negative of the sum of columns 2
and 3. Can any of columns 1, 2 and 3 be produced as a linearly combination
of the remaining two columns? No, the zeroes in rows 2 through 4 rule it
out. For this matrix, we’ve confirmed the number of linearly independent
rows and columns is the same.

A.2.2 Part two

The second part of the fundamental theorem describes the orthogonal com-
plements to the rowspace and columnspace. Two vectors are orthogonal if
they are perpendicular to one another. As their vector inner product is
proportional to the cosine of the angle between them, if their vector inner
product is zero they are orthogonal.2 n-space is spanned by the rowspace
(with dimension r) plus the n  r dimension orthogonal complement, the
nullspace where

ANT = 0

N is an (n r)n matrix whose rows are orthogonal to the rows of A and
0 is an m (n r) matrix of zeroes.

Accounting example continued

For the A matrix above, a basis for the nullspace is

N =

2

4
1 1 0 0 1 1
0 1 1 0 0 1
0 0 1 1 0 0

3

5

and

ANT =

2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

2

6666664

1 0 0
1 1 0
0 1 1
0 0 1
1 0 0
1 1 0

3

7777775

=

2

664

0 0 0
0 0 0
0 0 0
0 0 0

3

775

2The inner product of a vector with itself is the squared length (or squared norm) of
the vector.
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Similarly, m-space is spanned by the columnspace (with dimension r) plus
the m r dimension orthogonal complement, the left nullspace where

(LN)
T
A = 0

LN is an m (m r) matrix whose rows are orthogonal to the columns of
A and 0 is an (m r) n matrix of zeroes. The origin is the only point in
common to the four subspaces: rowspace, columnspace, nullspace, and left
nullspace.

LN =

2

664

1
1
1
1

3

775

and

(LN)
T
A =


1 1 1 1



2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

=

0 0 0 0 0 0


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A.3 Nature of the solution

A.3.1 Exactly-identified

If r = m = n, then there is a unique solution, y, to By = x, and the
problem is said to be exactly-identified.3 Since B is square and has a full
set of linearly independent rows and columns, the rows and columns of
B span r space (including x) and the two nullspaces have dimension zero.
Consequently, there exists a matrix B1, the inverse of B, when multiplied
by B produces the identity matrix, I. The identity matrix is a matrix when
multiplied (on the left or on the right) by any other vector or matrix leaves
that vector or matrix unchanged. The identity matrix is a square matrix
with ones along the principal diagonal and zeroes on the o§-diagonals.

I =

2

66664

1 0 · · · 0

0 1 · · ·
...

...
...

. . . 0
0 · · · 0 1

3

77775

Hence,

B1By = B1x

Iy = B1x

y = B1x

Suppose

B =


3 1
2 4


,

and

x =


6
5



then

y = B1x


4
10  1

10
 2
10

3
10

 
3 1
2 4

 
y1
y2


=

"
4
10  1

10

 2
10

3
10

# 
6
5




1 0
0 1

 
y1
y2


=

"
245
10

12+15
10

#


y1
y2


=

"
19
10
3
10

#

3Both y and x are r-element vectors.
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A.3.2 Under-identified

However, it is more common for r  m,n with one inequality strict. In
this case, spanning m-space draws upon both the columnspace and left
nullspace and spanning n-space draws from both the rowspace and the
nullspace. If the dimension of the nullspace is greater than zero, then it is
likely that there are many solutions, y, that satisfy Ay = x. On the other
hand, if the dimension of the left nullspace is positive and the dimension
of the nullspace is zero, then typically there is no exact solution, y, for
Ay = x. When r < n, the problem is said to be under-identified (there are
more unknown parameters than equations) and a complete set of solutions
can be described by the solution that lies entirely in the rows of A (this is
often called the row component as it is a linear combination of the rows)
plus arbitrary weights on the nullspace of A. The row component, yRS(A),
can be found by projecting any consistent solution, yp, onto a basis for the
rows (any linearly independent set of r rows) of A. Let Ar be a submatrix
derived from A with r linearly independent rows. Then,

yRS(A) = (Ar)
T

Ar (Ar)

T
1

Aryp

= (PAr ) yp

and
yp = yRS(A) +NT k

where PAr is the projection matrix, (Ar)T

Ar (Ar)

T
1

Ar, onto the rows

of A and k is any n-element vector of arbitrary weights.
Utilizing yp = yRS(A)+yNS(A) = (Ar)T b+NT k, we have two immediate

ways to derive projection matrices. First, yRS(A) = (Ar)
T
b says the row

component of yp is a linear combination of the rows of Ar with weights b
and yNS(A) = NT k says the null component of yp is a linear combination
of the rows of N with weights k. Projecting into the rows of Ar follows
from orthogonality of the row and null components.

yp = (Ar)
T
b+ yNS(A)

where
AryNS(A) = 0

Since
yNS(A) = yp  (Ar)T b

we have by substitution

Ar

yp  (Ar)T b


= 0

or
Aryp = Ar (Ar)

T
b
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As Ar has linearly independent rows, the inverse of Ar (Ar)T exists and we
can solve for the weights


Ar (Ar)

T
1

Aryp =

Ar (Ar)

T
1

Ar (Ar)
T
b = Ib = b

Now that we have b, we can immediately identify the row component of yp

yRS(A) = (Ar)
T
b

= (Ar)
T

Ar (Ar)

T
1

Aryp

= (PAr ) yp

The projection is matrix is symmetric ((PAr )
T
= PAr ) and idempotent

((PAr ) (PAr ) = PAr ). Idempotency is appealing since if yp = yRS(A) and
we project yp into the rows of Ar then it doesn’t change rather it remains
yRS(A) (the row component is unique).
Notice from above we have

yNS(A) = yp  (Ar)T b

= yp  (Ar)T

Ar (Ar)

T
1

Aryp

= (I  PAr ) yp

which implies the projection matrix into the rows of the nullspace of Ar can
be described by PAn = (I  PAr ). Alternatively (and equivalently), PAn =
NT


NNT


N . This representation of the projection matrix is derived in

analogous fashion to PAr above.

yp = yRS(A) +NT k

where
NyRS(A) = 0

Since
yRS(A) = yp NT k

we have by substitution

N

yp NT k


= 0

or
Nyp = NNT k

As N has linearly independent rows, the inverse of NNT exists and we can
solve for the weights


NNT

1
Nyp =


NNT

1
NNT k = Ik = k
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Now that we have k, we can immediately identify the null component of yp

yNS(A) = NT k

= NT

NNT

1
Nyp

= (PAn) yp

PAn is also symmetric and idempotent. Further, from the above analysis
it’s clear PAr + PAn = I (the entire n-dimensional space is spanned by
linear combinations of the rowspace and nullspace).
Return to our accounting example above. Suppose the changes in account

balances are

x =

2

664

2
1
1
2

3

775

Then, a particular solution can be found by setting, for example, the last
three elements of y equal to zero and solving for the remaining elements.

yp =

2

6666664

1
1
2
0
0
0

3

7777775

so that

Ayp = x

2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

2

6666664

1
1
2
0
0
0

3

7777775
=

2

664

2
1
1
2

3

775

Let Ar be the first three rows.

Ar =

2

4
1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1

3

5

PAr =
1

12

2

6666664

7 1 2 2 5 1
1 7 2 2 1 5
2 2 4 4 2 2
2 2 4 4 2 2
5 1 2 2 7 1
1 5 2 2 1 7

3

7777775
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and

yRS(A) = (PAr ) yp

=
1

12

2

6666664

7 1 2 2 5 1
1 7 2 2 1 5
2 2 4 4 2 2
2 2 4 4 2 2
5 1 2 2 7 1
1 5 2 2 1 7

3

7777775

2

6666664

1
1
2
0
0
0

3

7777775

=
1

6

2

6666664

1
5
4
4
5
1

3

7777775

The complete solution, with arbitrary weights k, is

y = yRS(A) +NT k

y =
1

6

2

6666664

1
5
4
4
5
1

3

7777775
+

2

6666664

1 0 0
1 1 0
0 1 1
0 0 1
1 0 0
1 1 0

3

7777775

2

4
k1
k2
k3

3

5

2

6666664

y1
y2
y3
y4
y5
y6

3

7777775
=

1

6

2

6666664

1
5
4
4
5
1

3

7777775
+

2

6666664

k1
k1 + k2
k2 + k3
k3
k1

k1 + k2

3

7777775

A.3.3 Over-identified

In the case where there is no exact solution, m > r = n, the vector that
lies entirely in the columns of A which is nearest x is frequently identified
as the best approximation. This case is said to be over-identified (there are
more equations than unknown parameters) and this best approximation
is the column component, yCS(A), and is found via projecting x onto the
columns of A. A common variation on this theme is described by

Y = X

where Y is an n-element vector and X is an n  p matrix. Typically, no
exact solution for  (a p-element vector) exists, p = r (X is composed of
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linearly independent columns), and

b = CS(A) =

XTX

1
XTY

is known as the ordinary least squares (OLS ) estimator of  and the es-
timated conditional expectation function is the projection of Y into the
columns of X

Xb = X

XTX

1
XTY = PXY

For example, let X = (Ar)
T and Y = yP . then

b =
1

6

2

4
4
5
1

3

5

and Xb = PXY = yRS(A).

Xb = PXY =
1

6

2

6666664

1
5
4
4
5
1

3

7777775
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A.4 Matrix decomposition and inverse operations

Inverse operations are inherently related to the fundamental theorem and
matrix decomposition. There are a number of important decompositions,
we’ll focus on four: LU factorization, Cholesky decomposition, singular
value decomposition, and spectral decomposition.

A.4.1 LU factorization

Gaussian elimination is the key to solving systems of linear equations and
gives us LU decomposition.

Nonsingular case

Any square, nonsingular matrix A (has linearly independent rows and
columns) can be written as the product of a lower triangular matrix, L,
times an upper triangular matrix, U .4

A = LU

where L is lower triangular meaning that it has all zero elements above
the main diagonal and U is upper triangular meaning that it has all zero
elements below the main diagonal. Gaussian elimination says we can write
any system of linear equations in triangular form so that by backward
recursion we solve a series of one equation, one variable problems. This is
accomplished by row operations: row eliminations and row exchanges. Row
eliminations involve a series of operations where a scalar multiple of one
row is added to a target row so that a revised target row is produced until
a triangular matrix, L or U , is generated. As the same operation is applied
to both sides (the same row(s) of A and x) equality is maintained. Row
exchanges simply revise the order of both sides (rows of A and elements
of x) to preserve the equality. Of course, the order in which equations are
written is flexible.
In principle then, Gaussian elimination on

Ay = x

involves, for instance, multiplication of both sides by the inverse of L,
provided the inverse exists (m = r),

L1Ay = L1x

L1LUy = L1x

Uy = L1x

4The general case, A is a m n matrix, is discussed below.
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As Gaussian elimination is straightforward, we have a simple approach for
finding whether the inverse of the lower triangular matrix exists and, if so,
its elements. Of course, we can identify L in similar fashion

L = AU1

= LUU1

Let A = Ar (Ar)T the 33 full rank matrix from the accounting example
above.

A =

2

4
4 1 1
1 2 0
1 0 2

3

5

We find U by Gaussian elimination. Multiply row 1 by 1/4 and add to rows
2 and 3 to revise rows 2 and 3 as follows.

2

4
4 1 1
0 7/4 1/4
0 1/4 7/4

3

5

Now, multiply row 2 by 1/7 and add this result to row 3 to identify U .

U =

2

4
4 1 1
0 7/4 1/4
0 0 12/7

3

5

Notice we have constructed L1 in the process.

L1 =

2

4
1 0 0
0 1 0
0 1/7 1

3

5

2

4
1 0 0
1/4 1 0
1/4 0 1

3

5

=

2

4
1 0 0
1/4 1 0
2/7 1/7 1

3

5

so that

L1A = U2

4
1 0 0
1/4 1 0
2/7 1/7 1

3

5

2

4
4 1 1
1 2 0
1 0 2

3

5 =

2

4
4 1 1
0 7/4 1/4
0 0 12/7

3

5

Also, we have L in hand.
L =


L1

1

and

L1L = I2

4
1 0 0
1/4 1 0
2/7 1/7 1

3

5

2

4
`11 0 0
`21 `22 0
`31 `32 `33

3

5 =

2

4
1 0 0
0 1 0
0 0 1

3

5
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From the first row-first column, `11 = 1. From the second row-first column,
1/4`11+1`21 = 0, or `21 = 1/4. From the third row-first column, 2/7`11+
1/7`21 + 1`31 = 0, or `31 = 2/7 + 1/28 = 1/4. From the second row-
second column, `22 = 1. From the third row-second column, 1/7`22+1`32 =
0, or `32 = 1/7. And, from the third row-third column, `33 = 1. Hence,

L =

2

4
1 0 0

1/4 1 0
1/4 1/7 1

3

5

and

LU = A2

4
1 0 0

1/4 1 0
1/4 1/7 1

3

5

2

4
4 1 1
0 7/4 1/4
0 0 12/7

3

5 =

2

4
4 1 1
1 2 0
1 0 2

3

5

For

x =

2

4
1
3
5

3

5

the solution to Ay = x is

Ay = x

LUy = x

Uy = L1x2

4
4 1 1
0 7/4 1/4
0 0 12/7

3

5

2

4
y1
y2
y3

3

5 =

2

4
1

3 1/4
5 1/4 + 11/28

3

5 =

2

4
1
11/4
36/7

3

5

Backward recursive substitution solve for y. From row three, 12/7y3 =
36/7 or y3 = 7/12  36/7 = 3. From row two, 7/4y2  1/4y3 = 11/4, or
y2 = 4/7 (11/4 + 3/4) = 2. And, from row one, 4y1  y2  y3 = 1, or
y1 = 1/4 (1 + 2 + 3) = 1. Hence,

y =

2

4
1
2
3

3

5

General case

If the inverse of A doesn’t exist (the matrix is singular), we find some
equations after elimination are 0 = 0, and possibly, some elements of y are
not uniquely determinable as discussed above for the under-identified case.
For an mn matrix A, the general form of LU factorization may involve

row exchanges via a permutation matrix, P .

PA = LU
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where L is lower triangular with ones on the diagonal and U is an m  n
upper echelon matrix with the pivots along the main diagonal.
LU decomposition can also be written as LDU factorization where, as

before, L and U are lower and upper triangular matrices but now have ones
along their diagonals and D is a diagonal matrix with the pivots of A along
its diagonal.
Returning to the accounting example, we utilize LU factorization to solve

for y, a set of transactions amounts that are consistent with the financial
statements.

Ay = x

2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

2

6666664

y1
y2
y3
y4
y5
y6

3

7777775
=

2

664

2
1
1
2

3

775

For this A matrix, P = I4 (no row exchanges are called for), and row one
is added to row two, the revised row two is added to row three, and the
revised row three is added to row four, which gives

2

664

1 1 1 1 0 0
0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 0 0 0

3

775

2

6666664

y1
y2
y3
y4
y5
y6

3

7777775
=

2

664

2
3
2
0

3

775

The last row conveys no information and the third row indicates we have
three free variables. Recall, for our solution, yp above, we set y4 = y5 = y6 =
0 and solved. From row three, y3 = 2. From row two, y2 =  (3 2) = 1.
And, from row one, y1 =  (2 1 2) = 1. Hence,

yp =

2

6666664

1
1
2
0
0
0

3

7777775
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A.4.2 Cholesky decomposition

If the matrix A is symmetric, positive definite5 as well as nonsingular, then
we have A = LDLT as U = LT . In this symmetric case, we identify an-
other useful factorization, Cholesky decomposition. Cholesky decomposition
writes

A = T

where  = LD
1
2 and D

1
2 has the square root of the pivots on the diagonal.

Since A is positive definite, all of its pivots are positive and their square
root is real so, in turn,  is real. Of course, we now have

1A = 1T

= T

or

A

T
1

= T

T
1

= 

For the example above, A = Ar (Ar)T , A is symmetric, positive definite
and we found

A = LU2

4
4 1 1
1 2 0
1 0 2

3

5 =

2

4
1 0 0

1/4 1 0
1/4 1/7 1

3

5

2

4
4 1 1
0 7/4 1/4
0 0 12/7

3

5

Factoring the pivots from U gives D and LDLT .

A = LDLT

=

2

4
1 0 0

1/4 1 0
1/4 1/7 1

3

5

2

4
4 0 0
0 7/4 0
0 0 12/7

3

5

2

4
1 1/4 1/4
0 1 1/7
0 0 1

3

5

And, the Cholesky decomposition is

 = LD
1
2

=

2

4
1 0 0

1/4 1 0
1/4 1/7 1

3

5

2

4
2 0 0

0
p
7/4 0

0 0
p
12/7

3

5

=

2

664

2 0 0

1/2
p
7
2 0

1/2  1
2
p
7

2
q

3
7

3

775

5A matrix, A, is positive definite if its quadratic form is strictly positive

xTAx > 0

for all nonzero x.
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so that

A = T

2

4
4 1 1
1 2 0
1 0 2

3

5 =

2

664

2 0 0

1/2
p
7
2 0

1/2  1
2
p
7

2
q

3
7

3

775

2

664

2 1/2 1/2

0
p
7
2  1

2
p
7

0 0 2
q

3
7

3

775

A.4.3 Eigenvalues and eigenvectors

A square n n matrix A times a characteristic vector x can be written as
a characteristic scalar  times the same vector.

Ax = x

The characteristic scalar is called an eigenvalue and the characteristic vec-
tor is called an eigenvector. There are n (not necessarily unique) eigenvalues
and associated eigenvectors.6 Rewriting the above as

(A I)x = 0

reveals the key subspace feature. That is, we choose  such that A  I
has a nullspace. Then, x is a vector in the nullspace of A I.

Example

Now, we explore construction of eigenvalues and eigenvectors via our ac-
counting example.

A =

2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

In particular, focus attention on

AAT =

2

664

4 1 1 2
1 2 0 1
1 0 2 1
2 1 1 4

3

775

First, we know due to the balancing property of accounting this matrix
has a nullspace. Hence, at least one of its eigenvalues equals zero. We’ll

6For instance, an n  n identity matrix has n eigenvalues equal to one and any
orthogonal (or unitary) matrix is a basis for the eigenvectors.
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verify this by AAT = LU = LDLT and then utilize this result to find the
eigenvalues.
First, utilize row operations to put AAT in row echelon form and find

its pivots. Row operations on the first column are

L11 AAT =

2

6664

4 1 1 2
0 7

4  1
4  3

2

0  1
4

7
4  3

2

0  3
2  3

2 3

3

7775

where

L11 =

2

6664

1 0 0 0
1
4 1 0 0
1
4 0 1 0
1
2 0 0 1

3

7775

Combine this with row operations on the second column.

L12 L11 AAT =

2

6664

4 1 1 2
0 7

4  1
4  3

2

0 0 12
7  12

7

0 0  12
7

12
7

3

7775

where

L12 =

2

6664

1 0 0 0
0 1 0 0
0 1

7 1 0

0 6
7 0 1

3

7775

Combining this with row operations on the third column yields the upper
triangular result we’re after.

L13 L12 L11 AAT = U =

2

6664

4 1 1 2
0 7

4  1
4  3

2

0 0 12
7  12

7

0 0 0 0

3

7775

where

L13 =

2

664

1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1

3

775

Hence,

L1 = L13 L12 L11 =

2

6664

1 0 0 0
1
4 1 0 0
2
7

1
7 1 0

1 1 1 1

3

7775
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and

L1AAT = U

=

2

6664

4 1 1 2
0 7

4  1
4  3

2

0 0 12
7  12

7

0 0 0 0

3

7775

Clearly, the rank of U is three and column four is free as its pivot (main
diagonal element in row echelon form) is zero. This means, as suggested
before, one eigenvalue equals zero. To find its associated eigenvector replace
row four with the row vector


0 0 0 1


, call this Ua and solve

Uax = b2

6664

4 1 1 2
0 7

4  1
4  3

2

0 0 12
7  12

7

0 0 0 1

3

7775
x =

2

664

0
0
0
1

3

775

for x. A solution is

x =

2

664

1
1
1
1

3

775

Since eigenvectors are scale-free, AATx = x accommodates any rescaling
of x, it is often convenient to make this vector unit length. Accordingly,
define the unit length eigenvector associated with the zero eigenvalue (1 =
0) as

x1 =
x

p
xTx

=

2

66664

1
2
1
2
1
2
1
2

3

77775

What are the remaining three eigenvalues? Clearly from U (the first
row is unchanged by our row operations), therefore at least one of the
remaining eigenvalues is  = 4 (we could have repeated eigenvalues). A
more general approach is find  such that the matrix AAT I is singular
or equivalently, its determinant is zero. Determinants are messy but we’ll
utilize two facts: the determinant of a triangular matrix is the product of
its pivots (main diagonal elements) and the product of determinants equals
the determinant of the products, det (L) det (U) = det (LU). Since L has
ones along the main diagonal it’s determinant is one, the determinant of U
is the determinant of AAT I. Finding eigenvalues of AAT boils down to
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finding the roots of the product of the main diagonal elements of U where
AAT  I = LU.
Following similar steps to those above, we find

U =

2

66664

4  1 1 2
0 76+2

4  1
4

6
4

0 0 1218+823
76+2

12+82
76+2

0 0 0 24+1023
66+2

3

77775

det (U) = (4 )

7 6+ 2

4 


12 18+ 82  3

7 6+ 2





24+ 102  3

6 6+ 2



= 48+ 442  123 + 4

The roots are  = 0, 2, 4, and 6.
The next step is to find eigenvectors for  = 2, 4, and 6. For  = 2,

U =

2

664

2 1 1 2
0  1

2  1
2 2

0 0 0 0
0 0 0 8

3

775. Since the third pivot equals zero its a free

variable and we replace row three with

0 0 1 0


and solve

Uax =

2

664

0
0
1
0

3

775

2

664

2 1 1 2
0  1

2  1
2 2

0 0 1 0
0 0 0 8

3

775x =

2

664

0
0
1
0

3

775

This yields

x =

2

664

0
1
1
0

3

775

which can be unitized as follows

x2 =
x

p
xTx

=

2

6664

0
 1p

2
1p
2

0

3

7775
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Notice, x2 is orthogonal to x1.

xT1 x2 =

1
2

1
2

1
2

1
2



2

6664

0
 1p

2
1p
2

0

3

7775
= 0

It works largely the same for  = 6. For  = 6,

U =

2

6664

2 1 1 2
0  7

2
1
2 0

0 0  24
7 0

0 0 0 0

3

7775

Since the fourth pivot equals zero its a free variable and we replace row
four with


0 0 0 1


and solve

Uax =

2

664

0
0
0
1

3

775

2

6664

2 1 1 2
0  7

2
1
2 0

0 0  24
7 0

0 0 0 1

3

7775
x =

2

664

0
0
0
1

3

775

This yields

x =

2

664

1
0
0
1

3

775

which can be unitized as follows

x4 =
x

p
xTx

=

2

6664

 1p
2

0
0
1p
2

3

7775

Notice, this eigenvector is orthogonal to both x1 and x2.
Unfortunately, we can’t just plug  = 4 into our expression for U as it

produces infinities. Rather, we return to AAT  4I and factor into its own
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LU . First, we apply a permutation (row exchanges7) to AAT  4I

P

AAT  4I


= LU

2

664

1 2 0 1
0 1 1 2
1 0 2 1
2 1 1 0

3

775 =

2

664

1 0 0 0
0 1 0 0
1 2 1 0
2 3 1 1

3

775

2

664

1 2 0 1
0 1 1 2
0 0 4 4
0 0 0 0

3

775

where

P =

2

664

0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1

3

775

swaps rows one and two. Then, we follow similar row operations as de-
scribed above to produce the LU factors where

U =

2

664

1 2 0 1
0 1 1 2
0 0 4 4
0 0 0 0

3

775

As the fourth pivot is zero it’s a free variable and we replace row four
with


0 0 0 1


to solve

Uax =

2

664

0
0
0
1

3

775

2

664

1 2 0 1
0 1 1 2
0 0 4 4
0 0 0 1

3

775x =

2

664

0
0
0
1

3

775

This yields x =

2

664

1
1
1
1

3

775 and is unitized as

x3 =
x

p
xTx

=

2

66664

1
2

 1
2

 1
2
1
2

3

77775

7Row exchanges can change the sign of the determinant but that is of consequence
here because we’ve chosen the eigenvalue to make the determinant zero.
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Now, as AAT is symmetric all four eigenvectors are orthonormal. Hence,
when we construct a matrix Q of eigenvectors in its columns

Q =

2

666664

1
2 0 1

2  1p
2

1
2  1p

2
 1
2 0

1
2

1p
2

 1
2 0

1
2 0 1

2
1p
2

3

777775

and multiply by its transpose

QQT = QTQ = I

Further,
QQT = AAT

2

666664

1
2 0 1

2  1p
2

1
2  1p

2
 1
2 0

1
2

1p
2

 1
2 0

1
2 0 1

2
1p
2

3

777775

2

664

0 0 0 0
0 2 0 0
0 0 4 0
0 0 0 6

3

775

2

66664

1
2

1
2

1
2

1
2

0  1p
2

1p
2

0

1
2  1

2  1
2

1
2

 1p
2

0 0 1p
2

3

77775

=

2

664

4 1 1 2
1 2 0 1
1 0 2 1
2 1 1 4

3

775

where  is a diagonal matrix of eigenvalues and the order of the eigenvectors
matches the order of the eigenvalues.

A.4.4 Singular value decomposition

Now, we introduce a matrix factorization that exists for every matrix. Sin-
gular value decomposition says everymn matrix, A, can be written as the
product of a mm orthogonal matrix, U , multiplied by a diagonal m n
matrix, , and finally multiplied by the transpose of a n  n orthogonal
matrix, V .8 U is composed of the eigenvectors of AAT , V is composed of
the eigenvectors of ATA, and  contains the singular values (the square
root of the eigenvalues of AAT or ATA) along the diagonal.

A = UV T

Further, singular value decomposition allows us to define a general inverse
or pseudo-inverse, A+.

A+ = V +UT

8An orthogonal (or unitary ) matrix is comprised of orthonormal vectors. That is,
mutually orthogonal, unit length vectors so that U1 = UT and UUT = UTU = I.
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where + is an nm diagonal matrix with nonzero elements equal to the
reciprocal of those for . This implies

AA+A = A

A+AA+ = A+


A+A

T
= A+A

and 
AA+

T
= AA+

Also, for the system of equations

Ay = x

the least squares solution is

yCS(A) = A+x

and AA+ is always the projection onto the columns of A. Hence,

AA+ = PA = A

ATA

1
AT

if A has linearly independent columns. Or,

AT

AT
+

=

A+A

T

=

V +UTUV T

T

= V TUTU

+
T
V T

= A+A

= PAT = AT

AAT

1
A

ifA has linearly independent rows (ifAT has linearly independent columns).
For the accounting example, recall the row component is the consistent

solution to Ay = x that is only a linearly combination of the rows of A;
that is, it is orthogonal to the nullspace. Utilizing the pseudo-inverse we
have

yRS(A) = AT

AT
+
yp

= PAT yp

= (Ar)
T

Ar (Ar)

T
1

Aryp

= A+Ayp
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or simply, since Ayp = x

yRS(A) = A+x

=
1

24

2

6666664

5 9 3 1
5 3 9 1
4 0 0 4
4 0 0 4
1 9 3 5
1 3 9 5

3

7777775

2

664

2
1
1
2

3

775

=
1

6

2

6666664

1
5
4
4
5
1

3

7777775

The beauty of singular value decomposition is that any m  n matrix,
A, can be factored as

AV = U

since
AV V T = A = UV T

where U and V are mm and nn orthogonal matrices (of eigenvectors),
respectively, and  is a m  n matrix with singular values along its main
diagonal.
Eigenvalues are characteristic values or singular values of a square matrix

and eigenvectors are characteristic vectors or singular vectors of the matrix
such that

AATu = u

or we can work with
ATAv = v

where u is an m-element unitary (uTu = 1) eigenvector (component of Q1),
v is an n-element unitary (vT v = 1) eigenvector (component of Q2), and 
is an eigenvalue of AAT or ATA. We can write AATu = u as

AATu = Iu

AAT  I


u = 0

or write ATAv = v as

ATAv = Iv

ATA I


v = 0
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then solve for unitary vectors u, v, and and roots . For instance, once we
have i and ui in hand. We find vi by

uTi A = ivi

such that vi is unit length, vTi vi = 1.
The sum of the eigenvalues equals the trace of the matrix (sum of the

main diagonal elements) and the product of the eigenvalues equals the
determinant of the matrix. A singular matrix has some zero eigenvalues
and pivots (the det (A) = ±[product of the pivots]), hence the determinant
of a singular matrix, det (A), is zero.9 The eigenvalues can be found by
solving det


AAT  I


= 0. Since this is an m order polynomial, there are

m eigenvalues associated with an mm matrix.

Accounting example

Return to the accounting example for an illustration. The singular value
decomposition (SVD) of A proceeds as follows. We’ll work with the square,
symmetric matrix AAT . Notice, by SVD,

AAT = UV T

UV T

T

= UV TV TUT

= UTUT

so that the eigenvalues of AAT are the squared singular values of A, T .
The eigenvalues are found by solving for the roots of10

det

AAT  Im


= 0

det

2

664

4  1 1 2
1 2  0 1
1 0 2  1
2 1 1 4 

3

775 = 0

48+ 442  123 + 4 = 0

9The determinant is a value associated with a square matrix with many (some useful)
properties. For instance, the determinant provides a test of invertibility (linear indepen-
dence). If det (A) = 0, then the matrix is singular and the inverse doesn’t exist; otherwise
det (A) 6= 0, the matrix is nonsingular and the inverse exists. The determinant is the
volume of a parallelpiped in n-dimensions where the edges come from the rows of A.
The determinant of a triangular matrix is the product of the main diagonal elements.
Determinants are unchanged by row eliminations and their sign is changed by row ex-
changes. The determinant of the transpose of a matrix equals the determinant of the
matrix, det (A) = det


AT


. The determinant of the product of matrices is the product

of their determinants, det (AB) = det (A) det (B). Some useful determinant identities
are reported in section five of the appendix.
10Below we show how to find the determinant of a square matrix and illustrate with

this example.
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Immediately, we see that one of the roots is zero,11 and

48+ 442  123 + 4 = 0

 ( 2) ( 4) ( 6) = 0

or

 = {6, 4, 2, 0}

forAAT .12 The eigenvectors forAAT are found by solving (employ Gaussian
elimination and back substitution)


AAT  iI4


ui = 0

Since there is freedom in the solution, we can make the vectors orthonormal
(see Gram-Schmidt discussion below). For instance,


AAT  6I4


u1 = 0

leads to uT1 =

a 0 0 a


, so we make a = 1p

2
and uT1 =

h
 1p

2
0 0 1p

2

i
.

Now, the complementary right hand side eigenvector, v1, is found by

uT1 A =
p
1v1

v1 =
1
p
6
uT1 A =

2

66666666664

1
2
p
3

1
2
p
3

 1p
3

1p
3
1

2
p
3

1
2
p
3

3

77777777775

Repeating these steps for the remaining eigenvalues (in descending order;
remember its important to match eigenvectors with eigenvalues) leads to

U =

2

66664

 1p
2

1
2 0 1

2

0  1
2  1p

2
1
2

0  1
2

1p
2

1
2

1p
2

1
2 0 1

2

3

77775

11For det

ATA I6


= 0, we have 483 +444  125 + 6 = 0. Hence, there are

at least three zero roots. Otherwise, the roots are the same as for AAT .
12Clearly,  = {6, 4, 2, 0, 0, 0} for ATA.
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and

V =

2

666666666664

1
2
p
3

 1
2  1

2 0
p
3

2
p
2

 1
2
p
6

1
2
p
3

 1
2

1
2

1p
3

 1
2
p
6

 1
2
p
6

 1p
3

0 0 1p
3

1p
6

1
6

1p
3

0 0 0 0
q

2
3

1
2
p
3

1
2

1
2 0

p
3

2
p
2

 1
2
p
6

1
2
p
3

1
2  1

2
1p
3

 1
2
p
6

 1
2
p
6

3

777777777775

where UUT = UTU = I4 and V V T = V TV = I6.13 Remarkably,

A = UV T

=

2

66664

 1p
2

1
2 0 1

2

0  1
2  1p

2
1
2

0  1
2

1p
2

1
2

1p
2

1
2 0 1

2

3

77775

2

664

p
6 0 0 0 0 0
0 2 0 0 0 0

0 0
p
2 0 0 0

0 0 0 0 0 0

3

775



2

666666666664

1
2
p
3

 1
2  1

2 0
p
3

2
p
2

 1
2
p
6

1
2
p
3

 1
2

1
2

1p
3

 1
2
p
6

 1
2
p
6

 1p
3

0 0 1p
3

1p
6

1
6

1p
3

0 0 0 0
q

2
3

1
2
p
3

1
2

1
2 0

p
3

2
p
2

 1
2
p
6

1
2
p
3

1
2  1

2
1p
3

 1
2
p
6

 1
2
p
6

3

777777777775

T

=

2

664

1 1 1 1 0 0
1 0 0 0 1 0
0 1 0 0 0 1
0 0 1 1 1 1

3

775

where  is m  n (4  6) with the square root of the eigenvalues (in de-
scending order) on the main diagonal.

A.4.5 Spectral decomposition

When A is a square, symmetric matrix, singular value decomposition can
be expressed as spectral decomposition.

A = UUT

13There are many choices for the eigenvectors associated with zero eigenvalues. We
select them so that they orthonormal. As with the other eigenvectors, this is not unique.
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where U is an orthogonal matrix. Notice, the matrix on the right is the
transpose of the matrix on the left. This follows as AAT = ATA when
A = AT . We’ve illustrated this above if when we decomposed AAT , a
square symmetric matrix.

AAT = UUT

=

2

6664

 1p
2

1
2

0 1
2

0  1
2

 1p
2

1
2

0  1
2

1p
2

1
2

1p
2

1
2

0 1
2

3

7775

2

64

6 0 0 0
0 4 0 0
0 0 2 0
0 0 0 0

3

75

2

6664

 1p
2

1
2

0 1
2

0  1
2

 1p
2

1
2

0  1
2

1p
2

1
2

1p
2

1
2

0 1
2

3

7775

T

=

2

664

4 1 1 2
1 2 0 1
1 0 2 1
2 1 1 4

3

775

A.4.6 quadratic forms, eigenvalues, and positive definiteness

A symmetric matrix A is positive definite if the quadratic form xTAx is pos-
itive for every nonzero x. Positive semi-definiteness follows if the quadratic
form is non-negative, xTAx  0 for every nonzero x. Negative definite
and negative semi-definite symmetric matrices follow in analogous fashion
where the quadratic form is negative or non-positive, respectively. A pos-
itive (semi-) definite matrix has positive (non-negative) eigenvalues. This
result follows immediately from spectral decomposition. Let y = Qx (y is
arbitrary since x is) and write the spectral decomposition of A as QTQ
where Q is an orthogonal matrix and  is a diagonal matrix composed of
the eigenvalues of A. Then the quadratic form xTAx > 0 can be written as
xTQTQx > 0 or yTy > 0. Clearly, this is only true if , the eigenvalues,
are all positive.

A.4.7 similar matrices, Jordan form, and generalized
eigenvectors

Now, we provide some support for properties associated with eigenvalues.
Namely, for any square matrix the sum of the eigenvalues equals the trace
of the matrix and the product of the eigenvalues equals the determinant of
the matrix. To aid with this discussion we first develop the idea of similar
matrices and the Jordan form of a matrix.
Two matrices, A and B, are similar if there existsM andM1 such that

B = M1AM . Similar matrices have the same eigenvalues as seen from
Ax = x where x is an eigenvector of A associated with .

Ax = x

AMM1x = x
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Since MB = AM , we have

MBM1x = x

M1MBM1x = M1x

B

M1x


= 


M1x



Hence, A and B have the same eigenvalues where x is the eigenvector of A
and M1x is the eigenvector of B.
From here we can see A and B have the same trace and determinant.

First, we’ll demonstrate, via example, the trace of a matrix equals the
sum of its eigenvalues,

X
i = tr (A) for any square matrix A. Consider

A =


a11 a12
a21 a22


where tr (A) = a11 + a22. The eigenvalues of A are

determined from solving det (A I) = 0.

(a11  ) (a22  ) a12a21 = 0

2  (a11 + a22)+ a11a22  a12a21 = 0

The two roots or eigenvalues are

 =
a11 + a22 ±

q
(a11 + a22)

2  4 (a11a22  a12a21)

2

and their sum is 1 + 2 = a11 + a22 = tr (A). The idea extends to any
square matrix A such that

X
i = tr (A). This follows as det (A I) for

any n  n matrix A has coe¢cient on the n1 term equal to minus the
coe¢cient on n times

X
i, as in the 2 2 example above.14

We’ll demonstrate the determinant result in two parts: one for diagonal-
izable matrices and one for non-diagonalizable matrices using their Jordan
form. Any diagonalizable matrix can be written as A = SS1. The deter-
minant of A is then |A| =

SS1
 = |S| ||

S1
 = || since

S1
 = 1

|S|

which follows from
SS1

 =
S1

 |S| = |I| = 1. Now, we have || =
Y
i.

The second part follows from similar matrices and the Jordan form.
When a matrix is not diagonalizable because it doesn’t have a complete
set of linearly independent eigenvectors, we say it is nearly diagonalizable
when it’s in Jordan form. Jordan form means the matrix is nearly diagonal
except for perhaps ones immediately above the diagonal.

For example, the identity matrix,

1 0
0 1


, is in Jordan form as well as

being diagonalizable while

1 1
0 1


is in Jordan form but not diagonaliz-

14For n even the coe¢cient on n is 1 and for n odd the coe¢cient on n is 1 with
the coe¢cient on n1 of opposite sign.
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able. Even though both matrices have the same eigenvalues they are not

similar matrices as there exists no M such that

1 1
0 1


equals M1IM .

Nevertheless, the Jordan form is the characteristic form for a family
of similar matrices as there exists P such that P1AP = J where J

is the Jordan form for the family. For instance, A = 1
3


1 4
1 5


has

Jordan form

1 1
0 1


with P =


2 1
1 2


. Consider another example,

A = 1
5


13 6
1 12


has Jordan form


3 1
0 2


with P =


3 1
1 2


. Since

they are similar matrices, A and J have the same eigenvalues. Plus, as in
the above examples, the eigenvalues lie on the diagonal of J in general.
The determinant of A =

PJP1
 = |P | |J |

P1
 = |J | =

Y
i. This

completes the argument.
To summarize, for any n n matrix A:

(1) |A| =
Y
i,

and

(2) tr (A) =
X

i.

Generalized eigenvectors

The idea of eigenvectors is generalized for non-diagonalizable matrices like
1 1
0 1


as it doesn’t have a full set of regular eigenvectors. For such matri-

ces, eigenvectors are the (nullspace or nonzero) solutions, q, to (A I)k q =
0 for k  1 (k = 1 for diagonalizable matrices). For the above matrix k = 2
as there are two occurrences of  = 1.

(A I)1 =

0 1
0 0



therefore q =

1
0


is an eigenvector of A but there is no other nonzero,

linearly independent vector that resides in the nullspace of A I. On the
other hand,

(A I)2 =

0 0
0 0



and q =

1
0


and


0
1


are a basis for the nullspace of (A I)2 or

generalized eigenvectors of A.
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A.5 Gram-Schmidt construction of an orthogonal
matrix

Before we put this section to bed, we’ll undertake one more task. Construc-
tion of an orthogonal matrix (that is, a matrix with orthogonal, unit length
vectors so that QQT = QTQ = I). Suppose we have a square, symmetric
matrix

A =

2

4
2 1 1
1 3 2
1 2 3

3

5

with eigenvalues

1
2


7 +

p
17

, 12

7

p
17

, 1

and eigenvectors (in the

columns)


v1 v2 v3


=

2

4
1
2


3 +

p
17


1
2


3

p
17


0
1 1 1
1 1 1

3

5

The first two columns are not orthogonal to one another and none of the
columns are unit length.
First, the Gram-Schmidt procedure normalizes the length of the first

vector

q1 =
v1p
vT1 v1

=

2

66664

3+
p
17p

346
p
17q

2
173

p
17q

2
173

p
17

3

77775



2

4
0.369
0.657
0.657

3

5

Then, finds the residuals (null component) of the second vector projected
onto q1.15

r2 =

1 q1qT1


v2

=

2

4
1
2


3

p
17


1
1

3

5

Now, normalize r2
q2 =

r2p
rT2 r2

15 Since the

vT1 v1

1 term is the identity, we omit it in the development.
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so that q1 and q2 are orthonormal vectors. Let

Q12 =

q1 q2



=

2

66664

3+
p
17p

346
p
17

 3+
p
17p

34+6
p
17q

2
173

p
17

q
2

17+3
p
17q

2
173

p
17

q
2

17+3
p
17

3

77775



2

4
0.369 0.929
0.657 0.261
0.657 0.261

3

5

Finally, compute the residuals of v3 projected onto Q12

r3 = v3 Q12QT12v3

=

2

4
0
1
1

3

5

and normalize its length.16

q3 =
r3p
rT3 r3

Then,

Q =

q1 q2 q3



=

2

66664

3+
p
17p

346
p
17

 3+
p
17p

34+6
p
17

0
q

2
173

p
17

q
2

17+3
p
17

 1p
2q

2
173

p
17

q
2

17+3
p
17

1p
2

3

77775



2

4
0.369 0.929 0
0.657 0.261 0.707
0.657 0.261 0.707

3

5

and QQT = QTQ = I. If there are more vectors then we continue along the
same lines with the fourth vector made orthogonal to the first three vectors
(by finding its residual from the projection onto the first three columns)
and then normalized to unit length, and so on.

16Again,

QT12Q12

1
= I so it is omitted in the expression. In this example, v3 is

orthogonal to Q12 (as well as v1 and v2) so it is unaltered.
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A.5.1 QR decomposition

QR is another important (especially for computation) matrix decomposi-
tion. QR combines Gram-Schmidt orthogonalization and Gaussian elim-
ination to factor an m  n matrix A with linearly independent columns
into a matrix composed of orthonormal columns, Q such that QTQ = I,
multiplied by a square, invertible upper triangular matrix R. This provides
distinct advantages when dealing with projections into the column space of
A. Recall, this problem takes the form Ay = b where the objective is to find
y that minimizes the distance to b. Since A = QR, we have QRy = b and
R1QTQRy = y = R1QT b. Next, we summarize the steps for two QR
algorithms: the Gram-Schmidt approach and the Householder approach.

A.5.2 Gram-Schmidt QR algorithm

The Gram-Schmidt algorithm proceeds as described above to form Q. Let
a denote the first column of A and construct a1 = ap

aT a
to normalize the

first column. Construct the projection matrix for this column, P1 = aT1 a1
(since a1 is normalized the inverse of aT1 a1 is unity so it’s dropped from the
expression). Now, repeat with the second column. Let a denote the second
column of A and make it orthogonal to a1 by redefining it as a = (I  P1) a.
Then normalize via a2 = ap

aT a
. Construct the projection matrix for this

column, P2 = aT2 a2. The third column is made orthonormal in similar
fashion. Let a denote the third column of A and make it orthogonal to
a1 and a2 by redefining it as a = (I  P1  P2) a. Then normalize via
a3 =

ap
aT a

. Construct the projection matrix for this column, P3 = aT3 a3.
Repeat this for all n columns of A. Q is constructed by combining the
columns Q =


a1 a2 · · · an


such that QTQ = I. R is constructed

as R = QTA. To see that this is upper triangular let the columns of A be
denoted A1, A2, . . . ,An. Then,

QTA =

2

6664

aT1 A1 aT1 A2 · · · aT1 An
aT2 A1 aT2 A2 · · · aT2 An
...

...
. . .

...
aTnA1 aTnA2 · · · aTnAn

3

7775

The terms below the main diagonal are zero since aj for j = 2, . . . , n are
constructed to be orthogonal to A1, aj for j = 3, . . . , n are constructed to
be orthogonal to A2 = a2 + P1A2, and so on.
Notice, how straightforward it is to solve Ay = b for y.

Ay = b

QRy = b

R1QTQRy = y = R1QT b
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A.5.3 Accounting example

Return to the 4 accounts by 6 journal entries A matrix. This matrix clearly
does not have linearly independent columns (or for that matter rows) but
we’ll drop a redundant row (the last row) and denote the resultant matrix
A0. Now, we’ll find the QR decomposition of the 6  3 AT0 , AT0 = QR by
the Gram-Schmidt process.

AT0 =

2

6666664

1 1 0
1 0 1
1 0 0
1 0 0
0 1 0
0 0 1

3

7777775

a1 =
1

2

2

6666664

1
1
1
1
0
0

3

7777775
, P1 =

1

4

2

6666664

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7777775
,

a2 =
1

2

2

6666664

0.567
0.189
0.189
0.189
0.756
0

3

7777775
, P2 =

1

4

2

6666664

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

3

7777775
,

and

a3 =
1

2

2

6666664

0.109
0.546
0.218
0.218
0.109
0.764

3

7777775

so that

Q =

2

6666664

0.5 0.567 0.109
0.5 0.189 0.546
0.5 0.189 0.218
0.5 0.189 0.218
0 0.756 0.109
0 0 0.764

3

7777775

and

R = QTA =

2

4
2 0.5 0.5
0 1.323 0.189
0 0 1.309

3

5
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The projection solution to Ay = x or A0y = x0 where x =

2

664

2
1
1
2

3

775 and

x0 =

2

4
2
1
1

3

5 is yrow = Q

RT
1

x0 =
1
6

2

6666664

1
5
4
4
5
1

3

7777775
.

A.5.4 The Householder QR algorithm

The Householder algorithm is not as intuitive as the Gram-Schmidt algo-
rithm but is computationally more stable. Let a denote the first column
of A and z be a vector of zeros except the first element is one. Define
v = a+

p
aTaz and H1 = I2 vv

T

vT v
. Then, H1A puts the first column of A

in upper triangular form. Now, repeat the process where a is now defined
to be the second column of H1A whose first element is set to zero and z
is defined to be a vector of zeros except the second element is one. Utilize
these components to create v in the same form as before and to construct
H2 in the same form as H1. Then, H2H1A puts the first two columns of A
in upper triangular form. Next, we work with the third column of H2H1A
where the first two elements of a are set to zero and repeat for all n columns.
When complete, R is constructed from the first n rows of Hn · · ·H2H1A.
and QT is constructed from the first n rows of Hn · · ·H2H1.

A.5.5 Accounting example

Again, return to the 4 accounts by 6 journal entries A matrix and work
with A0. Now, we’ll find the QR decomposition of the 6 3 AT0 , AT0 = QR
by Householder transformation.

AT0 =

2

6666664

1 1 0
1 0 1
1 0 0
1 0 0
0 1 0
0 0 1

3

7777775
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In the construction of H1, a =

2

6666664

1
1
1
1
0
0

3

7777775
, z =

2

6666664

1
0
0
0
0
0

3

7777775
, v =

2

6666664

 1
2

1
1
1
0
0

3

7777775
, and

H1 =
1
2

2

6666664

1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
1 1 1 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2

3

7777775
. Then,H1AT0 =

1
2

2

6666664

4 1 1
0 1 1
0 1 1
0 1 1
0 2 0
0 0 2

3

7777775
.

For the construction of H2, a = 1
2

2

6666664

0
1
1
1
2
0

3

7777775
, z =

2

6666664

0
1
0
0
0
0

3

7777775
, v =

2

6666664

0
1.823
0.5
0.5
1
0

3

7777775
,

andH2 =

2

6666664

1 0 0 0 0 0
0 0.378 0.378 0.378 0.756 0
0 0.378 0.896 0.104 0.207 0
0 0.378 0.104 0.896 0.207 0
0 0.756 0.207 0.207 0.585 0
0 0 0 0 0 1

3

7777775
. Then,H2H1AT0 =

2

6666664

2 0.5 0.5
0 1.323 0.189
0 0 0.585
0 0 0.585
0 0 0.171
0 0 1

3

7777775
.

For the construction ofH3, a =

2

6666664

0
0

0.585
0.585
0.171
1

3

7777775
, z =

2

6666664

0
0
1
0
0
0

3

7777775
, v =

2

6666664

0
0

1.894
0.585
0.171
1

3

7777775
,

andH3 =

2

6666664

1 0 0 0 0 0
0 0 0 0 0 0
0 0 0.447 0.447 0.130 0.764
0 0 0.447 0.862 0.040 0.236
0 0 0.130 0.040 0.988 0.069
0 0 0.764 0.236 0.069 0.597

3

7777775
. Then,H3H2H1AT0 =
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2

6666664

2 0.5 0.5
0 1.323 0.189
0 0 1.309
0 0 0
0 0 0
0 0 0

3

7777775
. This leads to R =

2

4
2 0.5 0.5
0 1.323 0.189
0 0 1.309

3

5

and Q =

2

6666664

0.5 0.567 0.109
0.5 0.189 0.546
0.5 0.189 0.218
0.5 0.189 0.218
0 0.756 0.109
0 0 0.764

3

7777775
.

Finally, the projection solution to A0y = x0 is yrow = Q

RT
1

x0 =2

6666664

0.5 0.567 0.109
0.5 0.189 0.546
0.5 0.189 0.218
0.5 0.189 0.218
0 0.756 0.109
0 0 0.764

3

7777775

0

B@

2

4
2 0.5 0.5
0 1.323 0.189
0 0 1.309

3

5
T
1

CA

1 2

4
2
1
1

3

5 =

1
6

2

6666664

1
5
4
4
5
1

3

7777775
.
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A.6 Computing eigenvalues

As discussed above, eigenvalues are the characteristic values that ensure
(A I) has a nullspace for square matrix A. That is, (A I)x = 0
where x is an eigenvector. If an eigenvector can be identified such that
Ax = x then the constant, , is an associated eigenvalue. For instance,
if the rows of A have the same sum then x =  (a vector of ones) and 
equals the sum of any row of A.
Further, since the sum of the eigenvalues equals the trace of the matrix

and the product of the eigenvalues equals the determinant of the matrix,
finding the eigenvalues for small matrices is relatively simple. For instance,
eigenvalues of a 2 2 matrix can be found by solving

1 + 2 = tr (A)

12 = det (A)

Alternatively, we can solve the roots or zeroes of the characteristic polyno-
mial. That is, det (A I) = 0.

Example 1 Suppose A =


2 2
1 3


then tr (A) = 5 and det (A) = 4.

Therefore,

1 + 2 = 5

12 = 4

which leads to 1 = 4 and 2 = 1. Likewise, the characteristic polynomial
is det (A I) = (2 ) (3 )  2 = 0 leading to the same solution for
.

However, for larger matrices this approach proves impractical. Hence,
we’ll explore some alternatives.

A.6.1 Schur’s lemma

Schur’s lemma says that while every square matrix may not be diagonaliz-
able, it can be triangularized by some unitary operator U .

T = U1AU

= UAU

or
A = UTU

where A is the matrix of interest, T is a triangular matrix, and U is unitary
so that UU = UU = I (U denotes the complex conjugate transpose of
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U). Further, since T and A are similar matrices they have the same eigen-
values and the eigenvalues reside on the main diagonal of T . To see they are
similar matrices recognize they have the same characteristic polynomial.

det(A I) = det (T  I)
= det (UAU  I)
= det (UAU  UIU)
= det (U(A I)U)
= det (U) det (A I) det (U)
= 1 det (A I) 1
= det (A I)

Before discussing construction of T , we introduce some eigenvalue construc-
tion algorithms.

A.6.2 Power algorithm

The power algorithm is an iterative process for finding the largest absolute
value eigenvalue.
1. Let k1 be a vector of ones where the number of elements in the vector

equals the number of rows or columns in A.
2. Let kt+1 = Aktp

kTt A
TAkt

where
p
kTt A

TAkt = norm.

3. iterate until |kt+1  kt| < " for desired precision ".
4. norm is the largest eigenvalue of A and kt = kt+1 is it’s associated

eigenvector.
Clearly, if kt = kt+1 this satisfies the property of eigenvalues and eigen-

vectors, Ax = x or Akt =
p
kTt A

TAktkt.

Alternatively, let µt 
kTt Akt
kTt kt

and scale Akt by µt to form kt+1 =
Akt
µt
.

Then, iterate as above. This follows as eigensystems are defined by

Akt = kt

Now, multiply both sides by kTt to generate a quadratic form (scalars on
both sides of the equation).

kTt Akt = k
T
t kt

Then, isolate the eigenvalue, , by dividing both sides by the right-hand
side scalar, kTt kt, to produce the result. As t! n,

µt 
kTt Akt
kTt kt

! 
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Example 2 Continue with A =


2 2
1 3


. k2 = Ak1

norm1
= 1

4
p
2


4
4


=

"
1p
2
1p
2

#
k3 =

Ak2
norm2

= 1
4

"
4p
2
4p
2

#
=

"
1p
2
1p
2

#
Hence,

"
1p
2
1p
2

#
is an eigen-

vector and norm2 = 4 is the associated (largest) eigenvalue.

Example 3 (complex eigenvalues) Suppose A =

4 2
2 4


. The eigen-

values are  = 4±2i with norm =
p
(4 + 2i) (4 2i) = 4.472136 (not

a complex number). The power algorithm settles on the norm but Akn 6=

normkn. Try the algorithm again except begin with k1 =

1
i


. The algo-

rithm converges to the same norm but kn =

0.4406927 0.5529828i
0.5529828 0.4406927i


.

Now,

Akn = kn
4 2
2 4

 
0.4406927 0.5529828i
0.5529828 0.4406927i



= 


0.4406927 0.5529828i
0.5529828 0.4406927i



solving for  yields 4 + 2i. Since complex roots always come in conjugate
pairs we also know the other eigenvalue, 4  2i. However, the second

power algorithm converges very quickly with initial vector k1 =

1
i


to

µ2 = 4+2i and k2 =

"
1p
2
ip
2

#
. This suggests the second algorithm is more

versatile and perhaps converges faster.

A.6.3 QR algorithm

The QR algorithm parallels Schur’s lemma and supplies a method to com-
pute all eigenvalues.
1. Compute the factors Q, an orthogonal matrix QQT = QTQ = I, and

R, a right or upper triangular matrix, such that A = QR.
2. Reverse the factors and denote this A1, A1 = RQ.
3. Factor A1, A1 = Q1R1 then A2 = R1Q1.
4. Repeat until Ak is triangular.

Ak1 = Qk1Rk1

Ak = Rk1Qk1

The main diagonal elements of Ak are the eigenvalues of A.
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The connection to Schur’s lemma is RQ = QTQRQ = QTAQ = A1 so
that A, A1 and Ak are similar matrices (they have the same eigenvalues).

Example 4 Continue with A =

2 2
1 3


. A1 = RQ =


3.4 1.8
0.8 1.6



and A11 = R10Q10 =

4 1
0 1


.17 Hence, the eigenvalues of A (and also

A10) are the main diagonal elements, 4 and 1.

Example 5 (complex eigenvalues) Suppose A =

2

4
5 0 0
0 2 3
0 3 2

3

5. The

QR algorithm leaves A unchanged. However, we can work in blocks to solve
for the eigenvalues. The first block is simply B1 = 5 (bordered by zeroes
in the first row, first column) and 5 is an eigenvalue. The second block is

rows 2 and 3 and columns 2 and 3 or B2 =

2 3
3 2


. Now solve the

characteristic polynomial for this 2 2 matrix.

2 + 4 13 = 0

 = 2± 3i

We can check that each of these three eigenvalues creates a nullspace for
A I.

A 5I =

2

4
0 0 0
0 3 3
0 3 3

3

5

has rank 2 and nullspace or eigenvector

2

4
1
0
0

3

5.

A (2 + 3i) I =

2

4
3 3i 0 0
0 3i 3
0 3 3i

3

5

The second row is a scalar multiple (i) of the third (and vice versa) and

a nullspace or eigenvector is 1p
2

2

4
0
i
1

3

5. Finally,18

A (2 3i) I =

2

4
3 3i 0 0
0 3i 3
0 3 3i

3

5

17 Shifting refinements are typically employed to speed convergence (see Strang).
18Gauss’ fundamental theorem of algebra insures complex roots always come in con-

jugate pairs so this may be overly pedantic.
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Again, the second row is a scalar multiple (i) of the third (and vice versa)

and a nullspace or eigenvector is 1p
2

2

4
0
i
1

3

5. Hence, the eigenvalues are

 = 5, 2± 3i.

A.6.4 Schur decomposition

Schur decomposition works similarly.
1. Use one of the above algorithms to find an eigenvalue of n n matrix

A, 1.
2. From this eigenvalue, construct a unit length eigenvector, x1.
3. Utilize Gram-Schmidt to construct a unitary matrix U1 from n  1

columns of A where x1 is the first column of U . This creates

AU1 = U1

2

6664

1  · · · 
0  · · · 
...

...
. . .

...
0  · · · 

3

7775

or

U1AU1 =

2

6664

1  · · · 
0  · · · 
...

...
. . .

...
0  · · · 

3

7775

4. The next step works the same way except with the lower right (n 1)
(n 1) matrix. then, U2 is constructed from this lower, right block with a
one in the upper, left position with zeroes in its row and column.

U2 =

2

6664

1 0 · · · 0
0 x22 · · · 
...

...
. . .

...
0 x2n · · · 

3

7775

U2U

1AU1U2 =

2

6664

1  · · · 
0 2 · · · 
...

...
. . .

...
0 0 · · · 

3

7775

5. Continue until T is constructed.

T = Un1 · · ·U

1AU1 · · ·Un1

UAU =

2

6664

1  · · · 
0 2 · · · 
...

...
. . .

...
0 · · · 0 n

3

7775
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where U = U1 · · ·Un1. When triangularization is complete, the eigenvalues
reside on the main diagonal of T .

Example 6 (not diagonalizable) Suppose A =

2

4
5 0 1
0 2 3
0 3 2

3

5. This

matrix has repeated eigenvalues (5, 5,1) and lacks a full set of linearly in-
depedent eigenvectors therefore it cannot be expressed in diagonalizable form
A = SS1 (as the latter term doesn’t exist). Nonetheless, the Schur de-
composition can still be employed to triangularize the matrix. A unit length

eigenvector associated with  = 5 is x1 =

2

4
1
0
0

3

5. Applying Gram-Schmidt

to columns two and three of A yields U1 =

2

4
1 0 1
0 0.55470 0.83205
0 0.83205 0.55470

3

5.

This leads to

T1 = U1AU1

=

2

4
5 0.83205 0.55470
0 4.76923 1.15385
0 1.15385 0.76923

3

5

Working with the lower, right 2 2 block gives

U2 =

2

4
1 0 1
0 0.98058 0.19612
0 0.19612 0.98058

3

5

Then,

T = U2U

1AU1U2

UAU =

2

4
5 1p

2
1p
2

0 5 0
0 0 1

3

5

where U = U1U2 =

2

4
1 0 1
0  1p

2
1p
2

0 1p
2

1p
2

3

5.

Example 7 (complex eigenvalues) Suppose A =

2

4
5 0 0
0 2 3
0 3 2

3

5. We

know from example 5 A has complex eigenvalues. Let’s explore its Schur
decomposition. Again,  = 5 is an eigenvalue with corresponding eigenvec-

tor x1 =

2

4
1
0
0

3

5. Applying Gram-Schmidt to columns two and three of A
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yields U1 =

2

4
1 0 1
0 0.55470 0.83205
0 0.83205 0.55470

3

5. This leads to

T1 = U1AU1

=

2

4
5 0 0
0 2 3
0 3 2

3

5

Working with the lower, right 2  2 block,  = 2 + 3i, and associated

eigenvector x2 =

2

4
0
1p
2
i

 1p
2

3

5 gives

U2 =

2

4
1 0 0
0 1p

2
i 1p

2

0  1p
2

 1p
2
i

3

5

where x12 =

2

4
1 0
0 1p

2
i

0  1p
2

3

5 is applied via Gram-Schmidt to create the third

(column) vector of U2 from the third column of A, A·3.19

A·3  x12x12A·3

=

2

4
0
3
2

3

5

2

4
1 0
0 1p

2
i

0  1p
2

3

5

1 0 0
0  1p

2
i  1p

2

2

4
0
3
2

3

5 =

2

4
0
3
3i

3

5

before normalization and after we have

2

4
0
1p
2

 1p
2
i

3

5. Then,

T = U2U

1AU1U2

UAU =

2

4
5 0 0
0 2 + 3i 0
0 0 2 3i

3

5

where U = U1U2 =

2

4
1 0 1
0 0.5883484 + 0.3922323i 0.3922323 0.5883484i
0 0.3922323 0.5883484i 0.5883484 0.3922323i

3

5.

The eigenvalues lie along the main diagonal of T .

19Notice, conjugate transpose is employed in the construction of the projection matrix
to accommodate complex elements.
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A.7 Some determinant identities

A.7.1 Determinant of a square matrix

We utilize the fact that

det (A) = det (LU)

= det (L) det (U)

and the determinant of a triangular matrix is the product of the diagonal
elements. Since L has ones along its diagonal, det (A) = det (U). Return to
the example above

det

AAT  I4


= det

2

664

4  1 1 2
1 2  0 1
1 0 2  1
2 1 1 4 

3

775

Factor AAT  I4 into its upper and lower triangular components via
Gaussian elimination (this step can be computationally intensive).

L =

2

66664

1 0 0 0
1

4+ 1 0 0
1

4+  1
76+2 1 0

2
4+

6+
76+2

6+
66+2 1

3

77775

and

U =

2

666664

4  1 1 2

0 76+2
4

1
4+

6
4+

0 0 1218+823
76+2  128+2

76+2

0 0 0 
(2410+2)
66+2

3

777775

The determinant of A equals the determinant of U which is the product of
the diagonal elements.

det

AAT  I4


= det (U)

= (4 )

7 6+ 2

4 


12 18+ 82  3

7 6+ 2





 



24 10+ 2



6 6+ 2

!

which simplifies as

det

AAT  I4


= 48+ 442  123 + 4

Of course, the roots of this equation are the eigenvalues of A.
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A.7.2 Identities

Below the notation |A| refers to the determinant of matrix A.

Theorem 8



Amm Bmn
Cnm Dnn

 = |A|
D  CA1B

 = |D|
ABD1C



where A1 and D1 exist.

Proof.

A B
C D


=


A 0
C I

 
I A1B
0 D  CA1B



=


I B
0 D

 
ABD1C 0
D1C I



Since the determinant of a block triangular matrix is the product of the
determinants of the diagonal blocks and the determinant of the product of
matrices is the product of their determinants,




Amm Bmn
Cnm Dnn

 = |A| |I| |I|
D  CA1B

 = |D| |I|
ABD1C

 |I|

= |A|
D  CA1B

 = |D|
ABD1C



Theorem 9 For A and B m n matrices,

In +ATB
 =

Im +BAT
 =

In +BTA
 =

Im +ABT


Proof. Since the determinant of the transpose of a matrix equals the de-
terminant of the matrix,

In +ATB
 =



In +A

TB
T  =

In +BTA


From theorem 8,




Im B
AT In

 = |I|
I +AT IB

 = |I|
I +BIAT

. Hence,
I +ATB

 =
I +BAT

 =


I +BAT

T  =
I +ABT



Theorem 10 For vectors x and y,
I + xyT

 = 1 + yTx.

Proof. From theorem 9,
I + xyT

 =
I + yTx

 = 1 + yTx.

Theorem 11
Ann + xyT

 = |A|

1 + yTA1x


where A1 exists.
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Proof.

A x
yT 1


=


A 0
yT 1

 
I A1x
0 1 + yTA1x


=


I x
0 1

 
A+ x1yT 0
1yT 1


.




A 0
yT 1

 
I A1x
0 1 + yTA1x

 = |A|

1 + yTA1x



=




I x
0 1

 
A+ x1yT 0
1yT 1



= 1
A+ xyT


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A.8 Matrix exponentials and logarithms

For matrices A and B, where eB = A, then B = lnA. Further, the matrix
exponential is

eB =

1X

k=0

1

k!
Bk

Suppose the matrix A is diagonalizable.

A = SS1

where  is a diagonal matrix with eigenvalues of A on the diagonal. Then,

 = S1AS

and

lnA = S lnS1

eB =

1X

k=0

1

k!
S (ln)

k
S1

where ln =

2

6664

ln1 0 · · · 0
0 ln2 · · · 0
...

...
. . .

...
0 0 · · · lnn

3

7775
. From this result we see the log-

arithm of a matrix is well-defined if and only if the matrix is full rank (has a
complete set of linearly independent rows and columns or, in other words, is

invertible). For example, ln

1 0
0 1


= Q


0 0
0 0


QT =


0 0
0 0


where

Q is any 2 2 orthogonal matrix (QQT = QTQ = I).
If A is not diagonalizable, then we work with its Jordan form and in

particular, the logarithm of Jordan blocks. A Jordan block has the form

B =

2

666664

 1 0 · · · 0
0  1 · · · 0
0 0  1 0

0
... 0  1

0 · · · 0 0 

3

777775

where  is the repeated eigenvalue. This can be written

B = 

2

666664

1 1 0 · · · 0

0 1 1 · · · 0

0 0 1 1 0

0
... 0 1 1

0 · · · 0 0 1

3

777775
=  (I +K)
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where K =

2

666664

0 1 0 · · · 0

0 0 1 · · · 0

0 0 0 1 0

0
... 0 0 1

0 · · · 0 0 0

3

777775
. Since ln (1 + x) = x  x2

2 +

x3

3 
x4

4 + · · · , we have

lnB = ln (I +K)

= lnI + ln (I +K)

= lnI +K 
K2

2
+
K3

3

K4

4
+ · · ·

This may not converge for all K. However, in the case B =


1 1
0 1


,

K =


0 1
0 0


and we know from the discussion of generalized eigenvectors

K2 (as well as higher powers) =

0 0
0 0


. Hence,

lnB = lnI +K

ln


1 1
0 1


=


0 0
0 0


+


0 1
0 0



=


0 1
0 0


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