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Appendix A
Linear algebra basics

A.1 Basic operations

We frequently envision or frame problems as linear systems of equations.1

It is useful to write this compactly in matrix notation, say

Ay = x

where A is an m × n (rows × columns) matrix (a rectangular array of
elements), y is an n-element vector, and x is an m-element vector. This
statement compares the result on the left with that on the right, element-
by-element. The operation on the left is matrix multiplication or each ele-
ment is recovered by a vector inner product of the corresponding row from
A with the vector y. That is, the first element of the product vector Ay is
the vector inner product of the first row A with y, the second element of
the product vector is the inner product of the second row A with y, and
so on. A vector inner product multiplies the same position element of the
leading row and trailing column and sums over the products. Of course, this
means that the operation is only well-defined if the number of columns in
the leading matrix, A, equals the number of rows of the trailing, y. Further,
the product matrix has the same number of rows as the leading matrix and

1G. Strang, Linear Algebra and its Applications, Harcourt Brace Jovanovich Col-
lege Publishers, or Introduction to Linear Algebra, Wellesley-Cambridge Press offers a
mesmerizing discourse on linear algebra.
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columns of the trailing. For example, let

A =

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

 ,

y =


y1

y2

y3

y4

 ,
and

x =

 x1

x2

x3


then

Ay =

 a11y1 + a12y2 + a13y3 + a14y4

a21y1 + a22y2 + a23y3 + a24y4

a31y1 + a32y2 + a33y3 + a34y4


The system of equations also covers matrix addition and scalar multiplica-
tion by a matrix in the sense that we can rewrite the equations as

Ay − x = 0

First, multiplication by a scalar or constant simply multiplies each element
of the matrix by the scalar. In this instance, we multiple the elements of x
by −1.  a11y1 + a12y2 + a13y3 + a14y4

a21y1 + a22y2 + a23y3 + a24y4

a31y1 + a32y2 + a33y3 + a34y4

−
 x1

x2

x3

 =

 0
0
0


 a11y1 + a12y2 + a13y3 + a14y4

a21y1 + a22y2 + a23y3 + a24y4

a31y1 + a32y2 + a33y3 + a34y4

+

 −x1

−x2

−x3

 =

 0
0
0


Then, we add the m-element vector x to the m-element vector Ay where
same position elements are summed. a11y1 + a12y2 + a13y3 + a14y4 − x1

a21y1 + a22y2 + a23y3 + a24y4 − x2

a31y1 + a32y2 + a33y3 + a34y4 − x3

 =

 0
0
0


Again, the operation is only well-defined for equal size matrices and, unlike
matrix multiplication, matrix addition always commutes. Of course, the
m-element vector (the additive identity) on the right has all zero elements.
By convention, vectors are represented in columns. So how do we repre-

sent an inner product of a vector with itself? We create a row vector by
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transposing the original. Transposition simply puts columns of the original
into same position rows of the transposed. For example, yT y represents the
vector inner product (the product is a scalar) of y with itself where the
superscript T represents transposition.

yT y =
[
y1 y2 y3 y4

] 
y1

y2

y3

y4


= y2

1 + y2
2 + y2

3 + y2
4

Similarly, we might be interested in ATA.

ATA =


a11 a21 a31

a12 a22 a32

a13 a23 a33

a14 a24 a34


 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



=



(
a211 + a221
+a231

) (
a11a12 + a21a22

+a31a32

) (
a11a13 + a21a23

+a31a33

) (
a11a14 + a21a24

+a31a34

)
(
a11a12 + a21a22

+a31a32

) (
a212 + a222
+a232

) (
a12a13 + a22a23

+a32a33

) (
a12a14 + a22a24

+a32a34

)
(
a11a13 + a21a23

+a31a33

) (
a12a13 + a22a23

+a32a33

) (
a213 + a223
+a233

) (
a13a14 + a23a24

+a33a34

)
(
a11a14 + a21a24

+a31a34

) (
a12a14 + a22a24

+a32a34

) (
a13a14 + a23a24

+a33a34

) (
a214 + a224
+a234

)


This yields an n× n symmetric product matrix. A matrix is symmetric if
the matrix equals its transpose, A = AT . Or, AAT which yields an m×m
product matrix.

AAT =

 a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34



a11 a21 a31

a12 a22 a32

a13 a23 a33

a14 a24 a34



=



(
a211 + a

2
12

+a213 + a
2
14

) (
a11a21 + a12a22
+a13a23 + a14a24

) (
a11a31 + a12a22
+a13a33 + a14a34

)
(

a11a21 + a12a22
+a13a23 + a14a24

) (
a221 + a

2
22

+a223 + a
2
24

) (
a21a31 + a22a32
+a23a33 + a24a34

)
(

a11a31 + a12a22
+a13a33 + a14a34

) (
a21a31 + a22a32
+a23a33 + a24a34

) (
a231 + a

2
32

+a233 + a
2
34

)


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A.2 Fundamental theorem of linear algebra

With these basic operations in hand, return to

Ay = x

When is there a unique solution, y? The answer lies in the fundamental
theorem of linear algebra. The theorem has two parts.

A.2.1 Part one

First, the theorem says that for every matrix the number of linearly inde-
pendent rows equals the number of linearly independent columns. Linearly
independent vectors are the set of vectors such that no one of them can be
duplicated by a linear combination of the other vectors in the set. A lin-
ear combination of vectors is the sum of scalar-vector products where each
vector may have a different scalar multiplier. For example, Ay is a linear
combination of the columns of A with the scalars in y. Therefore, if there ex-
ists some (n− 1)-element vector, w, when multiplied by an (m× (n− 1))
submatrix of A, call it B, such that Bw produces the dropped column
from A then the dropped column is not linearly independent of the other
columns. To reiterate, if the matrix A has r linearly independent columns it
also has r linearly independent rows. r is referred to as the rank of the ma-
trix and dimension of the rowspace and columnspace (the spaces spanned
by all possible linear combination of the rows and columns, respectively).
Further, r linearly independent rows of A form a basis for its rowspace and
r linearly independent columns of A form a basis for its columnspace.

Accounting example

Consider an incidence matrix describing the journal entry properties of
accounting in its columns (each column has one +1 and −1 in it with
the remaining elements equal to zero) and T accounts in its rows. The
rows capture changes in account balances when multiplied by a transaction
amounts vector y. By convention, we assign +1 for a debit entry and −1
for a credit entry. Suppose

A =


−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1


where the rows represent cash, noncash assets, liabilities, and owners’eq-
uity, for instance. Notice, −1 times the sum of any three rows produces the
remaining row. Since we cannot produce another row from the remaining
two rows, the number of linearly independent rows is 3. By the fundamen-
tal theorem, the number of linearly independent columns must also be 3.



A.2 Fundamental theorem of linear algebra 5

Let’s check. Suppose the first three columns is a basis for the columnspace.
Column 4 is the negative of column 3, column 5 is the negative of the sum
of columns 1 and 3, and column 6 is the negative of the sum of columns 2
and 3. Can any of columns 1, 2 and 3 be produced as a linearly combination
of the remaining two columns? No, the zeroes in rows 2 through 4 rule it
out. For this matrix, we’ve confirmed the number of linearly independent
rows and columns is the same.

A.2.2 Part two

The second part of the fundamental theorem describes the orthogonal com-
plements to the rowspace and columnspace. Two vectors are orthogonal if
they are perpendicular to one another. As their vector inner product is
proportional to the cosine of the angle between them, if their vector inner
product is zero they are orthogonal.2 n-space is spanned by the rowspace
(with dimension r) plus the n − r dimension orthogonal complement, the
nullspace where

ANT = 0

N is an (n− r)×n matrix whose rows are orthogonal to the rows of A and
0 is an m× (n− r) matrix of zeroes.

Accounting example continued

For the A matrix above, a basis for the nullspace is

N =

 1 −1 0 0 1 −1
0 1 1 0 0 1
0 0 1 1 0 0


and

ANT =


−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1




1 0 0
−1 1 0
0 1 1
0 0 1
1 0 0
−1 1 0



=


0 0 0
0 0 0
0 0 0
0 0 0


2The inner product of a vector with itself is the squared length (or squared norm) of

the vector.
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Similarly, m-space is spanned by the columnspace (with dimension r) plus
the m− r dimension orthogonal complement, the left nullspace where

(LN)
T
A = 0

LN is an m× (m− r) matrix whose rows are orthogonal to the columns of
A and 0 is an (m− r)× n matrix of zeroes. The origin is the only point in
common to the four subspaces: rowspace, columnspace, nullspace, and left
nullspace.

LN =


1
1
1
1



and

(LN)
T
A =

[
1 1 1 1

] 
−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1


=

[
0 0 0 0 0 0

]
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A.3 Nature of the solution

A.3.1 Exactly-identified

If r = m = n, then there is a unique solution, y, to By = x, and the
problem is said to be exactly-identified.3 Since B is square and has a full
set of linearly independent rows and columns, the rows and columns of
B span r space (including x) and the two nullspaces have dimension zero.
Consequently, there exists a matrix B−1, the inverse of B, when multiplied
by B produces the identity matrix, I. The identity matrix is a matrix when
multiplied (on the left or on the right) by any other vector or matrix leaves
that vector or matrix unchanged. The identity matrix is a square matrix
with ones along the principal diagonal and zeroes on the off-diagonals.

I =


1 0 · · · 0

0 1 · · ·
...

...
...

. . . 0
0 · · · 0 1


Hence,

B−1By = B−1x

Iy = B−1x

y = B−1x

Suppose

B =

[
3 1
2 4

]
,

and

x =

[
6
5

]
then

y = B−1x[
4
10 − 1

10
− 2

10
3
10

] [
3 1
2 4

] [
y1

y2

]
=

[
4
10 − 1

10

− 2
10

3
10

] [
6
5

]
[

1 0
0 1

] [
y1

y2

]
=

[
24−5

10
−12+15

10

]
[
y1

y2

]
=

[
19
10
3
10

]

3Both y and x are r-element vectors.
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A.3.2 Under-identified

However, it is more common for r ≤ m,n with one inequality strict. In
this case, spanning m-space draws upon both the columnspace and left
nullspace and spanning n-space draws from both the rowspace and the
nullspace. If the dimension of the nullspace is greater than zero, then it is
likely that there are many solutions, y, that satisfy Ay = x. On the other
hand, if the dimension of the left nullspace is positive and the dimension
of the nullspace is zero, then typically there is no exact solution, y, for
Ay = x. When r < n, the problem is said to be under-identified (there are
more unknown parameters than equations) and a complete set of solutions
can be described by the solution that lies entirely in the rows of A (this is
often called the row component as it is a linear combination of the rows)
plus arbitrary weights on the nullspace of A. The row component, yRS(A),
can be found by projecting any consistent solution, yp, onto a basis for the
rows (any linearly independent set of r rows) of A. Let Ar be a submatrix
derived from A with r linearly independent rows. Then,

yRS(A) = (Ar)
T
(
Ar (Ar)

T
)−1

Aryp

= (PAr ) y
p

and
yp = yRS(A) +NT k

where PAr is the projection matrix, (Ar)
T
(
Ar (Ar)

T
)−1

Ar, onto the rows

of A and k is any n-element vector of arbitrary weights.
Utilizing yp = yRS(A) +yNS(A) = (Ar)

T
b+NT k, we have two immediate

ways to derive projection matrices. First, yRS(A) = (Ar)
T
b says the row

component of yp is a linear combination of the rows of Ar with weights b
and yNS(A) = NT k says the null component of yp is a linear combination
of the rows of N with weights k. Projecting into the rows of Ar follows
from orthogonality of the row and null components.

yp = (Ar)
T
b+ yNS(A)

where
AryNS(A) = 0

Since
yNS(A) = yp − (Ar)

T
b

we have by substitution

Ar
(
yp − (Ar)

T
b
)

= 0

or
Aryp = Ar (Ar)

T
b
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As Ar has linearly independent rows, the inverse of Ar (Ar)
T exists and we

can solve for the weights(
Ar (Ar)

T
)−1

Aryp =
(
Ar (Ar)

T
)−1

Ar (Ar)
T
b = Ib = b

Now that we have b, we can immediately identify the row component of yp

yRS(A) = (Ar)
T
b

= (Ar)
T
(
Ar (Ar)

T
)−1

Aryp

= (PAr ) y
p

The projection is matrix is symmetric ((PAr )
T

= PAr ) and idempotent
((PAr ) (PAr ) = PAr ). Idempotency is appealing since if yp = yRS(A) and
we project yp into the rows of Ar then it doesn’t change rather it remains
yRS(A) (the row component is unique).
Notice from above we have

yNS(A) = yp − (Ar)
T
b

= yp − (Ar)
T
(
Ar (Ar)

T
)−1

Aryp

= (I − PAr ) yp

which implies the projection matrix into the rows of the nullspace of Ar can
be described by PAn = (I − PAr ). Alternatively (and equivalently), PAn =
NT

(
NNT

)
N . This representation of the projection matrix is derived in

analogous fashion to PAr above.

yp = yRS(A) +NT k

where
NyRS(A) = 0

Since
yRS(A) = yp −NT k

we have by substitution

N
(
yp −NT k

)
= 0

or
Nyp = NNT k

As N has linearly independent rows, the inverse of NNT exists and we can
solve for the weights(

NNT
)−1

Nyp =
(
NNT

)−1
NNT k = Ik = k
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Now that we have k, we can immediately identify the null component of yp

yNS(A) = NT k

= NT
(
NNT

)−1
Nyp

= (PAn) yp

PAn is also symmetric and idempotent. Further, from the above analysis
it’s clear PAr + PAn = I (the entire n-dimensional space is spanned by
linear combinations of the rowspace and nullspace).
Return to our accounting example above. Suppose the changes in account

balances are

x =


2
1
−1
−2


Then, a particular solution can be found by setting, for example, the last
three elements of y equal to zero and solving for the remaining elements.

yp =


1
−1
2
0
0
0


so that

Ayp = x
−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1




1
−1
2
0
0
0

 =


2
1
−1
−2


Let Ar be the first three rows.

Ar =

 −1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1



PAr =
1

12


7 1 −2 2 −5 1
1 7 −2 2 1 −5
−2 −2 4 −4 −2 −2
2 2 −4 4 2 2
−5 1 −2 2 7 1
1 −5 −2 2 1 7





A.3 Nature of the solution 11

and

yRS(A) = (PAr ) y
p

=
1

12


7 1 −2 2 −5 1
1 7 −2 2 1 −5
−2 −2 4 −4 −2 −2
2 2 −4 4 2 2
−5 1 −2 2 7 1
1 −5 −2 2 1 7




1
−1
2
0
0
0



=
1

6


1
−5
4
−4
−5
1


The complete solution, with arbitrary weights k, is

y = yRS(A) +NT k

y =
1

6


1
−5
4
−4
−5
1

+


1 0 0
−1 1 0
0 1 1
0 0 1
1 0 0
−1 1 0


 k1

k2

k3



y1

y2

y3

y4

y5

y6

 =
1

6


1
−5
4
−4
−5
1

+


k1

−k1 + k2

k2 + k3

k3

k1

−k1 + k2


A.3.3 Over-identified

In the case where there is no exact solution, m > r = n, the vector that
lies entirely in the columns of A which is nearest x is frequently identified
as the best approximation. This case is said to be over-identified (there are
more equations than unknown parameters) and this best approximation
is the column component, yCS(A), and is found via projecting x onto the
columns of A. A common variation on this theme is described by

Y = Xβ

where Y is an n-element vector and X is an n × p matrix. Typically, no
exact solution for β (a p-element vector) exists, p = r (X is composed of
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linearly independent columns), and

b = βCS(A) =
(
XTX

)−1
XTY

is known as the ordinary least squares (OLS ) estimator of β and the es-
timated conditional expectation function is the projection of Y into the
columns of X

Xb = X
(
XTX

)−1
XTY = PXY

For example, let X = (Ar)
T and Y = yP . then

b =
1

6

 4
5
−1



and Xb = PXY = yRS(A).

Xb = PXY =
1

6


1
−5
4
−4
−5
1


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A.4 Matrix decomposition and inverse operations

Inverse operations are inherently related to the fundamental theorem and
matrix decomposition. There are a number of important decompositions,
we’ll focus on four: LU factorization, Cholesky decomposition, singular
value decomposition, and spectral decomposition.

A.4.1 LU factorization

Gaussian elimination is the key to solving systems of linear equations and
gives us LU decomposition.

Nonsingular case

Any square, nonsingular matrix A (has linearly independent rows and
columns) can be written as the product of a lower triangular matrix, L,
times an upper triangular matrix, U .4

A = LU

where L is lower triangular meaning that it has all zero elements above
the main diagonal and U is upper triangular meaning that it has all zero
elements below the main diagonal. Gaussian elimination says we can write
any system of linear equations in triangular form so that by backward
recursion we solve a series of one equation, one variable problems. This is
accomplished by row operations: row eliminations and row exchanges. Row
eliminations involve a series of operations where a scalar multiple of one
row is added to a target row so that a revised target row is produced until
a triangular matrix, L or U , is generated. As the same operation is applied
to both sides (the same row(s) of A and x) equality is maintained. Row
exchanges simply revise the order of both sides (rows of A and elements
of x) to preserve the equality. Of course, the order in which equations are
written is flexible.
In principle then, Gaussian elimination on

Ay = x

involves, for instance, multiplication of both sides by the inverse of L,
provided the inverse exists (m = r),

L−1Ay = L−1x

L−1LUy = L−1x

Uy = L−1x

4The general case, A is a m× n matrix, is discussed below.
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As Gaussian elimination is straightforward, we have a simple approach for
finding whether the inverse of the lower triangular matrix exists and, if so,
its elements. Of course, we can identify L in similar fashion

L = AU−1

= LUU−1

Let A = Ar (Ar)
T the 3×3 full rank matrix from the accounting example

above.

A =

 4 −1 −1
−1 2 0
−1 0 2


We find U by Gaussian elimination. Multiply row 1 by 1/4 and add to rows
2 and 3 to revise rows 2 and 3 as follows. 4 −1 −1

0 7/4 −1/4
0 −1/4 7/4


Now, multiply row 2 by 1/7 and add this result to row 3 to identify U .

U =

 4 −1 −1
0 7/4 −1/4
0 0 12/7


Notice we have constructed L−1 in the process.

L−1 =

 1 0 0
0 1 0
0 1/7 1

 1 0 0
1/4 1 0
1/4 0 1


=

 1 0 0
1/4 1 0
2/7 1/7 1


so that

L−1A = U 1 0 0
1/4 1 0
2/7 1/7 1

 4 −1 −1
−1 2 0
−1 0 2

 =

 4 −1 −1
0 7/4 −1/4
0 0 12/7


Also, we have L in hand.

L =
(
L−1

)−1

and

L−1L = I 1 0 0
1/4 1 0
2/7 1/7 1

 `11 0 0
`21 `22 0
`31 `32 `33

 =

 1 0 0
0 1 0
0 0 1


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From the first row-first column, `11 = 1. From the second row-first column,
1/4`11 +1`21 = 0, or `21 = −1/4. From the third row-first column, 2/7`11 +
1/7`21 + 1`31 = 0, or `31 = −2/7 + 1/28 = −1/4. From the second row-
second column, `22 = 1. From the third row-second column, 1/7`22+1`32 =
0, or `32 = −1/7. And, from the third row-third column, `33 = 1. Hence,

L =

 1 0 0
−1/4 1 0
−1/4 −1/7 1


and

LU = A 1 0 0
−1/4 1 0
−1/4 −1/7 1

 4 −1 −1
0 7/4 −1/4
0 0 12/7

 =

 4 −1 −1
−1 2 0
−1 0 2


For

x =

 −1
3
5


the solution to Ay = x is

Ay = x

LUy = x

Uy = L−1x 4 −1 −1
0 7/4 −1/4
0 0 12/7

 y1
y2
y3

 =

 −1
3− 1/4

5− 1/4 + 11/28

 =

 −1
11/4
36/7


Backward recursive substitution solve for y. From row three, 12/7y3 =
36/7 or y3 = 7/12 × 36/7 = 3. From row two, 7/4y2 − 1/4y3 = 11/4, or
y2 = 4/7 (11/4 + 3/4) = 2. And, from row one, 4y1 − y2 − y3 = −1, or
y1 = 1/4 (−1 + 2 + 3) = 1. Hence,

y =

 1
2
3


General case

If the inverse of A doesn’t exist (the matrix is singular), we find some
equations after elimination are 0 = 0, and possibly, some elements of y are
not uniquely determinable as discussed above for the under-identified case.
For an m×n matrix A, the general form of LU factorization may involve

row exchanges via a permutation matrix, P .

PA = LU



16 Appendix A. Linear algebra basics

where L is lower triangular with ones on the diagonal and U is an m × n
upper echelon matrix with the pivots along the main diagonal.
LU decomposition can also be written as LDU factorization where, as

before, L and U are lower and upper triangular matrices but now have ones
along their diagonals and D is a diagonal matrix with the pivots of A along
its diagonal.
Returning to the accounting example, we utilize LU factorization to solve

for y, a set of transactions amounts that are consistent with the financial
statements.

Ay = x
−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1



y1

y2

y3

y4

y5

y6

 =


2
1
−1
−2



For this A matrix, P = I4 (no row exchanges are called for), and row one
is added to row two, the revised row two is added to row three, and the
revised row three is added to row four, which gives


−1 −1 1 −1 0 0
0 −1 1 −1 −1 0
0 0 1 −1 −1 −1
0 0 0 0 0 0



y1

y2

y3

y4

y5

y6

 =


2
3
2
0



The last row conveys no information and the third row indicates we have
three free variables. Recall, for our solution, yp above, we set y4 = y5 = y6 =
0 and solved. From row three, y3 = 2. From row two, y2 = − (3− 2) = −1.
And, from row one, y1 = − (2− 1− 2) = 1. Hence,

yp =


1
−1
2
0
0
0


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A.4.2 Cholesky decomposition

If the matrix A is symmetric, positive definite5 as well as nonsingular, then
we have A = LDLT as U = LT . In this symmetric case, we identify an-
other useful factorization, Cholesky decomposition. Cholesky decomposition
writes

A = ΓΓT

where Γ = LD
1
2 and D

1
2 has the square root of the pivots on the diagonal.

Since A is positive definite, all of its pivots are positive and their square
root is real so, in turn, Γ is real. Of course, we now have

Γ−1A = Γ−1ΓΓT

= ΓT

or

A
(
ΓT
)−1

= ΓΓT
(
ΓT
)−1

= Γ

For the example above, A = Ar (Ar)
T , A is symmetric, positive definite

and we found

A = LU 4 −1 −1
−1 2 0
−1 0 2

 =

 1 0 0
−1/4 1 0
−1/4 −1/7 1

 4 −1 −1
0 7/4 −1/4
0 0 12/7


Factoring the pivots from U gives D and LDLT .

A = LDLT

=

 1 0 0
−1/4 1 0
−1/4 −1/7 1

 4 0 0
0 7/4 0
0 0 12/7

 1 −1/4 −1/4
0 1 −1/7
0 0 1


And, the Cholesky decomposition is

Γ = LD
1
2

=

 1 0 0
−1/4 1 0
−1/4 −1/7 1

 2 0 0

0
√

7/4 0

0 0
√

12/7



=


2 0 0

−1/2
√

7
2 0

−1/2 − 1
2
√

7
2
√

3
7


5A matrix, A, is positive definite if its quadratic form is strictly positive

xTAx > 0

for all nonzero x.
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so that

A = ΓΓT 4 −1 −1
−1 2 0
−1 0 2

 =


2 0 0

−1/2
√

7
2 0

−1/2 − 1
2
√

7
2
√

3
7




2 −1/2 −1/2

0
√

7
2 − 1

2
√

7

0 0 2
√

3
7



A.4.3 Eigenvalues and eigenvectors

A square n× n matrix A times a characteristic vector x can be written as
a characteristic scalar λ times the same vector.

Ax = λx

The characteristic scalar is called an eigenvalue and the characteristic vec-
tor is called an eigenvector. There are n (not necessarily unique) eigenvalues
and associated eigenvectors.6 Rewriting the above as

(A− λI)x = 0

reveals the key subspace feature. That is, we choose λ such that A − λI
has a nullspace. Then, x is a vector in the nullspace of A− λI.

Example

Now, we explore construction of eigenvalues and eigenvectors via our ac-
counting example.

A =


−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1


In particular, focus attention on

AAT =


4 −1 −1 −2
−1 2 0 −1
−1 0 2 −1
−2 −1 −1 4


First, we know due to the balancing property of accounting this matrix
has a nullspace. Hence, at least one of its eigenvalues equals zero. We’ll

6For instance, an n × n identity matrix has n eigenvalues equal to one and any
orthogonal (or unitary) matrix is a basis for the eigenvectors.
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verify this by AAT = LU = LDLT and then utilize this result to find the
eigenvalues.
First, utilize row operations to put AAT in row echelon form and find

its pivots. Row operations on the first column are

L−1
1 AAT =


4 −1 −1 −2
0 7

4 − 1
4 − 3

2

0 − 1
4

7
4 − 3

2

0 − 3
2 − 3

2 3


where

L−1
1 =


1 0 0 0
1
4 1 0 0
1
4 0 1 0
1
2 0 0 1


Combine this with row operations on the second column.

L−1
2 L−1

1 AAT =


4 −1 −1 −2
0 7

4 − 1
4 − 3

2

0 0 12
7 − 12

7

0 0 − 12
7

12
7


where

L−1
2 =


1 0 0 0
0 1 0 0
0 1

7 1 0

0 6
7 0 1


Combining this with row operations on the third column yields the upper
triangular result we’re after.

L−1
3 L−1

2 L−1
1 AAT = U =


4 −1 −1 −2
0 7

4 − 1
4 − 3

2

0 0 12
7 − 12

7

0 0 0 0


where

L−1
3 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 1


Hence,

L−1 = L−1
3 L−1

2 L−1
1 =


1 0 0 0
1
4 1 0 0
2
7

1
7 1 0

1 1 1 1


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and

L−1AAT = U

=


4 −1 −1 −2
0 7

4 − 1
4 − 3

2

0 0 12
7 − 12

7

0 0 0 0


Clearly, the rank of U is three and column four is free as its pivot (main
diagonal element in row echelon form) is zero. This means, as suggested
before, one eigenvalue equals zero. To find its associated eigenvector replace
row four with the row vector

[
0 0 0 1

]
, call this Ua and solve

Uax = b
4 −1 −1 −2
0 7

4 − 1
4 − 3

2

0 0 12
7 − 12

7

0 0 0 1

x =


0
0
0
1


for x. A solution is

x =


1
1
1
1


Since eigenvectors are scale-free, AATx = λx accommodates any rescaling
of x, it is often convenient to make this vector unit length. Accordingly,
define the unit length eigenvector associated with the zero eigenvalue (λ1 =
0) as

x1 =
x√
xTx

=


1
2
1
2
1
2
1
2


What are the remaining three eigenvalues? Clearly from U (the first

row is unchanged by our row operations), therefore at least one of the
remaining eigenvalues is λ = 4 (we could have repeated eigenvalues). A
more general approach is find λ such that the matrix AAT −λI is singular
or equivalently, its determinant is zero. Determinants are messy but we’ll
utilize two facts: the determinant of a triangular matrix is the product of
its pivots (main diagonal elements) and the product of determinants equals
the determinant of the products, det (L) det (U) = det (LU). Since L has
ones along the main diagonal it’s determinant is one, the determinant of U
is the determinant of AAT −λI. Finding eigenvalues of AAT boils down to
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finding the roots of the product of the main diagonal elements of U where
AAT − λI = LU.
Following similar steps to those above, we find

U =


4− λ −1 −1 −2

0 7−6λ+λ2

4−λ − 1
4−λ

λ−6
4−λ

0 0 12−18λ+8λ2−λ3
7−6λ+λ2

−12+8λ−λ2
7−6λ+λ2

0 0 0 −24λ+10λ2−λ3
6−6λ+λ2



det (U) = (4− λ)

(
7− 6λ+ λ2

4− λ

)(
12− 18λ+ 8λ2 − λ3

7− 6λ+ λ2

)
×(

−24λ+ 10λ2 − λ3

6− 6λ+ λ2

)
= −48λ+ 44λ2 − 12λ3 + λ4

The roots are λ = 0, 2, 4, and 6.
The next step is to find eigenvectors for λ = 2, 4, and 6. For λ = 2,

U =


2 −1 −1 −2
0 − 1

2 − 1
2 −2

0 0 0 0
0 0 0 8

. Since the third pivot equals zero its a free
variable and we replace row three with

[
0 0 1 0

]
and solve

Uax =


0
0
1
0




2 −1 −1 −2
0 − 1

2 − 1
2 −2

0 0 1 0
0 0 0 8

x =


0
0
1
0


This yields

x =


0
−1
1
0


which can be unitized as follows

x2 =
x√
xTx

=


0
− 1√

2
1√
2

0


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Notice, x2 is orthogonal to x1.

xT1 x2 =
[

1
2

1
2

1
2

1
2

]


0
− 1√

2
1√
2

0

 = 0

It works largely the same for λ = 6. For λ = 6,

U =


−2 −1 −1 −2
0 − 7

2
1
2 0

0 0 − 24
7 0

0 0 0 0


Since the fourth pivot equals zero its a free variable and we replace row
four with

[
0 0 0 1

]
and solve

Uax =


0
0
0
1



−2 −1 −1 −2
0 − 7

2
1
2 0

0 0 − 24
7 0

0 0 0 1

x =


0
0
0
1


This yields

x =


−1
0
0
1


which can be unitized as follows

x4 =
x√
xTx

=


− 1√

2

0
0
1√
2


Notice, this eigenvector is orthogonal to both x1 and x2.
Unfortunately, we can’t just plug λ = 4 into our expression for U as it

produces infinities. Rather, we return to AAT − 4I and factor into its own
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LU . First, we apply a permutation (row exchanges7) to AAT − 4I

P
(
AAT − 4I

)
= LU

−1 −2 0 −1
0 −1 −1 −2
−1 0 −2 −1
−2 −1 −1 0

 =


1 0 0 0
0 1 0 0
1 −2 1 0
2 −3 1 1



−1 −2 0 −1
0 −1 −1 −2
0 0 −4 −4
0 0 0 0


where

P =


0 1 0 0
1 0 0 0
0 0 1 0
0 0 0 1


swaps rows one and two. Then, we follow similar row operations as de-
scribed above to produce the LU factors where

U =


−1 −2 0 −1
0 −1 −1 −2
0 0 −4 −4
0 0 0 0


As the fourth pivot is zero it’s a free variable and we replace row four

with
[

0 0 0 1
]
to solve

Uax =


0
0
0
1



−1 −2 0 −1
0 −1 −1 −2
0 0 −4 −4
0 0 0 1

x =


0
0
0
1



This yields x =


1
−1
−1
1

 and is unitized as

x3 =
x√
xTx

=


1
2

− 1
2

− 1
2

1
2


7Row exchanges can change the sign of the determinant but that is of consequence

here because we’ve chosen the eigenvalue to make the determinant zero.
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Now, as AAT is symmetric all four eigenvectors are orthonormal. Hence,
when we construct a matrix Q of eigenvectors in its columns

Q =


1
2 0 1

2 − 1√
2

1
2 − 1√

2
− 1

2 0

1
2

1√
2
− 1

2 0

1
2 0 1

2
1√
2


and multiply by its transpose

QQT = QTQ = I

Further,
QΣQT = AAT

1
2 0 1

2 − 1√
2

1
2 − 1√

2
− 1

2 0

1
2

1√
2
− 1

2 0

1
2 0 1

2
1√
2




0 0 0 0
0 2 0 0
0 0 4 0
0 0 0 6




1
2

1
2

1
2

1
2

0 − 1√
2

1√
2

0

1
2 − 1

2 − 1
2

1
2

− 1√
2

0 0 1√
2



=


4 −1 −1 −2
−1 2 0 −1
−1 0 2 −1
−2 −1 −1 4


where Σ is a diagonal matrix of eigenvalues and the order of the eigenvectors
matches the order of the eigenvalues.

A.4.4 Singular value decomposition

Now, we introduce a matrix factorization that exists for every matrix. Sin-
gular value decomposition says everym×n matrix, A, can be written as the
product of a m×m orthogonal matrix, U , multiplied by a diagonal m× n
matrix, Σ, and finally multiplied by the transpose of a n × n orthogonal
matrix, V .8 U is composed of the eigenvectors of AAT , V is composed of
the eigenvectors of ATA, and Σ contains the singular values (the square
root of the eigenvalues of AAT or ATA) along the diagonal.

A = UΣV T

Further, singular value decomposition allows us to define a general inverse
or pseudo-inverse, A+.

A+ = V Σ+UT

8An orthogonal (or unitary ) matrix is comprised of orthonormal vectors. That is,
mutually orthogonal, unit length vectors so that U−1 = UT and UUT = UTU = I.
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where Σ+ is an n×m diagonal matrix with nonzero elements equal to the
reciprocal of those for Σ. This implies

AA+A = A

A+AA+ = A+

(
A+A

)T
= A+A

and (
AA+

)T
= AA+

Also, for the system of equations

Ay = x

the least squares solution is

yCS(A) = A+x

and AA+ is always the projection onto the columns of A. Hence,

AA+ = PA = A
(
ATA

)−1
AT

if A has linearly independent columns. Or,

AT
(
AT
)+

=
(
A+A

)T
=

(
V Σ+UTUΣV T

)T
= V ΣTUTU

(
Σ+
)T
V T

= A+A

= PAT = AT
(
AAT

)−1
A

ifA has linearly independent rows (ifAT has linearly independent columns).
For the accounting example, recall the row component is the consistent

solution to Ay = x that is only a linearly combination of the rows of A;
that is, it is orthogonal to the nullspace. Utilizing the pseudo-inverse we
have

yRS(A) = AT
(
AT
)+
yp

= PAT y
p

= (Ar)
T
(
Ar (Ar)

T
)−1

Aryp

= A+Ayp
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or simply, since Ayp = x

yRS(A) = A+x

=
1

24


−5 9 −3 −1
−5 −3 9 −1
4 0 0 −4
−4 0 0 4
1 −9 3 5
1 3 −9 5




2
1
−1
−2



=
1

6


1
−5
4
−4
−5
1


The beauty of singular value decomposition is that any m × n matrix,

A, can be factored as
AV = UΣ

since
AV V T = A = UΣV T

where U and V are m×m and n×n orthogonal matrices (of eigenvectors),
respectively, and Σ is a m × n matrix with singular values along its main
diagonal.
Eigenvalues are characteristic values or singular values of a square matrix

and eigenvectors are characteristic vectors or singular vectors of the matrix
such that

AATu = λu

or we can work with
ATAv = λv

where u is an m-element unitary (uTu = 1) eigenvector (component of Q1),
v is an n-element unitary (vT v = 1) eigenvector (component of Q2), and λ
is an eigenvalue of AAT or ATA. We can write AATu = λu as

AATu = λIu(
AAT − λI

)
u = 0

or write ATAv = λv as

ATAv = λIv(
ATA− λI

)
v = 0
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then solve for unitary vectors u, v, and and roots λ. For instance, once we
have λi and ui in hand. We find vi by

uTi A = λivi

such that vi is unit length, vTi vi = 1.
The sum of the eigenvalues equals the trace of the matrix (sum of the

main diagonal elements) and the product of the eigenvalues equals the
determinant of the matrix. A singular matrix has some zero eigenvalues
and pivots (the det (A) = ±[product of the pivots]), hence the determinant
of a singular matrix, det (A), is zero.9 The eigenvalues can be found by
solving det

(
AAT − λI

)
= 0. Since this is an m order polynomial, there are

m eigenvalues associated with an m×m matrix.

Accounting example

Return to the accounting example for an illustration. The singular value
decomposition (SVD) of A proceeds as follows. We’ll work with the square,
symmetric matrix AAT . Notice, by SVD,

AAT = UΣV T
(
UΣV T

)T
= UΣV TV ΣTUT

= UΣΣTUT

so that the eigenvalues of AAT are the squared singular values of A, ΣΣT .
The eigenvalues are found by solving for the roots of10

det
(
AAT − λIm

)
= 0

det


4− λ −1 −1 −2
−1 2− λ 0 −1
−1 0 2− λ −1
−2 −1 −1 4− λ

 = 0

−48λ+ 44λ2 − 12λ3 + λ4 = 0

9The determinant is a value associated with a square matrix with many (some useful)
properties. For instance, the determinant provides a test of invertibility (linear indepen-
dence). If det (A) = 0, then the matrix is singular and the inverse doesn’t exist; otherwise
det (A) 6= 0, the matrix is nonsingular and the inverse exists. The determinant is the
volume of a parallelpiped in n-dimensions where the edges come from the rows of A.
The determinant of a triangular matrix is the product of the main diagonal elements.
Determinants are unchanged by row eliminations and their sign is changed by row ex-
changes. The determinant of the transpose of a matrix equals the determinant of the
matrix, det (A) = det

(
AT

)
. The determinant of the product of matrices is the product

of their determinants, det (AB) = det (A) det (B). Some useful determinant identities
are reported in section five of the appendix.
10Below we show how to find the determinant of a square matrix and illustrate with

this example.
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Immediately, we see that one of the roots is zero,11 and

−48λ+ 44λ2 − 12λ3 + λ4 = 0

λ (λ− 2) (λ− 4) (λ− 6) = 0

or

λ = {6, 4, 2, 0}

forAAT .12 The eigenvectors forAAT are found by solving (employ Gaussian
elimination and back substitution)

(
AAT − λiI4

)
ui = 0

Since there is freedom in the solution, we can make the vectors orthonormal
(see Gram-Schmidt discussion below). For instance,

(
AAT − 6I4

)
u1 = 0

leads to uT1 =
[
−a 0 0 a

]
, so we make a = 1√

2
and uT1 =

[
− 1√

2
0 0 1√

2

]
.

Now, the complementary right hand side eigenvector, v1, is found by

uT1 A =
√
λ1v1

v1 =
1√
6
uT1 A =



1
2
√

3
1

2
√

3

− 1√
3

1√
3

1
2
√

3
1

2
√

3


Repeating these steps for the remaining eigenvalues (in descending order;
remember its important to match eigenvectors with eigenvalues) leads to

U =


− 1√

2
1
2 0 1

2

0 − 1
2 − 1√

2
1
2

0 − 1
2

1√
2

1
2

1√
2

1
2 0 1

2


11For det

(
ATA− λI6

)
= 0, we have −48λ3 +44λ4 − 12λ5 + λ6 = 0. Hence, there are

at least three zero roots. Otherwise, the roots are the same as for AAT .
12Clearly, λ = {6, 4, 2, 0, 0, 0} for ATA.
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and

V =



1
2
√

3
− 1

2 − 1
2 0

√
3

2
√

2
− 1

2
√

6
1

2
√

3
− 1

2
1
2

1√
3
− 1

2
√

6
− 1

2
√

6

− 1√
3

0 0 1√
3

1√
6

1
6

1√
3

0 0 0 0
√

2
3

1
2
√

3
1
2

1
2 0

√
3

2
√

2
− 1

2
√

6
1

2
√

3
1
2 − 1

2
1√
3
− 1

2
√

6
− 1

2
√

6


where UUT = UTU = I4 and V V T = V TV = I6.13 Remarkably,

A = UΛV T

=


− 1√

2
1
2 0 1

2

0 − 1
2 − 1√

2
1
2

0 − 1
2

1√
2

1
2

1√
2

1
2 0 1

2



√

6 0 0 0 0 0
0 2 0 0 0 0

0 0
√

2 0 0 0
0 0 0 0 0 0



×



1
2
√

3
− 1

2 − 1
2 0

√
3

2
√

2
− 1

2
√

6
1

2
√

3
− 1

2
1
2

1√
3
− 1

2
√

6
− 1

2
√

6

− 1√
3

0 0 1√
3

1√
6

1
6

1√
3

0 0 0 0
√

2
3

1
2
√

3
1
2

1
2 0

√
3

2
√

2
− 1

2
√

6
1

2
√

3
1
2 − 1

2
1√
3
− 1

2
√

6
− 1

2
√

6



T

=


−1 −1 1 −1 0 0
1 0 0 0 −1 0
0 1 0 0 0 −1
0 0 −1 1 1 1


where Λ is m × n (4 × 6) with the square root of the eigenvalues (in de-
scending order) on the main diagonal.

A.4.5 Spectral decomposition

When A is a square, symmetric matrix, singular value decomposition can
be expressed as spectral decomposition.

A = UΣUT

13There are many choices for the eigenvectors associated with zero eigenvalues. We
select them so that they orthonormal. As with the other eigenvectors, this is not unique.
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where U is an orthogonal matrix. Notice, the matrix on the right is the
transpose of the matrix on the left. This follows as AAT = ATA when
A = AT . We’ve illustrated this above if when we decomposed AAT , a
square symmetric matrix.

AAT = UΣUT

=


− 1√

2

1
2

0 1
2

0 − 1
2

− 1√
2

1
2

0 − 1
2

1√
2

1
2

1√
2

1
2

0 1
2


 6 0 0 0
0 4 0 0
0 0 2 0
0 0 0 0



− 1√

2

1
2

0 1
2

0 − 1
2

− 1√
2

1
2

0 − 1
2

1√
2

1
2

1√
2

1
2

0 1
2


T

=


4 −1 −1 −2
−1 2 0 −1
−1 0 2 −1
−2 −1 −1 4


A.4.6 quadratic forms, eigenvalues, and positive definiteness

A symmetric matrix A is positive definite if the quadratic form xTAx is pos-
itive for every nonzero x. Positive semi-definiteness follows if the quadratic
form is non-negative, xTAx ≥ 0 for every nonzero x. Negative definite
and negative semi-definite symmetric matrices follow in analogous fashion
where the quadratic form is negative or non-positive, respectively. A pos-
itive (semi-) definite matrix has positive (non-negative) eigenvalues. This
result follows immediately from spectral decomposition. Let y = Qx (y is
arbitrary since x is) and write the spectral decomposition of A as QTΛQ
where Q is an orthogonal matrix and Λ is a diagonal matrix composed of
the eigenvalues of A. Then the quadratic form xTAx > 0 can be written as
xTQTΛQx > 0 or yTΛy > 0. Clearly, this is only true if Λ, the eigenvalues,
are all positive.

A.4.7 similar matrices, Jordan form, and generalized
eigenvectors

Now, we provide some support for properties associated with eigenvalues.
Namely, for any square matrix the sum of the eigenvalues equals the trace
of the matrix and the product of the eigenvalues equals the determinant of
the matrix. To aid with this discussion we first develop the idea of similar
matrices and the Jordan form of a matrix.
Two matrices, A and B, are similar if there existsM andM−1 such that

B = M−1AM . Similar matrices have the same eigenvalues as seen from
Ax = λx where x is an eigenvector of A associated with λ.

Ax = λx

AMM−1x = λx
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Since MB = AM , we have

MBM−1x = λx

M−1MBM−1x = λM−1x

B
(
M−1x

)
= λ

(
M−1x

)
Hence, A and B have the same eigenvalues where x is the eigenvector of A
and M−1x is the eigenvector of B.
From here we can see A and B have the same trace and determinant.

First, we’ll demonstrate, via example, the trace of a matrix equals the
sum of its eigenvalues,

∑
λi = tr (A) for any square matrix A. Consider

A =

[
a11 a12

a21 a22

]
where tr (A) = a11 + a22. The eigenvalues of A are

determined from solving det (A− λI) = 0.

(a11 − λ) (a22 − λ)− a12a21 = 0

λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0

The two roots or eigenvalues are

λ =
a11 + a22 ±

√
(a11 + a22)

2 − 4 (a11a22 − a12a21)

2

and their sum is λ1 + λ2 = a11 + a22 = tr (A). The idea extends to any
square matrix A such that

∑
λi = tr (A). This follows as det (A− λI) for

any n × n matrix A has coeffi cient on the λn−1 term equal to minus the
coeffi cient on λn times

∑
λi, as in the 2× 2 example above.14

We’ll demonstrate the determinant result in two parts: one for diagonal-
izable matrices and one for non-diagonalizable matrices using their Jordan
form. Any diagonalizable matrix can be written as A = SΛS−1. The deter-
minant of A is then |A| =

∣∣SΛS−1
∣∣ = |S| |Λ|

∣∣S−1
∣∣ = |Λ| since

∣∣S−1
∣∣ = 1

|S|

which follows from
∣∣SS−1

∣∣ =
∣∣S−1

∣∣ |S| = |I| = 1. Now, we have |Λ| =
∏

λi.
The second part follows from similar matrices and the Jordan form.

When a matrix is not diagonalizable because it doesn’t have a complete
set of linearly independent eigenvectors, we say it is nearly diagonalizable
when it’s in Jordan form. Jordan form means the matrix is nearly diagonal
except for perhaps ones immediately above the diagonal.

For example, the identity matrix,
[

1 0
0 1

]
, is in Jordan form as well as

being diagonalizable while
[

1 1
0 1

]
is in Jordan form but not diagonaliz-

14For n even the coeffi cient on λn is 1 and for n odd the coeffi cient on λn is −1 with
the coeffi cient on λn−1 of opposite sign.
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able. Even though both matrices have the same eigenvalues they are not

similar matrices as there exists no M such that
[

1 1
0 1

]
equals M−1IM .

Nevertheless, the Jordan form is the characteristic form for a family
of similar matrices as there exists P such that P−1AP = J where J

is the Jordan form for the family. For instance, A = 1
3

[
1 4
−1 5

]
has

Jordan form
[

1 1
0 1

]
with P =

[
2 1
1 2

]
. Consider another example,

A = 1
5

[
13 6
1 12

]
has Jordan form

[
3 1
0 2

]
with P =

[
3 1
1 2

]
. Since

they are similar matrices, A and J have the same eigenvalues. Plus, as in
the above examples, the eigenvalues lie on the diagonal of J in general.
The determinant of A =

∣∣PJP−1
∣∣ = |P | |J |

∣∣P−1
∣∣ = |J | =

∏
λi. This

completes the argument.
To summarize, for any n× n matrix A:

(1) |A| =
∏

λi,

and

(2) tr (A) =
∑

λi.

Generalized eigenvectors

The idea of eigenvectors is generalized for non-diagonalizable matrices like[
1 1
0 1

]
as it doesn’t have a full set of regular eigenvectors. For such matri-

ces, eigenvectors are the (nullspace or nonzero) solutions, q, to (A− λI)
k
q =

0 for k ≥ 1 (k = 1 for diagonalizable matrices). For the above matrix k = 2
as there are two occurrences of λ = 1.

(A− λI)
1

=

[
0 1
0 0

]

therefore q =

[
1
0

]
is an eigenvector of A but there is no other nonzero,

linearly independent vector that resides in the nullspace of A− λI. On the
other hand,

(A− λI)
2

=

[
0 0
0 0

]

and q =

[
1
0

]
and

[
0
1

]
are a basis for the nullspace of (A− λI)

2 or

generalized eigenvectors of A.
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A.5 Gram-Schmidt construction of an orthogonal
matrix

Before we put this section to bed, we’ll undertake one more task. Construc-
tion of an orthogonal matrix (that is, a matrix with orthogonal, unit length
vectors so that QQT = QTQ = I). Suppose we have a square, symmetric
matrix

A =

 2 1 1
1 3 2
1 2 3


with eigenvalues

{
1
2

(
7 +
√

17
)
, 1

2

(
7−
√

17
)
, 1
}
and eigenvectors (in the

columns)

[
v1 v2 v3

]
=

 1
2

(
−3 +

√
17
)

1
2

(
−3−

√
17
)

0
1 1 −1
1 1 1


The first two columns are not orthogonal to one another and none of the
columns are unit length.
First, the Gram-Schmidt procedure normalizes the length of the first

vector

q1 =
v1√
vT1 v1

=


−3+

√
17√

34−6
√

17√
2

17−3
√

17√
2

17−3
√

17


≈

 0.369
0.657
0.657


Then, finds the residuals (null component) of the second vector projected
onto q1.15

r2 =
(
1− q1q

T
1

)
v2

=

 1
2

(
−3−

√
17
)

1
1


Now, normalize r2

q2 =
r2√
rT2 r2

15Since the
(
vT1 v1

)−1 term is the identity, we omit it in the development.
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so that q1 and q2 are orthonormal vectors. Let

Q12 =
[
q1 q2

]

=


−3+

√
17√

34−6
√

17
− 3+

√
17√

34+6
√

17√
2

17−3
√

17

√
2

17+3
√

17√
2

17−3
√

17

√
2

17+3
√

17


≈

 0.369 −0.929
0.657 0.261
0.657 0.261


Finally, compute the residuals of v3 projected onto Q12

r3 = v3 −Q12Q
T
12v3

=

 0
−1
1


and normalize its length.16

q3 =
r3√
rT3 r3

Then,

Q =
[
q1 q2 q3

]

=


−3+

√
17√

34−6
√

17
− 3+

√
17√

34+6
√

17
0√

2
17−3

√
17

√
2

17+3
√

17
− 1√

2√
2

17−3
√

17

√
2

17+3
√

17
1√
2


≈

 0.369 −0.929 0
0.657 0.261 −0.707
0.657 0.261 0.707


and QQT = QTQ = I. If there are more vectors then we continue along the
same lines with the fourth vector made orthogonal to the first three vectors
(by finding its residual from the projection onto the first three columns)
and then normalized to unit length, and so on.

16Again,
(
QT12Q12

)−1
= I so it is omitted in the expression. In this example, v3 is

orthogonal to Q12 (as well as v1 and v2) so it is unaltered.
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A.5.1 QR decomposition

QR is another important (especially for computation) matrix decomposi-
tion. QR combines Gram-Schmidt orthogonalization and Gaussian elim-
ination to factor an m × n matrix A with linearly independent columns
into a matrix composed of orthonormal columns, Q such that QTQ = I,
multiplied by a square, invertible upper triangular matrix R. This provides
distinct advantages when dealing with projections into the column space of
A. Recall, this problem takes the form Ay = b where the objective is to find
y that minimizes the distance to b. Since A = QR, we have QRy = b and
R−1QTQRy = y = R−1QT b. Next, we summarize the steps for two QR
algorithms: the Gram-Schmidt approach and the Householder approach.

A.5.2 Gram-Schmidt QR algorithm

The Gram-Schmidt algorithm proceeds as described above to form Q. Let
a denote the first column of A and construct a1 = a√

aT a
to normalize the

first column. Construct the projection matrix for this column, P1 = aT1 a1

(since a1 is normalized the inverse of aT1 a1 is unity so it’s dropped from the
expression). Now, repeat with the second column. Let a denote the second
column of A and make it orthogonal to a1 by redefining it as a = (I − P1) a.
Then normalize via a2 = a√

aT a
. Construct the projection matrix for this

column, P2 = aT2 a2. The third column is made orthonormal in similar
fashion. Let a denote the third column of A and make it orthogonal to
a1 and a2 by redefining it as a = (I − P1 − P2) a. Then normalize via
a3 = a√

aT a
. Construct the projection matrix for this column, P3 = aT3 a3.

Repeat this for all n columns of A. Q is constructed by combining the
columns Q =

[
a1 a2 · · · an

]
such that QTQ = I. R is constructed

as R = QTA. To see that this is upper triangular let the columns of A be
denoted A1, A2, . . . ,An. Then,

QTA =


aT1 A1 aT1 A2 · · · aT1 An
aT2 A1 aT2 A2 · · · aT2 An
...

...
. . .

...
aTnA1 aTnA2 · · · aTnAn


The terms below the main diagonal are zero since aj for j = 2, . . . , n are
constructed to be orthogonal to A1, aj for j = 3, . . . , n are constructed to
be orthogonal to A2 = a2 + P1A2, and so on.
Notice, how straightforward it is to solve Ay = b for y.

Ay = b

QRy = b

R−1QTQRy = y = R−1QT b
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A.5.3 Accounting example

Return to the 4 accounts by 6 journal entries A matrix. This matrix clearly
does not have linearly independent columns (or for that matter rows) but
we’ll drop a redundant row (the last row) and denote the resultant matrix
A0. Now, we’ll find the QR decomposition of the 6 × 3 AT0 , A

T
0 = QR by

the Gram-Schmidt process.

AT0 =


−1 1 0
−1 0 1
1 0 0
−1 0 0
0 −1 0
0 0 −1



a1 =
1

2


−1
−1
1
−1
0
0

 , P1 =
1

4


1 1 −1 1 0 0
1 1 −1 1 0 0
−1 −1 1 −1 0 0
1 1 −1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

a2 =
1

2


0.567
−0.189
0.189
−0.189
−0.756

0

 , P2 =
1

4


1 1 −1 1 0 0
1 1 −1 1 0 0
−1 −1 1 −1 0 0
1 1 −1 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

and

a3 =
1

2


−0.109
0.546
0.218
−0.218
−0.109
−0.764


so that

Q =


−0.5 0.567 −0.109
−0.5 −0.189 0.546
0.5 0.189 0.218
−0.5 −0.189 −0.218

0 −0.756 −0.109
0 0 −0.764


and

R = QTA =

 2 −0.5 −0.5
0 1.323 −0.189
0 0 1.309


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The projection solution to Ay = x or A0y = x0 where x =


2
1
−1
−2

 and

x0 =

 2
1
−1

 is yrow = Q
(
RT
)−1

x0 = 1
6


1
−5
4
−4
−5
1

.

A.5.4 The Householder QR algorithm

The Householder algorithm is not as intuitive as the Gram-Schmidt algo-
rithm but is computationally more stable. Let a denote the first column
of A and z be a vector of zeros except the first element is one. Define
v = a+

√
aTaz and H1 = I−2∗ vvT

vT v
. Then, H1A puts the first column of A

in upper triangular form. Now, repeat the process where a is now defined
to be the second column of H1A whose first element is set to zero and z
is defined to be a vector of zeros except the second element is one. Utilize
these components to create v in the same form as before and to construct
H2 in the same form as H1. Then, H2H1A puts the first two columns of A
in upper triangular form. Next, we work with the third column of H2H1A
where the first two elements of a are set to zero and repeat for all n columns.
When complete, R is constructed from the first n rows of Hn · · ·H2H1A.
and QT is constructed from the first n rows of Hn · · ·H2H1.

A.5.5 Accounting example

Again, return to the 4 accounts by 6 journal entries A matrix and work
with A0. Now, we’ll find the QR decomposition of the 6× 3 AT0 , A

T
0 = QR

by Householder transformation.

AT0 =


−1 1 0
−1 0 1
1 0 0
−1 0 0
0 −1 0
0 0 −1


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In the construction of H1, a =


−1
−1
1
−1
0
0

, z =


1
0
0
0
0
0

, v =


− 1

2
−1
1
−1
0
0

, and

H1 = 1
2


1 1 −1 1 0 0
1 1 1 −1 0 0
−1 1 1 1 0 0
1 −1 1 1 0 0
0 0 0 0 2 0
0 0 0 0 0 2

. Then,H1A
T
0 = 1

2


−4 1 1
0 1 1
0 −1 1
0 1 −1
0 −2 0
0 0 −2

.

For the construction of H2, a = 1
2


0
1
−1
1
−2
0

, z =


0
1
0
0
0
0

, v =


0

1.823
−0.5
0.5
−1
0

,

andH2 =


1 0 0 0 0 0
0 −0.378 0.378 −0.378 0.756 0
0 0.378 0.896 0.104 −0.207 0
0 −0.378 0.104 0.896 0.207 0
0 0.756 −0.207 0.207 0.585 0
0 0 0 0 0 1

. Then,H2H1A
T
0 =


−2 0.5 0.5
0 −1.323 0.189
0 0 0.585
0 0 −0.585
0 0 0.171
0 0 −1

.

For the construction ofH3, a =


0
0

0.585
−0.585
0.171
−1

, z =


0
0
1
0
0
0

, v =


0
0

1.894
−0.585
0.171
−1

,

andH3 =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 −0.447 0.447 −0.130 0.764
0 0 0.447 0.862 0.040 −0.236
0 0 −0.130 0.040 0.988 0.069
0 0 0.764 −0.236 0.069 0.597

. Then,H3H2H1A
T
0 =
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−2 0.5 0.5
0 −1.323 0.189
0 0 −1.309
0 0 0
0 0 0
0 0 0

. This leads to R =

 −2 0.5 0.5
0 −1.323 0.189
0 0 −1.309



and Q =


0.5 −0.567 0.109
0.5 0.189 −0.546
−0.5 −0.189 −0.218
0.5 0.189 0.218
0 0.756 0.109
0 0 0.764

.
Finally, the projection solution to A0y = x0 is yrow = Q

(
RT
)−1

x0 =
0.5 −0.567 0.109
0.5 0.189 −0.546
−0.5 −0.189 −0.218
0.5 0.189 0.218
0 0.756 0.109
0 0 0.764



 −2 0.5 0.5

0 −1.323 0.189
0 0 −1.309

T

−1  2

1
−1

 =

1
6


1
−5
4
−4
−5
1

.
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A.6 Computing eigenvalues

As discussed above, eigenvalues are the characteristic values that ensure
(A− λI) has a nullspace for square matrix A. That is, (A− λI)x = 0
where x is an eigenvector. If an eigenvector can be identified such that
Ax = λx then the constant, λ, is an associated eigenvalue. For instance,
if the rows of A have the same sum then x = ι (a vector of ones) and λ
equals the sum of any row of A.
Further, since the sum of the eigenvalues equals the trace of the matrix

and the product of the eigenvalues equals the determinant of the matrix,
finding the eigenvalues for small matrices is relatively simple. For instance,
eigenvalues of a 2× 2 matrix can be found by solving

λ1 + λ2 = tr (A)

λ1λ2 = det (A)

Alternatively, we can solve the roots or zeroes of the characteristic polyno-
mial. That is, det (A− λI) = 0.

Example 1 Suppose A =

[
2 2
1 3

]
then tr (A) = 5 and det (A) = 4.

Therefore,

λ1 + λ2 = 5

λ1λ2 = 4

which leads to λ1 = 4 and λ2 = 1. Likewise, the characteristic polynomial
is det (A− λI) = (2− λ) (3− λ) − 2 = 0 leading to the same solution for
λ.

However, for larger matrices this approach proves impractical. Hence,
we’ll explore some alternatives.

A.6.1 Schur’s lemma

Schur’s lemma says that while every square matrix may not be diagonaliz-
able, it can be triangularized by some unitary operator U .

T = U−1AU

= U∗AU

or
A = UTU∗

where A is the matrix of interest, T is a triangular matrix, and U is unitary
so that U∗U = UU∗ = I (U∗ denotes the complex conjugate transpose of
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U). Further, since T and A are similar matrices they have the same eigen-
values and the eigenvalues reside on the main diagonal of T . To see they are
similar matrices recognize they have the same characteristic polynomial.

det(A− λI) = det (T − λI)

= det (U∗AU − λI)

= det (U∗AU − λU∗IU)

= det (U∗(A− λI)U)

= det (U∗) det (A− λI) det (U)

= 1 det (A− λI) 1

= det (A− λI)

Before discussing construction of T , we introduce some eigenvalue construc-
tion algorithms.

A.6.2 Power algorithm

The power algorithm is an iterative process for finding the largest absolute
value eigenvalue.
1. Let k1 be a vector of ones where the number of elements in the vector

equals the number of rows or columns in A.
2. Let kt+1 = Akt√

kTt A
TAkt

where
√
kTt A

TAkt = norm.

3. iterate until |kt+1 − kt| < ει for desired precision ε.
4. norm is the largest eigenvalue of A and kt = kt+1 is it’s associated

eigenvector.
Clearly, if kt = kt+1 this satisfies the property of eigenvalues and eigen-

vectors, Ax = λx or Akt =
√
kTt A

TAktkt.

Alternatively, let µt ≡
kTt Akt
kTt kt

and scale Akt by µt to form kt+1 = Akt
µt
.

Then, iterate as above. This follows as eigensystems are defined by

Akt = λkt

Now, multiply both sides by kTt to generate a quadratic form (scalars on
both sides of the equation).

kTt Akt = λkTt kt

Then, isolate the eigenvalue, λ, by dividing both sides by the right-hand
side scalar, kTt kt, to produce the result. As t→ n,

µt ≡
kTt Akt
kTt kt

→ λ
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Example 2 Continue with A =

[
2 2
1 3

]
. k2 = Ak1

norm1
= 1

4
√

2

[
4
4

]
=[

1√
2

1√
2

]
k3 = Ak2

norm2
= 1

4

[
4√
2

4√
2

]
=

[
1√
2

1√
2

]
Hence,

[
1√
2

1√
2

]
is an eigen-

vector and norm2 = 4 is the associated (largest) eigenvalue.

Example 3 (complex eigenvalues) Suppose A =

[
−4 2
−2 −4

]
. The eigen-

values are λ = −4±2i with norm =
√

(−4 + 2i) (−4− 2i) = 4.472136 (not
a complex number). The power algorithm settles on the norm but Akn 6=

norm∗kn. Try the algorithm again except begin with k1 =

[
1
i

]
. The algo-

rithm converges to the same norm but kn =

[
−0.4406927− 0.5529828i
0.5529828− 0.4406927i

]
.

Now,

Akn = λkn[
−4 2
−2 −4

] [
−0.4406927− 0.5529828i
0.5529828− 0.4406927i

]
= λ

[
−0.4406927− 0.5529828i
0.5529828− 0.4406927i

]
solving for λ yields −4 + 2i. Since complex roots always come in conjugate
pairs we also know the other eigenvalue, −4 − 2i. However, the second

power algorithm converges very quickly with initial vector k1 =

[
1
i

]
to

µ2 = −4+2i and k2 =

[
1√
2
i√
2

]
. This suggests the second algorithm is more

versatile and perhaps converges faster.

A.6.3 QR algorithm

The QR algorithm parallels Schur’s lemma and supplies a method to com-
pute all eigenvalues.
1. Compute the factors Q, an orthogonal matrix QQT = QTQ = I, and

R, a right or upper triangular matrix, such that A = QR.
2. Reverse the factors and denote this A1, A1 = RQ.
3. Factor A1, A1 = Q1R1 then A2 = R1Q1.
4. Repeat until Ak is triangular.

Ak−1 = Qk−1Rk−1

Ak = Rk−1Qk−1

The main diagonal elements of Ak are the eigenvalues of A.
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The connection to Schur’s lemma is RQ = QTQRQ = QTAQ = A1 so
that A, A1 and Ak are similar matrices (they have the same eigenvalues).

Example 4 Continue with A =

[
2 2
1 3

]
. A1 = RQ =

[
3.4 −1.8
−0.8 1.6

]
and A11 = R10Q10 =

[
4 −1
0 1

]
.17 Hence, the eigenvalues of A (and also

A10) are the main diagonal elements, 4 and 1.

Example 5 (complex eigenvalues) Suppose A =

 5 0 0
0 2 3
0 −3 2

. The
QR algorithm leaves A unchanged. However, we can work in blocks to solve
for the eigenvalues. The first block is simply B1 = 5 (bordered by zeroes
in the first row, first column) and 5 is an eigenvalue. The second block is

rows 2 and 3 and columns 2 and 3 or B2 =

[
2 3
−3 2

]
. Now solve the

characteristic polynomial for this 2× 2 matrix.

−λ2 + 4λ− 13 = 0

λ = 2± 3i

We can check that each of these three eigenvalues creates a nullspace for
A− λI.

A− 5I =

 0 0 0
0 −3 3
0 −3 −3


has rank 2 and nullspace or eigenvector

 1
0
0

.
A− (2 + 3i) I =

 3− 3i 0 0
0 −3i 3
0 −3 −3i


The second row is a scalar multiple (−i) of the third (and vice versa) and

a nullspace or eigenvector is 1√
2

 0
i
−1

. Finally,18

A− (2− 3i) I =

 3− 3i 0 0
0 3i 3
0 −3 3i


17Shifting refinements are typically employed to speed convergence (see Strang).
18Gauss’fundamental theorem of algebra insures complex roots always come in con-

jugate pairs so this may be overly pedantic.
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Again, the second row is a scalar multiple (i) of the third (and vice versa)

and a nullspace or eigenvector is 1√
2

 0
i
1

. Hence, the eigenvalues are
λ = 5, 2± 3i.

A.6.4 Schur decomposition

Schur decomposition works similarly.
1. Use one of the above algorithms to find an eigenvalue of n× n matrix

A, λ1.
2. From this eigenvalue, construct a unit length eigenvector, x1.
3. Utilize Gram-Schmidt to construct a unitary matrix U1 from n − 1

columns of A where x1 is the first column of U . This creates

AU1 = U1


λ1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


or

U∗1AU1 =


λ1 ∗ · · · ∗
0 ∗ · · · ∗
...

...
. . .

...
0 ∗ · · · ∗


4. The next step works the same way except with the lower right (n− 1)×

(n− 1) matrix. then, U2 is constructed from this lower, right block with a
one in the upper, left position with zeroes in its row and column.

U2 =


1 0 · · · 0
0 x22 · · · ∗
...

...
. . .

...
0 x2n · · · ∗



U∗2U
∗
1AU1U2 =


λ1 ∗ · · · ∗
0 λ2 · · · ∗
...

...
. . .

...
0 0 · · · ∗


5. Continue until T is constructed.

T = U∗n−1 · · ·U∗1AU1 · · ·Un−1

U∗AU =


λ1 ∗ · · · ∗
0 λ2 · · · ∗
...

...
. . .

...
0 · · · 0 λn


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where U = U1 · · ·Un−1. When triangularization is complete, the eigenvalues
reside on the main diagonal of T .

Example 6 (not diagonalizable) Suppose A =

 5 0 1
0 2 −3
0 −3 2

. This
matrix has repeated eigenvalues (5, 5,−1) and lacks a full set of linearly in-
depedent eigenvectors therefore it cannot be expressed in diagonalizable form
A = SΛS−1 (as the latter term doesn’t exist). Nonetheless, the Schur de-
composition can still be employed to triangularize the matrix. A unit length

eigenvector associated with λ = 5 is x1 =

 1
0
0

. Applying Gram-Schmidt
to columns two and three of A yields U1 =

 1 0 1
0 0.55470 −0.83205
0 −0.83205 −0.55470

.
This leads to

T1 = U∗1AU1

=

 5 −0.83205 −0.55470
0 4.76923 −1.15385
0 −1.15385 −0.76923


Working with the lower, right 2× 2 block gives

U2 =

 1 0 1
0 −0.98058 −0.19612
0 0.19612 −0.98058


Then,

T = U∗2U
∗
1AU1U2

U∗AU =

 5 1√
2

1√
2

0 5 0
0 0 −1



where U = U1U2 =

 1 0 1
0 − 1√

2
1√
2

0 1√
2

1√
2

.
Example 7 (complex eigenvalues) Suppose A =

 5 0 0
0 2 3
0 −3 2

. We
know from example 5 A has complex eigenvalues. Let’s explore its Schur
decomposition. Again, λ = 5 is an eigenvalue with corresponding eigenvec-

tor x1 =

 1
0
0

. Applying Gram-Schmidt to columns two and three of A
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yields U1 =

 1 0 1
0 0.55470 0.83205
0 −0.83205 0.55470

. This leads to
T1 = U∗1AU1

=

 5 0 0
0 2 3
0 −3 2


Working with the lower, right 2 × 2 block, λ = 2 + 3i, and associated

eigenvector x2 =

 0
1√
2
i

− 1√
2

 gives

U2 =

 1 0 0
0 1√

2
i 1√

2

0 − 1√
2
− 1√

2
i



where x12 =

 1 0
0 1√

2
i

0 − 1√
2

 is applied via Gram-Schmidt to create the third
(column) vector of U2 from the third column of A, A·3.19

A·3 − x12x
∗
12A·3

=

 0
3
2

−
 1 0

0 1√
2
i

0 − 1√
2

[ 1 0 0
0 − 1√

2
i − 1√

2

] 0
3
2

 =

 0
3
−3i



before normalization and after we have

 0
1√
2

− 1√
2
i

. Then,
T = U∗2U

∗
1AU1U2

U∗AU =

 5 0 0
0 2 + 3i 0
0 0 2− 3i



where U = U1U2 =

 1 0 1
0 −0.5883484 + 0.3922323i 0.3922323− 0.5883484i
0 −0.3922323− 0.5883484i −0.5883484− 0.3922323i

.
The eigenvalues lie along the main diagonal of T .

19Notice, conjugate transpose is employed in the construction of the projection matrix
to accommodate complex elements.
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A.7 Some determinant identities

A.7.1 Determinant of a square matrix

We utilize the fact that

det (A) = det (LU)

= det (L) det (U)

and the determinant of a triangular matrix is the product of the diagonal
elements. Since L has ones along its diagonal, det (A) = det (U). Return to
the example above

det
(
AAT − λI4

)
= det


4− λ −1 −1 −2
−1 2− λ 0 −1
−1 0 2− λ −1
−2 −1 −1 4− λ


Factor AAT − λI4 into its upper and lower triangular components via
Gaussian elimination (this step can be computationally intensive).

L =


1 0 0 0
1

−4+λ 1 0 0
1

−4+λ − 1
7−6λ+λ2

1 0
2

−4+λ
−6+λ

7−6λ+λ2
−6+λ

6−6λ+λ2
1


and

U =


4− λ −1 −1 −2

0 7−6λ+λ2

4−λ
1

−4+λ
6−λ
−4+λ

0 0 12−18λ+8λ2−λ3
7−6λ+λ2

− 12−8λ+λ2

7−6λ+λ2

0 0 0 −λ(24−10λ+λ2)
6−6λ+λ2


The determinant of A equals the determinant of U which is the product of
the diagonal elements.

det
(
AAT − λI4

)
= det (U)

= (4− λ)

(
7− 6λ+ λ2

4− λ

)(
12− 18λ+ 8λ2 − λ3

7− 6λ+ λ2

)
×
(
−
λ
(
24− 10λ+ λ2

)
6− 6λ+ λ2

)
which simplifies as

det
(
AAT − λI4

)
= −48λ+ 44λ2 − 12λ3 + λ4

Of course, the roots of this equation are the eigenvalues of A.
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A.7.2 Identities

Below the notation |A| refers to the determinant of matrix A.

Theorem 8
∣∣∣∣[ Am×m Bm×n

Cn×m Dn×n

]∣∣∣∣ = |A|
∣∣D − CA−1B

∣∣ = |D|
∣∣A−BD−1C

∣∣
where A−1 and D−1 exist.

Proof. [
A B
C D

]
=

[
A 0
C I

] [
I A−1B
0 D − CA−1B

]
=

[
I B
0 D

] [
A−BD−1C 0

D−1C I

]
Since the determinant of a block triangular matrix is the product of the
determinants of the diagonal blocks and the determinant of the product of
matrices is the product of their determinants,∣∣∣∣[ Am×m Bm×n

Cn×m Dn×n

]∣∣∣∣ = |A| |I| |I|
∣∣D − CA−1B

∣∣ = |D| |I|
∣∣A−BD−1C

∣∣ |I|
= |A|

∣∣D − CA−1B
∣∣ = |D|

∣∣A−BD−1C
∣∣

Theorem 9 For A and B m× n matrices,∣∣In +ATB
∣∣ =

∣∣Im +BAT
∣∣ =

∣∣In +BTA
∣∣ =

∣∣Im +ABT
∣∣

Proof. Since the determinant of the transpose of a matrix equals the de-
terminant of the matrix,

∣∣In +ATB
∣∣ =

∣∣∣(In +ATB
)T ∣∣∣ =

∣∣In +BTA
∣∣

From theorem 8,

∣∣∣∣[ Im −B
AT In

]∣∣∣∣ = |I|
∣∣I +AT IB

∣∣ = |I|
∣∣I +BIAT

∣∣. Hence,∣∣I +ATB
∣∣ =

∣∣I +BAT
∣∣ =

∣∣∣(I +BAT
)T ∣∣∣ =

∣∣I +ABT
∣∣

Theorem 10 For vectors x and y,
∣∣I + xyT

∣∣ = 1 + yTx.

Proof. From theorem 9,
∣∣I + xyT

∣∣ =
∣∣I + yTx

∣∣ = 1 + yTx.

Theorem 11
∣∣An×n + xyT

∣∣ = |A|
(
1 + yTA−1x

)
where A−1 exists.
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Proof.
[
A −x
yT 1

]
=

[
A 0
yT 1

] [
I −A−1x
0 1 + yTA−1x

]
=

[
I −x
0 1

] [
A+ x1yT 0

1yT 1

]
.

∣∣∣∣[ A 0
yT 1

] [
I −A−1x
0 1 + yTA−1x

]∣∣∣∣ = |A|
(
1 + yTA−1x

)
=

∣∣∣∣[ I −x
0 1

] [
A+ x1yT 0

1yT 1

]∣∣∣∣
= 1

∣∣A+ xyT
∣∣
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A.8 Matrix exponentials and logarithms

For matrices A and B, where eB = A, then B = lnA. Further, the matrix
exponential is

eB =

∞∑
k=0

1

k!
Bk

Suppose the matrix A is diagonalizable.

A = SΛS−1

where Λ is a diagonal matrix with eigenvalues of A on the diagonal. Then,

Λ = S−1AS

and

lnA = S ln ΛS−1

eB =

∞∑
k=0

1

k!
S (ln Λ)

k
S−1

where ln Λ =


lnλ1 0 · · · 0

0 lnλ2 · · · 0
...

...
. . .

...
0 0 · · · lnλn

. From this result we see the log-
arithm of a matrix is well-defined if and only if the matrix is full rank (has a
complete set of linearly independent rows and columns or, in other words, is

invertible). For example, ln

[
1 0
0 1

]
= Q

[
0 0
0 0

]
QT =

[
0 0
0 0

]
where

Q is any 2× 2 orthogonal matrix (QQT = QTQ = I).
If A is not diagonalizable, then we work with its Jordan form and in

particular, the logarithm of Jordan blocks. A Jordan block has the form

B =


λ 1 0 · · · 0
0 λ 1 · · · 0
0 0 λ 1 0

0
... 0 λ 1

0 · · · 0 0 λ


where λ is the repeated eigenvalue. This can be written

B = λ


1 λ−1 0 · · · 0

0 1 λ−1 · · · 0

0 0 1 λ−1 0

0
... 0 1 λ−1

0 · · · 0 0 1

 = λ (I +K)
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where K =


0 λ−1 0 · · · 0

0 0 λ−1 · · · 0

0 0 0 λ−1 0

0
... 0 0 λ−1

0 · · · 0 0 0

. Since ln (1 + x) = x − x2

2 +

x3

3 −
x4

4 + · · · , we have

lnB = lnλ (I +K)

= lnλI + ln (I +K)

= lnλI +K − K2

2
+
K3

3
− K4

4
+ · · ·

This may not converge for all K. However, in the case B =

[
1 1
0 1

]
,

K =

[
0 1
0 0

]
and we know from the discussion of generalized eigenvectors

K2 (as well as higher powers) =

[
0 0
0 0

]
. Hence,

lnB = lnλI +K

ln

[
1 1
0 1

]
=

[
0 0
0 0

]
+

[
0 1
0 0

]
=

[
0 1
0 0

]
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Appendix B
Iterated expectations

Along with Bayes’ theorem (the glue holding consistent probability as-
sessment together), iterated expectations is extensively employed for con-
necting conditional expectation (regression) results with causal effects of
interest.

Theorem 12 Law of iterated expectations

E [Y ] = EX [E [Y | X]]

Proof.

EX [E [Y | X]] =

∫ x

x

E [Y | X] f (x) dx

=

∫ x

x

[∫ y

y

yf (y | x) dy

]
f (x) dx

By Fubini’s theorem, we can change the order of integration∫ x

x

[∫ y

y

yf (y | x) dy

]
f (x) dx =

∫ y

y

y

[∫ x

x

f (y | x) f (x) dx

]
dy

The product rule of Bayes’theorem, f (y | x) f (x) = f (y, x), implies iter-
ated expectations can be rewritten as

EX [E [Y | X]] =

∫ y

y

y

[∫ x

x

f (y, x) dx

]
dy
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Finally, the summation rule integrates out X,
∫ x
x
f (y, x) dx = f (y), and

produces the result.

EX [E [Y | X]] =

∫ y

y

yf (y) dy = E [Y ]
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B.1 Decomposition of variance

Corollary 1 Decomposition of variance.

V ar [Y ] = EX [V ar [Y | X]] + V arX [E [Y | X]]

Proof.

V ar [Y ] = E
[
Y 2
]
− E [Y ]

2

= EX
[
E
[
Y 2 | X

]]
− EX [E [Y | X]]

2

V ar [Y ] = EX
[
E
[
Y 2 | X

]]
− E [Y ]

2

= EX

[
V ar [Y | X] + E [Y | X]

2
]
− EX [E [Y | X]]

2

= EX [V ar [Y | X]] + EX

[
E [Y | X]

2
]
− EX [E [Y | X]]

2

V ar [Y ] = EX [V ar [Y | X]] + V arX [E [Y | X]]

The second line draws from iterated expectations while the fourth line is
the decomposition of the second moment.
In analysis of variance language, the first term is the residual variation

(or variation unexplained)and the second term is the regression variation
(or variation explained).
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B.2 Jensen’s inequality

For any concave function g (x), E [g (x)] ≤ g (E [x]). Likewise, for any con-
vex function h (x), E [h (x)] ≥ h (E [x]). Hence, utility functions exhibiting
concavity characterize risk aversion or positive risk premia while utility
functions exhibiting convexity characterize risk-seeking preferences or neg-
ative risk premia.
Further, Jensen’s inequality tells us the geometric mean, G (x), is less

than or equal to the arithmetic mean, A (x), with equality only when all
outcomes are the same.

G (x) ≡
n∏
i=1

xpii ≤ A (x) ≡
n∑
i=1

pixi

To see this result, let g (·) be the logarithm (a monotone increasing, concave
function) for x nonnegative (if any xi = 0 then the inequality is trivially
satisfied as the geometric mean is zero if any xi = 0)

E [g (x)] =

n∑
i=1

pi lnxi ≤ g (E [x]) = ln

n∑
i=1

pixi

Let pi = wi
w where w =

∑n
i=1 wi, then

n∑
i=1

wi
w

lnxi ≤ ln

n∑
i=1

wi
w
xi

To recover geometric and arithmetic means exponentiate (a monotone in-
creasing function) both sides

w

√
n∏
i=1

xwii = G (x) ≤
n∑
i=1

wi
w
xi = A (x)
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Appendix C
Multivariate normal theory

The Gaussian or normal probability distribution is ubiquitous when the
data have continuous support as seen in the Central Limit theorems and
the resilience to transformation of Gaussian random variables. When con-
fronted with a vector of variables (multivariate), it often is sensible to think
of a joint normal probability assignment to describe their stochastic prop-

erties. Let W =

[
X
Z

]
be an m-element vector (X has m1 elements and

Z has m2 variables such that m1 +m2 = m) with joint normal probability,
then the density function is

fW (w) =
1

(2π)
m/2 |Σ|1/2

exp

[
−1

2
(w − µ)

T
Σ−1 (w − µ)

]
where

µ =

[
µX
µZ

]
is the m-element vector of means for W and

Σ =

[
ΣXX ΣXZ
ΣZX ΣZZ

]
is them×m variance-covariance matrix forW withm linearly independent
rows and columns.
Of course, the density integrates to unity,

∫
X

∫
Z
fW (w) dzdx = 1. And,

the marginal densities are found by integrating out the other variables, for
example, fX (x) =

∫
Z
fW (w) dz and fZ (z) =

∫
X
fW (w) dx.
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Importantly, as it unifies linear regression, the conditional distributions
are also Gaussian.

fX (x | Z = z) =
fW (w)

fZ (z)

∼ N (E [X | Z = z] , V ar [X | Z])

where

E [X | Z = z] = µX + ΣXZΣ−1
ZZ (z − µZ)

and

V ar [X | Z] = ΣXX − ΣXZΣ−1
ZZΣZX

Also,

fZ (z | X = x) ∼ N (E [Z | X = x] , V ar [Z | X])

where

E [Z | X = x] = µZ + ΣZXΣ−1
XX (x− µX)

and

V ar [Z | X] = ΣZZ − ΣZXΣ−1
XXΣXZ

From the conditional expectation (or regression) function we see when the
data are Gaussian, linearity imposes no restriction.

E [Z | X = x] = µZ + ΣZXΣ−1
XX (x− µX)

is often written

E [Z | X = x] =
{
µZ − ΣZXΣ−1

XXµX
}

+
{

ΣZXΣ−1
XXx

}
= α+ βTx

where α corresponds to an intercept (or vector of intercepts) and βTx
corresponds to weighted regressors. Applied linear regression estimates the
sample analogs to the above parameters, α and β.
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C.1 Conditional distribution

Next, we develop more carefully the result for fX (x | Z = z); the result for
fZ (z | X = x) follows in analogous fashion.

fX (x | Z) =
fW (w)

fZ (z)

=

1
(2π)m/2|Σ|1/2 exp

[
− 1

2 (w − µ)
T

Σ−1 (w − µ)
]

1
(2π)m2/2|ΣZZ |1/2

exp
[
− 1

2 (z − µZ)
T

Σ−1
ZZ (z − µz)

]
=

1

(2π)
m1/2 |V ar [X | Z]|1/2

× exp

[
−1

2
(x− E [X | Z])

T
V ar [X | Z]

−1
(x− E [X | Z])

]
The normalizing constants are identified almost immediately since

(2π)
m/2

(2π)
m2/2

=
(2π)

(m1+m2)/2

(2π)
m2/2

= (2π)
m1/2

for the leading term and by theorem 1 in section A.6.2 we have

|Σ| = |ΣZZ |
∣∣ΣXX − ΣXZΣ−1

ZZΣZX
∣∣

since ΣXX , ΣZZ , and Σ are positive definite, their determinants are positive
and their square roots are real. Hence,

|Σ|
1
2

|ΣZZ |
1
2

=
|ΣZZ |

1
2
∣∣ΣXX − ΣXZΣ−1

ZZΣZX
∣∣ 12

|ΣZZ |
1
2

=
∣∣ΣXX − ΣXZΣ−1

ZZΣZX
∣∣ 12

= |V ar [X | Z]|
1
2

This leaves the exponential terms

exp
[
− 1

2 (w − µ)
T

Σ−1 (w − µ)
]

exp
[
− 1

2 (z − µZ)
T

Σ−1
ZZ (z − µz)

]
= exp

[
−1

2
(w − µ)

T
Σ−1 (w − µ) +

1

2
(z − µZ)

T
Σ−1
ZZ (z − µz)

]
which require a bit more foundation. We begin with a lemma for the inverse
of a partitioned matrix.
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Lemma 1 Let a symmetric, positive definite matrix H be partitioned as[
A BT

B C

]
where A and C are square n1×n1 and n2×n2 positive definite

matrices (their inverses exist). Then,

H−1 =

[ (
A−BTC−1B

)−1 −A−1BT
(
C −BA−1BT

)−1

−C−1B
(
A−BTC−1B

)−1 (
C −BA−1BT

)−1

]

=

[ (
A−BTC−1B

)−1 −
(
A−BTC−1B

)−1
BTC−1

−C−1B
(
A−BTC−1B

)−1 (
C −BA−1BT

)−1

]

=

[ (
A−BTC−1B

)−1 −A−1BT
(
C −BA−1BT

)−1

−
(
C −BA−1BT

)−1
BA−1

(
C −BA−1BT

)−1

]
Proof. H is symmetric and the inverse of a symmetric matrix is also sym-
metric. Hence, the second and third lines follow from symmetry and the
first line. Since H is symmetric, positive definite,

H = LDLT

=

[
I 0

BA−1 I

] [
A 0
0 C −BA−1BT

] [
I A−1BT

0 I

]
and

H−1 =
(
LT
)−1

D−1L−1

=

[
I −A−1BT

0 I

] [
A−1 0

0
(
C −BA−1BT

)−1

] [
I 0

−BA−1 I

]
Expanding gives

H−1 =

[
X −A−1BT

(
C −BA−1BT

)−1

−
(
C −BA−1BT

)−1
BA−1

(
C −BA−1BT

)−1

]
where

X = A−1 +A−1BT
(
C −BA−1BT

)−1
BA−1 =

(
A−BTC−1B

)−1

The latter equality follows from some linear algebra. Suppose it’s true(
A−BTC−1B

)−1
= A−1 +A−1BT

(
C −BA−1BT

)−1
BA−1

pre- and post-multiply both sides by A

A
(
A−BTC−1B

)−1
A = A+BT

(
C −BA−1BT

)−1
B

post multiply both sides by A−1
(
A−BTC−1B

)
A =

(
A−BTC−1B

)
+BT

(
C −BA−1BT

)−1
BA−1

(
A−BTC−1B

)
0 = −BTC−1B +BT

(
C −BA−1BT

)−1
BA−1

(
A−BTC−1B

)



C.1 Conditional distribution 61

Expanding the right hand side gives

0 = −BTC−1B +BT
(
C −BA−1BT

)−1
B

−BT
(
C −BA−1BT

)−1
BA−1BTC−1B

Collecting terms gives

0 = −BTC−1B +BT
(
C −BA−1BT

)−1 (
I −BA−1BTC−1

)
B

Rewrite I as CC−1 and substitute

0 = −BTC−1B +BT
(
C −BA−1BT

)−1 (
CC−1 −BA−1BTC−1

)
B

Factor

0 = −BTC−1B +BT
(
C −BA−1BT

)−1 (
C −BA−1BT

)
C−1B

0 = −BTC−1B +BTC−1B = 0

This completes the lemma.
Now, we write out the exponential terms and utilize the lemma to sim-

plify.

exp

[
−1

2
(w − µ)

T
Σ−1 (w − µ) +

1

2
(z − µZ)

T
Σ−1
ZZ (z − µz)

]

= exp


− 1

2

[
(x− µX)

T
(z − µZ)

T
]

×
[

Σ−1
XX·Z −Σ−1

XX·ZΣXZΣ−1
ZZ

−Σ−1
ZZΣZXΣ−1

XX·Z Σ−1
ZZ·X

] [
x− µX
z − µZ

]
+ 1

2 (z − µZ)
T

Σ−1
ZZ (z − µz)



= exp


− 1

2


(x− µX)

T
Σ−1
XX·Z (x− µX)

− (x− µX)
T

Σ−1
XX·ZΣXZΣ−1

ZZ (z − µZ)

− (z − µZ)
T

Σ−1
ZZΣZXΣ−1

XX·Z (x− µX)

+ (z − µZ)
T

Σ−1
ZZ·X (z − µZ)


+ 1

2 (z − µZ)
T

Σ−1
ZZ (z − µz)


= exp

−
1

2


(x− µX)

T
Σ−1
XX·Z (x− µX)

− (x− µX)
T

Σ−1
XX·ZΣXZΣ−1

ZZ (z − µZ)

− (z − µZ)
T

Σ−1
ZZΣZXΣ−1

XX·Z (x− µX)

+ (z − µZ)
T (

Σ−1
ZZ·X − Σ−1

ZZ

)
(z − µZ)




where ΣXX·Z = ΣXX−ΣXZΣ−1
ZZΣZX and ΣZZ·X = ΣZZ−ΣZXΣ−1

XXΣXZ .
From the last term, write

Σ−1
ZZ·X − Σ−1

ZZ = Σ−1
ZZΣZXΣ−1

XX·ZΣXZΣ−1
ZZ
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To see this utilize the lemma for the inverse of a partitioned matrix. By
symmetry

Σ−1
ZZΣZXΣ−1

XX·Z = Σ−1
ZZ·XΣZXΣ−1

XX

Post multiply both sides by ΣXZΣ−1
ZZ and simplify

Σ−1
ZZΣZXΣ−1

XX·ZΣXZΣ−1
ZZ = Σ−1

ZZ·XΣZXΣ−1
XXΣXZΣ−1

ZZ

= Σ−1
ZZ·X (ΣZZ − ΣZZ·X) Σ−1

ZZ

= Σ−1
ZZ·X − Σ−1

ZZ

Now, substitute this into the exponential component

exp

−
1

2


(x− µX)

T
Σ−1
XX·Z (x− µX)

− (x− µX)
T

Σ−1
XX·ZΣXZΣ−1

ZZ (z − µZ)

− (z − µZ)
T

Σ−1
ZZΣZXΣ−1

XX·Z (x− µX)

+ (z − µZ)
T

Σ−1
ZZΣZXΣ−1

XX·ZΣXZΣ−1
ZZ (z − µZ)




Combining the first and second terms and combine the third and fourth
terms gives

exp

{
−1

2

[
(x− µX)

T
Σ−1
XX·Z

(
x− µX − ΣXZΣ−1

ZZ (z − µZ)
)

− (z − µZ)
T

Σ−1
ZZΣZXΣ−1

XX·Z
(
x− µX − ΣXZΣ−1

ZZ (z − µZ)
) ]}

Then, since

(x− µX)
T − (z − µZ)

T
Σ−1
ZZΣZX =

(
x− µX − ΣXZΣ−1

ZZ (z − µZ)
)T

combining these two terms simplifies as

exp

[
−1

2
(x− E [x | Z = z])

T
Σ−1
XX·Z (x− E [x | Z = z])

]

where E [x | Z = z] = µX−ΣXZΣ−1
ZZ (z − µZ). Therefore, the result matches

the claim for fX (x | Z = z), the conditional distribution of X given Z = z
is normally distributed with mean E [x | Z = z] and variance V ar [x | Z].
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C.2 Special case of precision

Now, we consider a special case of Bayesian normal updating expressed
in terms of precision of variables (inverse variance) along with variance
representation above. Suppose a variable of interest x is observed with
error

Y = x+ ε

where

x ∼ N
(
µx, σ

2
x =

1

τx

)
and

ε ∼ N
(

0, σ2
ε =

1

τ ε

)
ε independent of x, σ2

j refers to variance, and τ j refers to precision of
variable j. This implies

V ar

[
Y
x

]
=

 E
[
(Y − µx)

2
]

E [(Y − µx) (x− µx)]

E [(x− µx) (Y − µx)] E
[
(x− µx)

2
] 

=

[
σ2
x + σ2

ε σ2
x

σ2
x σ2

x

]
.

Then, the posterior or updated distribution for x given Y = y is normal.

(x | Y = y) ∼ N (E [x | Y = y] , V ar [x | Y ])

where

E [x | Y = y] = µx +
σ2
x

σ2
x + σ2

ε

(y − µx)

=
σ2
εµx + σ2

xy

σ2
x + σ2

ε

=
τxµx + τεy

τx + τε

and

V ar [x | Y ] = σ2
x −

(
σ2
x

)2
σ2
x + σ2

ε

=
σ2
x

(
σ2
x + σ2

ε

)
−
(
σ2
x

)2
σ2
x + σ2

ε

=
σ2
xσ

2
ε

σ2
x + σ2

ε

=
1

τx + τε
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For both the conditional expectation and variance, the penultimate line
expresses the quantity in terms of variance and the last line expresses the
same quantity in terms of precision. The precision of x given Y is τx|Y =
τx + τε.
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C.3 Truncated normal distribution

Suppose we have a continuum of states that map one-to-one into an un-
bounded random variable, x, with mean µ and variance σ2. Our natural
(maximum entropy) probability assignment for x is a normal distribution
with mean µ and variance σ2. The density function for x is

f (x) = 1√
2πσ

exp
[
− (x−µ)2

2σ2

]
, −∞ < x <∞

Suppose we have information that partitions the states, and therefore x,
into two regions around t creating two truncated distributions for x. The
density functions are

f (x | x < t) = 1√
2πσF( t−µσ )

exp
[
− (x−µ)2

2σ2

]
, −∞ < x < t

and

f (x | t < x) = 1√
2πσ[1−F( t−µσ )]

exp
[
− (x−µ)2

2σ2

]
, t < x <∞

where F (·) is the cumulative standard normal distribution. Of course, the
rescaling by F (·) normalizes each distribution such that it integrates to
one over the region of support.
Often we’re interested in the expected value and, possibly, variance of

the truncated outcome random variable x. First, we state the result then
provide brief derivations followed by a numerical example.
Let

` (t) = − φ( t−µσ )
F( t−µσ )

, −∞ < x < t

and

u (t) =
φ( t−µσ )

1−F( t−µσ )
, t < x <∞

where φ (·) is the standard normal density function with mean zero and
variance one. Then,

E [x | x < t] = µ+ σ` (t)

= µ− σ
φ
(
t−µ
σ

)
F
(
t−µ
σ

)
and

E [x | x > t] = µ+ σu (t)

= µ+ σ
φ
(
t−µ
σ

)
1− F

(
t−µ
σ

)
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Notice, iterated expectations produces the mean of the untruncated random
variable.

Et [E [x | t]] = F

(
t− µ
σ

)
E [x | x < t] +

[
1− F

(
t− µ
σ

)]
E [x | x > t]

= F

(
t− µ
σ

)[
µ− σ

φ
(
t−µ
σ

)
F
(
t−µ
σ

)]

+

[
1− F

(
t− µ
σ

)][
µ+ σ

φ
(
t−µ
σ

)
1− F

(
t−µ
σ

)]
= µ

Variances for the truncated distributions are

V ar [x | x < t] = σ2

[
1− ` (t)

(
` (t)− t− µ

σ

)]
= σ2

[
1 +

φ
(
t−µ
σ

)
F
(
t−µ
σ

) (− φ ( t−µσ )
F
(
t−µ
σ

) − t− µ
σ

)]
and

V ar [x | x > t] = σ2

[
1− u (t)

(
u (t)− t− µ

σ

)]
= σ2

[
1−

φ
(
t−µ
σ

)
1− F

(
t−µ
σ

) ( φ
(
t−µ
σ

)
1− F

(
t−µ
σ

) − t− µ
σ

)]
To derive these results it’s convenient to transform variables. Let z =

x−µ
σ , or x = σz+µ so that dx = σdz and f (x) dx = σf (z) dz ≡ φ (z) dz =
1√
2π

exp
[
− z22

]
dz.

E [x | x < t] =
1

F
(
t−µ
σ

) ∫ t

−∞
xf (x) dx

Now, transform from x to z and utilize
∫
z exp

[
− z22

]
dz = − exp

[
− z22

]
.

E [x | x < t] =
1

F
(
t−µ
σ

) ∫ t−µ
σ

−∞
(σz + µ)φ (z) dz

=
1

F
(
t−µ
σ

) {µ∫ t−µ
σ

−∞
φ (z) dz + σ

∫ t−µ
σ

−∞
zφ (z) dz

}

=
F
(
t−µ
σ

)
F
(
t−µ
σ

)µ− σφ (z) |
t−µ
σ
−∞

F
(
t−µ
σ

)
= µ− σ

φ
(
t−µ
σ

)
F
(
t−µ
σ

)
= µ− σ` (t)
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Similarly, the upper support expectation is

E [x | x > t] =
1

1− F
(
t−µ
σ

) ∫ ∞
t−µ
σ

(σz + µ)φ (z) dz

=
1

1− F
(
t−µ
σ

) {µ∫ ∞
t−µ
σ

φ (z) dz + σ

∫ ∞
t−µ
σ

zφ (z) dz

}

=
1− F

(
t−µ
σ

)
1− F

(
t−µ
σ

)µ− σφ (z) |∞t−µ
σ

1− F
(
t−µ
σ

)
= µ+ σ

φ
(
t−µ
σ

)
1− F

(
t−µ
σ

)
= µ+ σu (t)

Variances of the truncated distributions involve

V ar [x | x < t] =

∫ t

−∞
x2f (x) dx− E [x | x < t]

2

and

V ar [x | x > t] =

∫ ∞
t

x2f (x) dx− E [x | x > t]
2

As we have expressions for the truncated means, we focus on the second
moments and then combine the results.

E
[
x2 | x < t

]
=

1

F
(
t−µ
σ

) ∫ t

−∞
x2f (x) dx

=
1

F
(
t−µ
σ

) ∫ t−µ
σ

−∞
(σz + µ)

2
φ (z) dz

=
1

F
(
t−µ
σ

) ∫ t−µ
σ

−∞

[
σ2z2 + 2σµz + µ2

]
φ (z) dz

= µ2 − 2σµ
φ
(
t−µ
σ

)
F
(
t−µ
σ

) +
σ2

F
(
t−µ
σ

) ∫ t−µ
σ

−∞
z2φ (z) dz

Focusing on the last term, integration by parts produces∫ t−µ
σ

−∞
z2φ (z) dz =

∫ t−µ
σ

−∞
z [zφ (z)] dz

= −zφ (z) |
t−µ
σ
−∞ −

∫ t−µ
σ

−∞
−φ (z) dz

= − t− µ
σ

φ

(
t− µ
σ

)
+ F

(
t− µ
σ

)
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Hence,

E
[
x2 | x < t

]
= µ2 − 2σµ

φ
(
t−µ
σ

)
F
(
t−µ
σ

)
+

σ2

F
(
t−µ
σ

) [F ( t− µ
σ

)
− t− µ

σ
φ

(
t− µ
σ

)]
= µ2 + σ2 − σ2 φ

(
t−µ
σ

)
F
(
t−µ
σ

) t+ µ

σ

= µ2 + σ2 + σ2` (t)
t+ µ

σ

and

V ar [x | x < t] = µ2 + σ2 + σ2` (t)
t+ µ

σ
− (µ+ σ` (t))

2

= µ2 + σ2 + σ2` (t)
t+ µ

σ

−
(
µ2 + 2µσ` (t) + σ2` (t)

2
)

= σ2 + σ2` (t)
t+ µ

σ
−
(

2µσ` (t) + σ2` (t)
2
)

= σ2

{
1− ` (t)

[
` (t)− t− µ

σ

]}
Variance for upper support is analogous.

E
[
x2 | x > t

]
=

1

1− F
(
t−µ
σ

) ∫ ∞
t

x2f (x) dx

=
1

1− F
(
t−µ
σ

) ∫ ∞
t−µ
σ

(σz + µ)
2
φ (z) dz

=
1

1− F
(
t−µ
σ

) ∫ ∞
t−µ
σ

[
σ2z2 + 2σµz + µ2

]
φ (z) dz

= µ2 + 2σµ
φ
(
t−µ
σ

)
1− F

(
t−µ
σ

) +
σ2

1− F
(
t−µ
σ

) ∫ ∞
t−µ
σ

z2φ (z) dz

Focusing on the last term, integration by parts produces∫ ∞
t−µ
σ

z2φ (z) dz =

∫ ∞
t−µ
σ

z [zφ (z)] dz

= −zφ (z) |∞t−µ
σ

−
∫ ∞
t−µ
σ

−φ (z) dz

=
t− µ
σ

φ

(
t− µ
σ

)
+

[
1− F

(
t− µ
σ

)]
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Hence,

E
[
x2 | x > t

]
= µ2 + 2σµ

φ
(
t−µ
σ

)
1− F

(
t−µ
σ

)
+

σ2

1− F
(
t−µ
σ

) { t− µ
σ

φ

(
t− µ
σ

)
+

[
1− F

(
t− µ
σ

)]}
= µ2 + σ2 + σ2 φ

(
t−µ
σ

)
1− F

(
t−µ
σ

) t+ µ

σ

= µ2 + σ2 + σ2u (t)
t+ µ

σ

and

V ar [x | x > t] = µ2 + σ2 + σ2u (t)
t+ µ

σ
− (µ+ σu (t))

2

= µ2 + σ2 + σ2u (t)
t+ µ

σ

−
(
µ2 + 2µσu (t) + σ2u (t)

2
)

= σ2 + σ2u (t)
t+ µ

σ
−
(

2µσu (t) + σ2u (t)
2
)

= σ2

{
1− u (t)

[
u (t)− t− µ

σ

]}

The various components are connected via variance decomposition.

V ar [x] = Et [V ar [x | t]] + V art [E [x | t]]

where

Et [V ar [x | t]] = F

(
t− µ
σ

)
σ2

{
1− ` (t)

[
` (t)− t− µ

σ

]}
+

(
1− F

(
t− µ
σ

))
σ2

{
1− u (t)

[
u (t)− t− µ

σ

]}
= σ2 + σ2

{
φ
(
t−µ
σ

) [
` (t)− t−µ

σ

]
−φ
(
t−µ
σ

) [
u (t)− t−µ

σ

] }

= σ2 + σ2φ

(
t− µ
σ

)
(` (t)− u (t))



70 Appendix C. Multivariate normal theory

and

V art [E [x | t]] = F

(
t− µ
σ

)
[µ+ σ` (t)− µ]

2

+

(
1− F

(
t− µ
σ

))
[µ+ σu (t)− µ]

2

= F

(
t− µ
σ

)
[σ` (t)]

2
+

(
1− F

(
t− µ
σ

))
[σu (t)]

2

= σ2

{
F

(
t− µ
σ

)
` (t)

2
+

(
1− F

(
t− µ
σ

))
u (t)

2

}
= σ2φ

(
t− µ
σ

)
{−` (t) + u (t)}

Then,

V ar [x] = Et [V ar [x | t]] + V art [E [x | t]]

= σ2 + σ2φ

(
t− µ
σ

)
(` (t)− u (t))

+σ2φ

(
t− µ
σ

)
{−` (t) + u (t)}

= σ2

Example 13 Suppose x ∼ N (µ = 10, σ = 2) and the distribution is trun-
cated at t = 5. The density function at lower support is

f (x | x < 5) = 1
2
√

2π(0.00621)
exp

[
− (x−10)2

8

]
, −∞ < x < 5

and at upper support is

f (x | x > 5) = 1
2
√

2π(0.99379)
exp

[
− (x−10)2

8

]
, 5 < x <∞

Means of the truncated random variable are

E [x | x < 5] = µ+ σ` (t)

= 10− 2
φ
(

5−10
2

)
F
(

5−10
2

)
= 4.35451

and

E [x | x > 5] = µ+ σu (t)

= 10 + 2
φ
(

5−10
2

)
1− F

(
5−10

2

)
= 10.03528
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Iterated expectations provides a consistency check.

Et [E [x | t]] = F

(
5− 10

2

)
E [x | x < 5] +

[
1− F

(
5− 10

2

)]
E [x | x > 5]

= (0.00621) 4.35451 + (0.99379) 10.03528

= 10

Variances of the truncated random variable are

V ar [x | x < 5] = σ2

{
1− ` (t)

[
` (t)− t− µ

σ

]}
= 4

{
1 +

φ
(

5−10
2

)
F
(

5−10
2

) [− φ ( 5−10
2

)
F
(

5−10
2

) − 5− 10

2

]}
= 0.3558952

and

V ar [x | x > 5] = σ2

{
1− u (t)

[
u (t)− t− µ

σ

]}
= 4

{
1−

φ
(

5−10
2

)
1− F

(
5−10

2

) [ φ
(

5−10
2

)
1− F

(
5−10

2

) − 5− 10

2

]}
= 3.822377

Variance decomposition provides a consistency check.

V ar [x] = Et [V ar [x | t]] + V art [E [x | t]]

Et [V ar [x | t]] = F

(
t− µ
σ

)
σ2

{
1− ` (t)

[
` (t)− t− µ

σ

]}
+

(
1− F

(
t− µ
σ

))
σ2

{
1− u (t)

[
u (t)− t− µ

σ

]}
= F

(
5− 10

2

)
4

{
1 +

φ
(

5−10
2

)
F
(

5−10
2

) [− φ ( 5−10
2

)
F
(

5−10
2

) − 5− 10

2

]}

+

(
1− F

(
5− 10

2

))
4

×
{

1−
φ
(

5−10
2

)
1− F

(
5−10

2

) [ φ
(

5−10
2

)
1− F

(
5−10

2

) − 5− 10

2

]}
= 3.800852
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and

V art [E [x | t]] = F

(
t− µ
σ

)
[σ` (t)]

2
+

(
1− F

(
t− µ
σ

))
[σu (t)]

2

= F

(
5− 10

2

)[
2

(
−
φ
(

5−10
2

)
F
(

5−10
2

))]2

+

(
1− F

(
5− 10

2

))[
2

φ
(

5−10
2

)
1− F

(
5−10

2

)]2

= 0.199148

Thus, we have

V ar [x] = Et [V ar [x | t]] + V art [E [x | t]]
= 3.800852 + 0.199148

= 4



This is page 73
Printer: Opaque this

Appendix D
Projections and conditional
expectations

D.1 Gauss-Markov theorem

Consider the data generating process (DGP):

Y = Xβ + ε

where ε ∼
(
0, σ2I

)
, X is n × p (with rank p), and E

[
XT ε

]
= 0, or more

generally E [ε | X] = 0.
The Gauss-Markov theorem states that b =

(
XTX

)−1
XTY is the min-

imum variance estimator of β amongst linear unbiased estimators. Gauss’
insight follows from a simple idea. Construct b (or equivalently, the resid-
uals or estimated errors, e) such that the residuals are orthogonal to every
column of X (recall the objective is to extract all information in X useful
for explaining Y – whatever is left over from Y should be unrelated to
X).

XT e = 0

where e = Y −Xb. Rewriting the orthogonality condition yields

XT (Y −Xb) = 0

or the normal equations
XTXb = XTY

Provided X is full column rank, this yields the usual OLS estimator

b =
(
XTX

)−1
XTY
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It is straightforward to show that b is unbiased (conditional on the data
X).

E [b | X] = E
[(
XTX

)−1
XTY | X

]
= E

[(
XTX

)−1
XT (Xβ + ε) | X

]
= β +

(
XTX

)−1
XTE [ε | X] = β + 0 = β

Iterated expectations yields E [b] = EX [E [b | X]] = EX [β] = β. Hence,
unbiasedness applies unconditionally as well.

V ar [b | X] = V ar
[(
XTX

)−1
XTY | X

]
= V ar

[(
XTX

)−1
XT (Xβ + ε) | X

]
= E

[{
β +

(
XTX

)−1
XT ε− β

}{(
XTX

)−1
XT ε

}T
| X
]

=
(
XTX

)−1
XTE

[
εεT
]
X
(
XTX

)−1

= σ2
(
XTX

)−1
XT IX

(
XTX

)−1

= σ2
(
XTX

)−1

Now, consider the stochastic regressors case,

V ar [b] = V arX [E [b | X]] + EX [V ar [b | X]]

The first term is zero since E [b | X] = β for all X. Hence,

V ar [b] = EX [V ar [b | X]] = σ2E
[(
XTX

)−1
]

the unconditional variance of b can only be described in terms of the average
behavior of X.
To show that OLS yields the minimum variance linear unbiased esti-

mator consider another linear unbiased estimator b0 = LY (L replaces(
XTX

)−1
XT ). Since E [LY ] = E [LXβ + Lε] = β, LX = I.

Let D = L−
(
XTX

)−1
XT so that DY = b0 − b.

V ar [b0 | X] = σ2
[
D +

(
XTX

)−1
XT
] [
D +

(
XTX

)−1
XT
]T

= σ2

(
DDT +

(
XTX

)−1
XTDT +DX

(
XTX

)−1

+
(
XTX

)−1
XTX

(
XTX

)−1

)

Since
LX = I = DX +

(
XTX

)−1
XTX,DX = 0
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and

V ar [b0 | X] = σ2
(
DDT +

(
XTX

)−1
)

As DDT is positive semidefinite, V ar [b] (and V ar [b | X]) is at least as
small as any other V ar [b0] (V ar [b0 | X]). Hence, the Gauss-Markov theo-
rem applies to both nonstochastic and stochastic regressors.

Theorem 14 Rao-Blackwell theorem. If ε ∼ N
(
0, σ2I

)
for the above DGP,

b has minimum variance of all unbiased estimators.

Finite sample inferences typically derive from normally distributed errors
and t (individual parameters) and F (joint parameters) statistics. Some
asymptotic results related to the Rao-Blackwell theorem are as follows.
For the Rao-Blackwell DGP , OLS is consistent and asymptotic normally
(CAN ) distributed. Since MLE yields b for the above DGP with normally
distributed errors, OLS is asymptotically effi cient amongst all CAN esti-
mators. Asymptotic inferences allow relaxation of the error distribution and
rely on variations of the laws of large numbers and central limit theorems.
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D.2 Generalized least squares (GLS)

For the DGP,
Y = Xβ + ε

where ε ∼ N (0,Σ) and Σ is some general n×n variance-covariance matrix,
then the linear least squares estimator or generalized least squares (GLS )
estimator is

bGLS =
(
XTΣ−1X

)−1
XTΣ−1Y

with
V ar [bGLS | X] =

(
XTΣ−1X

)−1

If Σ is known, this can be computed by ordinary least squares (OLS )
following transformation of the variables Y and X via Γ−1 where Γ is a
triangular matrix such that Σ = ΓΓT , say via Cholesky decomposition.
Then, the transformed DGP is

Γ−1Y = Γ−1Xβ + Γ−1ε

y = xβ + ε

where y = Γ−1Y , x = Γ−1X, and ε = Γ−1ε ∼ N (0, I). To see where the
identity variance matrix comes from, consider

V ar
[
Γ−1ε

]
= Γ−1V ar [ε]

(
Γ−1

)T
= Γ−1Σ

(
Γ−1

)T
= Γ−1ΓΓT

(
Γ−1

)T
= Γ−1ΓΓT

(
ΓT
)−1

= I

Hence, estimation involves projection of y onto x

E [y | x] = xb

where

b =
(
xTx

)−1
xT y

=
(
XT

(
Γ−1

)T
Γ−1X

)−1

XT
(
Γ−1

)T
Γ−1Y

Since Σ−1 =
(
ΓΓT

)−1
=
(
Γ−1

)T
Γ−1, we can rewrite

b =
(
XTΣ−1X

)−1
XTΣ−1Y
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which is theGLS estimator for β. Further, V ar [b | X] = E
[
(b− β) (b− β)

T
]
.

Since

b− β =
(
XTΣ−1X

)−1
XTΣ−1Y − β

=
(
XTΣ−1X

)−1
XTΣ−1 (Xβ + ε)− β

=
(
XTΣ−1X

)−1
XTΣ−1Xβ − β

+
(
XTΣ−1X

)−1
XTΣ−1ε− β

= β +
(
XTΣ−1X

)−1
XTΣ−1ε− β

=
(
XTΣ−1X

)−1
XTΣ−1ε

V ar [b | X] = E
[
(b− β) (b− β)

T
]

= E
[(
XTΣ−1X

)−1
XTΣ−1εεTΣ−1X

(
XTΣ−1X

)−1 | X
]

=
(
XTΣ−1X

)−1
XTΣ−1E

[
εεT | X

]
Σ−1X

(
XTΣ−1X

)−1

=
(
XTΣ−1X

)−1
XTΣ−1ΣΣ−1X

(
XTΣ−1X

)
=

(
XTΣ−1X

)−1

as indicated above.
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D.3 Recursive least squares

Suppose the analyst expects a series of noisy signals that require filtering
to uncover the signals of interest, β, where the DGP is

Y = Xβ + ε, ε | X ∼ (0, V )

Instead of recalculating everything with each sample, the analyst can em-
ploy recursive least squares to achieve the same results. The idea revolves
around the design matrix, Xt, Fisher’s information matrix, =t, and weights
from the variance-covariance matrix, Vt, for the period t draw.

=t = =t−1 +XT
t V
−1
t Xt

where the components may be augmented with zeroes so that the matrices
conform.

=t =

[
=t−1 0

0 0

]
+

[
0 0
0 XT

t V
−1
t Xt

]
Let Kt = =−1

t XT
t V
−1
t represent the gain, Yt−Xtbt−1 be the innovation,

and b1 = =−1
1 XT

1 V
−1
1 Y1 =

(
XT

1 V
−1
1 X1

)−1
XT

1 V
−1
1 Y1 be the first sample

least squares estimate.1 Then, the recursive least squares estimate is

bt = bt−1 +Kt (Yt −Xtbt−1)

where again bt−1 may be augmented with zeroes to conform.

Example 15 (smooth accruals) Suppose the DGP for cash flows is

cft = mt + et

mt = g mt−1 + εt

the variance-covariance matrix, V , is diagonal, and ν = σe
σε
, m0 and g

are known. Then, accrualst−1 and cft are, collectively, suffi cient statis-
tics for the mean of cash flows mt based on the history of cash flows and
gt−1accrualst is an effi cient statistic for mt

[m̂t|cf1, ..., cft] = gt−1accrualst

=
1

dent

{
numt

g2
cft + gt−1ν2dent−1accrualst−1

}

where accruals0 = m0,
[
dent
numt

]
= Bt

[
den0

num0

]
= SΛtS−1

[
1
0

]
, B =[

1 + ν2 ν2

g2 g2ν2

]
, Λ is diagonal matrix with the eigenvalues of B, and S is

1 If prior beliefs regarding β are informed then b0 representing priors is included to
construct b1 in analogous fashion to other samples.
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a matrix of the corresponding eigenvectors for B. The variance of accruals
is equal to the variance of the estimate of the mean of cash flows multiplied
by g2(t−1); the variance of the estimate of the mean of cash flows equals the
coeffi cient on current cash flow multiplied by σ2

e, V ar [m̂t] = numt
dentg2

σ2
e. The

development employs recursive least squares. Let X1 =

[
−ν
1

]
(a 2×1 ma-

trix), X2 =

[
gν −ν
0 1

]
(a 2 × 2 matrix), Xt =

[
0 · · · 0 gν −ν
0 · · · 0 0 1

]
(a 2 × t matrix with t − 2 leading columns of zeroes), Y1 =

[
−gνm0

cf1

]
,

Y2 =

[
0
cf2

]
, and Yt =

[
0
cft

]
. The information matrix for a t-period

cash flow history is

=t = =at−1 +XT
t Xt

=



1 + ν2 + g2ν2 −gν2 0 · · · 0

−gν2 1 + ν2 + g2ν2 −gν2 . . .
...

0 −gν2 . . . −gν2 0
...

. . . −gν2 1 + ν2 + g2ν2 −gν2

0 · · · 0 −gν2 1 + ν2


,

a symmetric tri-diagonal matrix, where =at−1 is =t−1 augmented with a row
and column of zeroes to conform with =t. For instance, =1 =

[
1 + ν2

]
and

=a1 =

[
1 + ν2 0

0 0

]
. The estimate of the mean of cash flows is derived

recursively as
m̂t = m̂a

t−1 +Kt

(
zt −Xa

t m̂
a
t−1

)
for t > 1 where Kt = =−1

t XT
t , the gain matrix, and m̂

a
t−1 is m̂t−1 aug-

mented with a zero to conform with m̂t. The best linear unbiased estimate
of the current mean is the last element in the vector m̂t and its variance is
the last row-column element of =−1

t multiplied by σ2
e.

Example 16 (special case) Suppose g = ν = 1 for the above DGP.
Then,

[m̂t|cf1, ..., cft] = accrualst

=
1

F2t+1
{F2tcft + F2t−1accrualst−1}

and variance for the most recent mean estimate (the tth element) is

V ar [m̂t|cf1, ..., cft]tt = σ2 F2t

F2t+1

where Ft = Ft−1 + Ft−2, the Fibonacci series.
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Appendix E

Two stage least squares IV (2SLS-IV)

In this appendix we develop two stage least squares instrumental variable
(2SLS-IV ) estimation more generally. Instrumental variables are attractive
strategies whenever the fundamental condition for regression, E [ε | X] = 0,
is violated but we can identify instruments such that E [ε | Z] = 0.

E.1 General case

For the data generating process

Y = Xβ + ε

the IV estimator projects X onto Z (if X includes an intercept so does
Z), X̂ = Z

(
ZTZ

)−1
ZTX, where X is a matrix of regressors, and Z is a

matrix of instruments. Then, the IV estimator for β is

bIV =
(
X̂T X̂

)−1

X̂Y

Provided E [ε | Z] = 0 and V ar [ε] = σ2I, bIV is unbiased, E
[
bIV
]

= β,

and has variance V ar
[
bIV | X,Z

]
= σ2

(
X̂T X̂

)−1

.
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Unbiasedness is demonstrated as follows.

bIV =
(
X̂T X̂

)−1

X̂Y

=
(
X̂T X̂

)−1

X̂T (Xβ + ε)

=
(
XTZ

(
ZTZ

)−1
ZTZ

(
ZTZ

)−1
ZTX

)−1

XTZ
(
ZTZ

)−1
ZT (Xβ + ε)

=
(
XTZ

(
ZTZ

)−1
ZTX

)−1 (
XTZ

(
ZTZ

)−1
ZTX

)
β

+
(
X̂T X̂

)−1

X̂T ε

= β +
(
X̂T X̂

)−1

X̂T ε

Then,

E
[
bIV | X,Z

]
= E

[
β +

(
X̂T X̂

)−1

X̂T ε | X,Z
]

= β +
(
X̂T X̂

)−1

X̂TE [ε | X,Z]

= β + 0 = β

By iterated expectations,

E
[
bIV
]

= EX,Z
[
E
[
bIV | X,Z

]]
= β

Variance of the IV estimator follows similarly.

V ar
[
bIV | X,Z

]
= E

[(
bIV − β

) (
bIV − β

)T | X,Z]
From the above development,

bIV − β =
(
X̂T X̂

)−1

X̂T ε

Hence,

V ar
[
bIV | X,Z

]
= E

[(
X̂T X̂

)−1

X̂T εεT X̂
(
X̂T X̂

)−1

| X,Z
]

= σ2
(
X̂T X̂

)−1

X̂T X̂
(
X̂T X̂

)−1

= σ2
(
X̂T X̂

)−1
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E.2 Special case

In the special case where both X and Z have the same number of columns
the estimator can be further simplified,

bIV =
(
ZTX

)−1
ZTY

To see this, write out the estimator

bIV =
(
X̂T X̂

)−1

X̂Y

=
(
XTZ

(
ZTZ

)−1
ZTX

)−1

XTZ
(
ZTZ

)−1
ZTY

Since XTZ and ZTX have linearly independent columns, we can invert
each square term

bIV =
(
ZTX

)−1
ZTZ

(
XTZ

)−1
XTZ

(
ZTZ

)−1
ZTY

=
(
ZTX

)−1
ZTY

Of course, the estimator is unbiased, E
[
bIV
]

= β, and the variance of the
estimator is

V ar
[
bIV | X,Z

]
= σ2

(
X̂T X̂

)−1

which can be written

V ar
[
bIV | X,Z

]
= σ2

(
ZTX

)−1
ZTZ

(
XTZ

)−1

in this special case where X and Z have the same number of columns.
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Appendix F

Seemingly unrelated regression (SUR)

First, we describe the seemingly unrelated regression (SUR) model. Second,
we remind ourselves Bayesian regression works as if we have two samples:
one representative of our priors and another from the new evidence. Then,
we connect to seemingly unrelated regression (SUR) – both classical and
Bayesian strategies are summarized.
We describe the SUR model in terms of a stacked regression as if the

latent variables in a binary selection setting are observable.

r = Xβ + ε

where

r =

 U∗

Y1

Y0

 , X =

 W 0 0
0 X1 0
0 0 X2

 , β =

 θ
β1

β2

 , ε =

 VD
V1

V0

 ,

and

ε ∼ N (0, V = Σ
⊗
In)
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Let Σ =

 1 σD1 σD0

σD1 σ11 σ10

σD0 σ10 σ00

, a 3×3 matrix, then the Kronecker product,

denoted by
⊗
, is

V = Σ
⊗
In =

 In σD1In σD0In
σD1In σ11In σ10In
σD0In σ10In σ00In



=



1 · · · 0 σD1 · · · 0 σD0 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · 1 0 · · · σD1 0 · · · σD0

σD1 · · · 0 σ11 · · · 0 σ10 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · σD1 0 · · · σ11 0 · · · σ10

σD0 · · · 0 σ10 · · · 0 σ00 · · · 0
...

. . .
...

...
. . .

...
...

. . .
...

0 · · · σD0 0 · · · σ10 0 · · · σ00


a 3n× 3n matrix and V −1 = Σ−1

⊗
In.

F.1 Classical

Classical estimation of SUR follows generalized least square (GLS ).

β̂ =
(
XT

(
Σ−1⊗ In

)
X
)−1

XT
(
Σ−1⊗ In

)
r

and
V ar

[
β̂
]

=
(
XT

(
Σ−1⊗ In

)
X
)−1

F.2 Bayesian

On the other hand, Bayesian analysis employs a Gibbs sampler based on
the conditional posteriors as, apparently, the SUR error structure prevents
identification of conjugate priors. Recall, from the discussion of Bayesian
linear regression with general error structure the conditional posterior for
β is p (β | Σ, y;β0,Σβ) ∼ N

(
β, Vβ

)
where

β =
(
XT

0 Σ−1
0 X0 +XTΣ−1X

)−1
(
XT

0 Σ−1
0 X0β0 +XTΣ−1Xβ̂

)
=

(
Σ−1
β +XTΣ−1X

)−1 (
Σ−1
β β0 +XTΣ−1Xβ̂

)
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β̂ =
(
XTΣ−1X

)−1
XTΣ−1y

and

Vβ =
(
XT

0 Σ−1
0 X0 +XTΣ−1X

)−1

=
(

Σ−1
β +XTΣ−1X

)−1

F.3 Bayesian treatment effect application

For the application of SUR to the treatment effect setting, we replace y with
r =

[
U y1 y0

]T
and Σ−1 with

(
Σ−1

⊗
In
)
yielding the conditional

posterior for β, p (β | Σ, y;β0,Σβ) ∼ N
(
β
SUR

, V SURβ

)
where

β
SUR

=
(
XT

0 Σ−1
0 X0 +XT

(
Σ−1⊗ In

)
X
)−1

×
(
XT

0 Σ−1
0 X0β0 +XT

(
Σ−1⊗ In

)
Xβ̂

SUR
)

=
(

Σ−1
β +XT

(
Σ−1⊗ In

)
X
)−1 (

Σ−1
β β0 +XT

(
Σ−1⊗ In

)
Xβ̂

SUR
)

β̂
SUR

=
(
XT

(
Σ−1⊗ In

)
X
)−1

XT
(
Σ−1⊗ In

)
r

and

V SURβ =
(
XT

0 Σ−1
0 X0 +XT

(
Σ−1⊗ In

)
X
)−1

=
(

Σ−1
β +X

(
Σ−1⊗ In

)
X
)−1
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Appendix G
Maximum likelihood estimation of
discrete choice models

The most common method for estimating the parameters of discrete choice
models is maximum likelihood. The likelihood is defined as the joint density
for the parameters of interest θ conditional on the data Xt. For binary
choice models and Dt = 1 the contribution to the likelihood is F

(
XT
t θ
)
,

and forDt = 0 the contribution to the likelihood is 1−F
(
XT
t θ
)
where these

are combined as binomial draws and F
(
XT
t θ
)
is the cumulative distribution

function evaluated at XT
t θ. Hence, the likelihood is

L (θ|X) =

n∏
t=1

F
(
XT
t θ
)Dt [

1− F
(
XT
t θ
)]1−Dt

The log-likelihood is

` (θ|X) ≡ logL (θ|X) =

n∑
t=1

Dtlog
(
F
(
XT
t θ
))

+ (1−Dt) log
(
1− F

(
XT
t θ
))

Since this function for binary response models like probit and logit is glob-
ally concave, numerical maximization is straightforward. The first order
conditions for a maximum, max ` (θ|X) ,

θ

are

n∑
t=1

Dtf(XTt θ)Xit
F(XTt θ)

− (1−Dt)f(XTt θ)Xti
1−F(XTt θ)

= 0 i = 1, . . . , k

where f (·) is the density function. Simplifying yields
n∑
t=1

[Dt−F(XTt θ)]f(X
T
t θ)Xti

F(XTt θ)[1−F(XTt θ)]
= 0 i = 1, . . . , k
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Estimates of θ are found by solving these first order conditions iteratively
or, in other words, numerically.
A common estimator for the variance of θ̂MLE is the negative inverse of

the Hessian matrix evaluated at θ̂MLE ,
[
−H

(
D, θ̂

)]−1

. Let H (D, θ) be

the Hessian matrix for the log-likelihood with typical element Hij (D, θ) ≡
∂2`t(D,θ)
∂θi∂θj

.1

1Details can be found in numerous econometrics references and chapter 4 of Account-
ing and Causal Eff ects: Econometric Challenges.
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Appendix H
Optimization

In this appendix, we briefly review optimization. First, we’ll take up linear
programming then we’ll review nonlinear programming.1

H.1 Linear programming

A linear program (LP) is any optimization frame which can be described
by a linear objective function and linear constraints. Linear refers to choice
variables, say x, of no greater than first degree (affi ne transformations which
allow for parallel lines are included). Prototypical examples are

max
x≥0

πTx

s.t. Ax ≤ r

or

min
x≥0

πTx

s.t. Ax ≥ r

1For additional details, consult, for instance, Luenberger and Ye, 2010, Linear and
Nonlinear Programming, Springer, or Luenberger, 1997 Optimization by Vector Space
Methods, Wiley.
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H.1.1 basic solutions or extreme points

Basic solutions are typically determined from the standard form for an
LP. Standard form involves equality constraints except non-negative choice
variables, x ≥ 0. That is, Ax ≤ r is rewritten in terms of slack variables,
s, such that Ax + s = r. The solution to this program is the same as the
solution to the inequality program.
A basic solution or extreme point is determined from anm×m submatrix

of A composed of m linearly independent columns of A. The set of basic
feasible solutions then is the collection of all basic solutions involving x ≥ 0.

Consider an example. Suppose A =

[
2 1
1 2

]
, r =

[
r1

r2

]
, x =

[
x1

x2

]
and s =

[
s1

s2

]
. Then, Ax + s = r can be written Bxs = r where B =[

A I2
]
, I2 is a 2 × 2 identity matrix, and xs =

[
x
s

]
. The matrix B

has two linearly independent columns so each basic solution works with two
columns of B, say Bij , and the elements other than i and j of xs are set to
zero. For instance, B12 leads to basic solution x1 = 2r1−r2

3 and x2 = 2r2−r1
3 .

The basic solutions are tabulated below.

Bij x1 x2 s1 s2

B12
2r1−r2

3
2r2−r1

3 0 0
B13 r2 0 r1 − 2r2 0
B14

r1
2 0 0 2r2−r1

2

B23 0 r2
2

2r1−r2
2 0

B24 0 r1 0 r2 − 2r1

To test feasibility consider specific values for r. Suppose r1 = r2 = 10. The
table with a feasibility indicator (1 (xs ≥ 0)) becomes

Bij x1 x2 s1 s2 feasible
B12

10
3

10
3 0 0 yes

B13 10 0 −10 0 no
B14 5 0 0 5 yes
B23 0 5 5 0 yes
B24 0 10 0 −10 no

Notice, when x2 = 0 there is slack in the second constraint (s2 > 0) and
similarly when x1 = 0 there is slack in the first constraint (s1 > 0). Ba-
sic feasible solutions, an algebraic concept, are also referred to by their
geometric counterpart, extreme points.
Identification of basic feasible solutions or extreme points combined with

the fundamental theorem of linear programming substantially reduce the
search for an optimal solution.
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H.1.2 fundamental theorem of linear programming

For a linear program in standard form where A is an m×n matrix of rank
m,
i) if there is a feasible solution, there is a basic feasible solution;
ii) if there is an optimal solution, there is a basic feasible optimal solution.
Further, if more than one basic feasible solution is optimal, the edge

between the basic feasible optimal solutions is also optimal. The theorem
means the search for the optimal solution can be restricted to basic feasible
solutions – a finite number of points.

H.1.3 duality theorems

Optimality programs come in pairs. That is, there is a complementary or
dual program to the primary (primal) program. For instance, the dual to
the maximization program is a minimization program, and vice versa.

primal program dual program
max
x≥0

πTx

s.t. Ax ≤ r
min
λ≥0

rTλ

s.t. ATλ ≥ π

or
primal program dual program
min
x≥0

πTx

s.t. Ax ≥ r
max
λ≥0

rTλ

s.t. ATλ ≤ π

where λ is a vector of shadow prices or dual variable values. The dual of
the dual program is the primal program.

strong duality theorem

If either the primal or dual has an optimal solution so does the other and
their optimal objective function values are equal. If one of the programs is
unbounded the other has no feasible solution.

weak duality theorem

For feasible solutions, the objective function value of the minimization pro-
gram (say, dual) is greater than or equal to the maximization program (say,
primal).
The intuition for the duality theorems is straightforward. Begin with the

constraints
Ax ≤ r ATλ ≥ π

Transposing both sides of the first constraint leaves the inequality un-
changed.

xTAT ≤ rT ATλ ≥ π
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Now, post-multiply both sides of the first constraint by λ and pre-multiply
both sides of the second constraint by xT , since both λ and x are nonneg-
ative the inequality is preserved.

xTATλ ≤ rTλ xTATλ ≥ xTπ

Since xTπ is a scalar, xTπ = πTx. Now, combine the results and we have
the relation we were after.

πTx ≤ xTATλ ≤ rTλ

The solution to the dual lies above that for the primal except when they
both reside at the optimum solution, in which case their objective function
values are equal.

H.1.4 example

Suppose we wish to solve

max
x≥0

10x+ 12y

s.t

[
2 1
1 2

] [
x
y

]
≤
[

10
10

]
We only need evaluate the objective function at each of the basic feasible
solutions we earlier identified: 10

(
10
3

)
+12

(
10
3

)
= 220

3 , 10 (5)+12 (0) = 50 =
150
3 , and 10 (0) + 12 (5) = 60 = 180

3 . The optimal solution is x = y = 10
3 .

H.1.5 complementary slackness

Suppose x ≥ 0 is an n element vector containing a feasible primal solution,
λ ≥ 0 is an m element vector containing a feasible dual solution, s ≥ 0 is
an m element vector containing primal slack variables, and t ≥ 0 is an n
element vector containing dual slack variables. Then, x and λ are optimal
if and only if (element-by-element)

xt = 0

and

λs = 0

These conditions are economically sensible as either the scarce resource
is exhausted (s = 0) or if the resource is plentiful it has no value (λ = 0).
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H.2 Nonlinear programming

H.2.1 unconstrained

Nonlinear programs involve nonlinear objective functions. For instance,

max
x

f (x)

If the function is continuously differentiable, then a local optimum can be
found by the first order approach. That is, equate the gradient (a vector of
partial derivatives composed of terms, ∂f(x)

∂xi
, i = 1, . . . , n where there are

n choice variables, x).

∇f (x∗) = 0
∂f(x)
∂x1
...

∂f(x)
∂xn

 =

 0
...
0


Second order (suffi cient) conditions involve the Hessian, a matrix of second
partial derivatives.

H (x∗) =


∂2f(x)
∂x1∂x1

· · · ∂2f(x)
∂x1∂xn

...
. . .

...
∂2f(x)
∂xn∂x1

· · · ∂2f(x)
∂xn∂xn


For a local minimum, the Hessian is positive definite (the eigenvalues of H
are positive). While for a local maximum, the Hessian is negative definite
(the eigenvalues of H are negative).

H.2.2 convexity and global minima

If f is a convex function (defined below), then the set where f achieves its
local minimum is convex and any local minimum is a global minimum. A
function f is convex if for every x1, x2, and α , 0 ≤ α ≤ 1,

f (αx1 + (1− α)x2) ≤ αf (x1) + (1− α) f (x2)

If x1 6= x2, and 0 < α < 1,

f (αx1 + (1− α)x2) < αf (x1) + (1− α) f (x2)

then f is strictly convex. If g = −f and f is (strictly) convex, then g is
(strictly) concave.
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H.2.3 example

Suppose we face the problem

min
x,y

f (x, y) = x2 − 10x+ y2 − 10y + xy

The first order conditions are

∇f (x, y) = 0

or

∂f

∂x
= 2x− 10 + y = 0

∂f

∂y
= 2y − 10 + x = 0

Since the problem is quadratic and the gradient is composed of linearly
independent equations, a unique solution is immediately identifiable.[

2 1
1 2

] [
x
y

]
=

[
10
10

]
or x = y = 10

3 with objective function value −
100
3 . As the Hessian is positive

definite, this solution is a minimum.

H =

[
2 1
1 2

]
Positive definiteness of the Hessian follows as the eigenvalues of H are
positive. To see this, recall the sum of the eigenvalues equals the trace of
the matrix and the product of the eigenvalues equals the determinant of
the matrix. The eigenvalues of H are 1 and 3, both positive.

H.2.4 constrained – the Lagrangian

Nonlinear programs involve either nonlinear objective functions, constraints,
or both. For instance,

max
x≥0

f (x)

s.t. G (x) ≤ r
Suppose the objective function and constraints are continuously differ-

entiable concave and an optimal solution exists, then the optimal solution
can be found via the Lagrangian. The Lagrangian writes the objective func-
tion less a Lagrange multiplier times each of the constraints. As either the
multiplier is zero or the constraint is binding, each constraint term equals
zero.

L = f (x)− λ1 [g1 (x)− r1]− · · · − λn [gn (x)− rn]
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where G (x) involves n functions, gi (x), i = 1, . . . , n. Suppose x involves
m choice variables. Then, there are m Lagrange equations plus the n con-
straints that determine the optimal solution.

∂L
∂x1

= 0

...
∂L
∂xm

= 0

λ1 [g1 (x)− r1] = 0

...

λn [gn (x)− rn] = 0

The Lagrange multipliers (shadow prices or dual variable values) repre-
sent the rate of change in the optimal objective function for each of the
constraints.

λi =
∂f (r∗)

∂ri

where r∗ refers to rewriting the optimal solution x∗ in terms of the con-
straint values, r. If a constraint is not binding, it’s multiplier is zero as it
has no impact on the optimal objective function value.2

H.2.5 Karash-Kuhn-Tucker conditions

Originally, the Lagrangian only allowed for equality constraints. This was
generalized to include inequality constraints by Karash and separately
Kuhn and Tucker. Of course, some regularity conditions are needed to
ensure optimality. Various necessary and suffi cient conditions have been
proposed to deal with the most general settings. The Karash-Kuhn-Tucker
theorem supplies first order necessary conditions for a local optimum (gra-
dient of the Lagrangian and the Lagrange multiplier times the inequality
constraint equal zero when the Lagrange multipliers on the inequality con-
straints are non-negative evaluated at x∗). Second order necessary (positive
semi-definite Hessian for the Lagrangian at x∗) and suffi cient (positive def-
inite Hessian for the Lagrangian at x∗) conditions are roughly akin to those
for unconstrained local minima.

2Of course, these ideas regarding the multipliers apply to the shadow prices of linear
programs as well.
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H.2.6 example

Continue with the unconstrained example above with an added constraint.

min
x,y

f (x, y) = x2 − 10x+ y2 − 10y + xy

s.t. xy ≥ 10

Since the unconstrained solution satisfies this constraint, xy = 100
9 > 10,

the solution remains x = y = 10
3 .

However, suppose the problem is

min
x,y

f (x, y) = x2 − 10x+ y2 − 10y + xy

s.t. xy ≥ 20

The constraint is now active. The Lagrangian is

L = x2 − 10x+ y2 − 10y + xy − λ (xy − 20)

and the first order conditions are

∇L = 0

or

∂L
∂x

= 2x− 10 + y − λy = 0

∂L
∂y

= 2y − 10 + x− λx = 0

and constraint equation

λ (xy − 20) = 0

A solution to these nonlinear equations is

x = y = 2
√

5

λ = 3−
√

5

The objective function value is −29.4427 which, of course, is greater than
the objective function value for the unconstrained problem, −33.3333. The
Hessian is

H =

[
2 1− λ

1− λ 2

]
with eigenvalues evaluated at the solution, 3−λ =

√
5 and 1 +λ = 4−

√
5,

both positive. Hence, the solution is a minimum.
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H.3 Theorem of the separating hyperplane

The theorem of the separating hyperplane states either there exists a non-
negative y such that Ay = x or there exists λ such that ATλ ≥ 0 and
λTx < 0. The theorem is about mutual exclusivity – one or the other is
true not both. This is similar to the way in which orthogonal complements
are mutually exclusive. If one subspace contains all positive vectors the
orthogonal complement cannot contain positive vectors. Otherwise, their
inner products would be positive and inner products of orthogonal sub-
spaces are zero.
The intuition follows from the idea that vector inner products are pro-

portional to the cosine of the angle between them; if the angle is less
(greater) than 90 degrees the cosine is positive (negative). ATλ ≥ 0 means
the columns of A are less than or equal to 90 degrees relative a fixed vector
λ while λTx < 0 implies the angle between x and λ exceeds 90 degrees. The
separating hyperplane (hyper simply refers to high dimension) is composed
of all vectors orthogonal to a fixed vector λ.
Consider a simple example.

Example 17 (simple example) Suppose A = I and x =

[
2
3

]
, then

y = 2

[
1
0

]
+ 3

[
0
1

]
and there exists no λ from which to form a plane

separating the positive quadrant from x. On the other hand, suppose x =[
−2
3

]
– x lies outside the positive quadrant and λ =

[
1
0

]
satisfies the

theorem’s alternative, ATλ =

[
1
0

]
≥ 0 and λTx = −2 < 0.

Next, consider a simple accounting (incidence matrix) example. That is,
a case in which A has a nullspace and a left nullspace.

Example 18 (simple accounting example) If A =

 −1 0 1
1 −1 0
0 1 −1


and x =

 1
2
−3

, then y =

 2
0
3

 + k

 1
1
1

 and any k ≥ 0 satisfies

Ay = x and y ≥ 0. Hence, there exists no separating plane based on λ.

On the other hand, suppose A =

 −1 0 −1
1 −1 0
0 1 1

. Now, y =

 2
0
−3

+

k

 1
1
−1

 and no k satisfies Ay = x and y ≥ 0. Any number of λs exist.
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For example, λ =

 0
0
1

 produces ATλ =

 0
1
1

 ≥ 0 and λTx = −3 < 0.

Hence, any λ =

 0
0
1

+k

 1
1
1

 (drawing on the left nullspace of A) where
k > −1 satisfies the theorem’s alternative.
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Appendix I
Quantum information

Quantum information follows from physical theory and experiments. Un-
like classical information which is framed in the language and algebra of
set theory, quantum information is framed in the language and algebra of
vector spaces. To begin to appreciate the difference, consider a set versus
a tuple (or vector). For example, the tuple

[
1 1

]
is different than the

tuple
[

1 1 1
]
but the sets, {1, 1} and {1, 1, 1} are the same as set {1}.

Quantum information is axiomatic. Its richness and elegance is demon-
strated in that only four axioms make it complete.1

I.1 Quantum information axioms

I.1.1 The superposition axiom

A quantum unit (qubit) is specified by a two element vector, say
[
α
β

]
,

with |α|2 + |β|2 = 1.

1Some argue that the measurement axiom is contained in the transformation ax-
iom, hence requiring only three axioms. Even though we appreciate the merits of the
argument, we’ll proceed with four axioms. Feel free to count them as only three if you
prefer.
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Let |ψ〉 ≡
[
α
β

]
= α |0〉 + β |1〉,2 〈ψ| =

[
α
β

]†
where † is the adjoint

(conjugate transpose) operation.

I.1.2 The transformation axiom

A transformation of a quantum unit is accomplished by unitary (length-
preserving) matrix multiplication. The Pauli matrices provide a basis of
unitary operators.

I =

[
1 0
0 1

]
X =

[
0 1
1 0

]
Y =

[
0 −i
i 0

]
Z =

[
1 0
0 −1

]

where i =
√
−1. The operations work as follows: I

[
α
β

]
=

[
α
β

]
,X
[
α
β

]
=[

β
α

]
, Y

[
α
β

]
= −

[
βi
αi

]
, and Z

[
α
β

]
= −

[
α
β

]
. Other useful sin-

gle qubit transformations are H = 1√
2

[
1 1
1 −1

]
and Θ =

[
eiθ 0
0 1

]
.

Examples of these transformations in Dirac notation are3

H |0〉 =
|0〉+ |1〉√

2
; H |1〉 =

|0〉 − |1〉√
2

Θ |0〉 = eiθ |0〉 ; Θ |1〉 = |1〉

I.1.3 The measurement axiom

Measurement occurs via interaction with the quantum state as if a linear
projection is applied to the quantum state.4 The set of projection matrices

2Dirac notation is a useful descriptor, as |0〉 =
[
1
0

]
and |1〉 =

[
0
1

]
.

3A summary table for common quantum operators expressed in Dirac notation is
provided in section I.2.

4This is a compact way of describing measurement. However, conservation of infor-
mation (a principle of quantum information) demands that operations be reversible.
In other words, all transformations (including interactions to measure) be unitary –
projections are not unitary. However, there always exist unitary operators that pro-
duce the same post-measurement state as that indicated via projection. Hence, we treat
projections as an expedient for describing measurement.
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are complete as they add to the identity matrix.∑
m
M†mMm = I

where M†m is the adjoint (conjugate transpose) of projection matrix Mm

The probability of a particular measurement occurring is the squared ab-
solute value of the projection. (An implication of the axiom not explicitly
used here is that the post-measurement state is the projection appropriately
normalized; this effectively rules out multiple measurement.)

For example, let the projection matrices beM0 = |0〉 〈0| =
[

1 0
0 0

]
and

M1 = |1〉 〈1| =
[

0 0
0 1

]
. Note thatM0 projects onto the |0〉 vector andM1

projects onto the |1〉 vector. Also note that M†0M0 +M†1M1 = M0 +M1 =
I. For |ψ〉 = α |0〉 + β |1〉, the projection of |ψ〉 onto |0〉 is M0 |ψ〉. The
probability of |0〉 being the result of the measurement is 〈ψ|M0 |ψ〉 = |α|2.

I.1.4 The combination axiom

Qubits are combined by tensor multiplication. For example, two |0〉 qubits

are combined as |0〉 ⊗ |0〉 =


1
0
0
0

 denoted |00〉. It is often useful to trans-

form one qubit in a combination and leave another unchanged; this can
also be accomplished by tensor multiplication. Let H1 denote a Hadamard
transformation on the first qubit. Then applied to a two qubit system,

H1 = H ⊗ I = 1√
2


1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1

 and H1 |00〉 = |00〉+|10〉√
2

.

Another important two qubit transformation is the controlled not oper-
ator,

Cnot =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The controlled not operator flips the target, second qubit, if the control, first
qubit, equals |1〉 and otherwise leaves the target unchanged: Cnot |00〉 =
|00〉, Cnot |01〉 = |01〉, Cnot |10〉 = |11〉, and Cnot |11〉 = |10〉,
Entangled two qubit states or Bell states are defined as follows,
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|β00〉 = Cnot H1 |00〉 =
|00〉+ |11〉√

2

and more generally,

∣∣βij〉 = Cnot H1 |ij〉 for i, j = 0, 1

The four two qubit Bell states form an orthonormal basis.
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I.2 Summary of quantum "rules"

Below we tabulate two qubit quantum operator rules. The column heading
indicates the initial state while the row value corresponding the operator
identifies the transformed state. Of course, the same rules apply to one
qubit (except Cnot) or many qubits, we simply have to exercise care to
identify which qubit is transformed by the operator (we continue to denote
the target qubit via the subscript on the operator).

operator |00〉 |01〉 |10〉 |11〉

I1 or I2 |00〉 |01〉 |10〉 |11〉

X1 |10〉 |11〉 |00〉 |01〉

X2 |01〉 |00〉 |11〉 |10〉

Z1 |00〉 |01〉 − |10〉 − |11〉

Z2 |00〉 − |01〉 |10〉 − |11〉

Y1 i |10〉 i |11〉 −i |00〉 −i |01〉

Y2 i |01〉 −i |00〉 i |11〉 −i |10〉

H1
|00〉+|10〉√

2

|01〉+|11〉√
2

|00〉−|10〉√
2

|01〉−|11〉√
2

H2
|00〉+|01〉√

2

|00〉−|01〉√
2

|10〉+|11〉√
2

|10〉−|11〉√
2

Θ1 eiθ |00〉 eiθ |01〉 |10〉 |11〉

Θ2 eiθ |00〉 |01〉 eiθ |10〉 |11〉

Cnot |00〉 |01〉 |11〉 |10〉

common quantum operator rules
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I.3 Observables and expected payoffs

Measurements involve real values drawn from observables. To ensure mea-
surements lead to real values, observables are also represented by Hermitian
matrices. A Hermitian matrix is one in which the complex conjugate of the
matrix equals the original matrix, M† = M . Hermitian matrices have real
eigenvalues and eigenvalues are the values realized via measurement. Sup-
pose we are working with observable M in state |ψ〉 where

M =


λ1 0 0 0
0 λ2 0 0
0 0 λ3 0
0 0 0 λ4


= λ1 |00〉 〈00|+ λ2 |01〉 〈01|+ λ3 |10〉 〈10|+ λ4 |11〉 〈11|

The expected payoff is

〈M〉 = 〈ψ|M |ψ〉
= λ1 〈ψ| 00〉 〈00|ψ〉+ λ2 〈ψ| 01〉 〈01|ψ〉

+λ3 〈ψ| 10〉 〈10|ψ〉+ λ4 〈ψ| 11〉 〈11|ψ〉

In other words, λ1 is observed with probability 〈ψ| 00〉 〈00|ψ〉, λ2 is ob-
served with probability 〈ψ| 01〉 〈01|ψ〉, λ3 is observed with probability 〈ψ| 10〉 〈10|ψ〉,
and λ4 is observed with probability 〈ψ| 11〉 〈11|ψ〉.
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I.4 Density operators and quantum entropy

To this point we’ve focused on pure states. How do we proceed if our state
of knowledge indicates a mixture of states (that is, a probability weighted
average of states)? Density operators supply the frame for mixed as well as
pure states. A density operator is defined as

ρ =

n∑
i=1

pi |ψi〉 〈ψi|

where the trace (sum of the diagonal elements) equals one, tr (ρ) = 1.
For density operator ρ the expected value associated with observable M =∑n
k=1 λk |k〉 〈k| (via spectral decomposition where |k〉 is an orthonormal

basis) is 〈M〉 = tr (ρM) = tr (Mρ).
This follows as the probability of observing λk equals

Pr (λk) = 〈k| ρ |k〉 =

n∑
i=1

pi 〈k|ψi〉 〈ψi| k〉

and useful properties of the trace.

tr (BA) = tr (AB)

To see this, recognize (AB)ik =
∑
j aijbjk then tr (AB) =

∑
i,j aijbji and

tr (BA) =
∑
i,j bjiaij which is the same as

∑
i,j aijbji. Now, let B ≡ |ψ〉 〈ψ|

tr (AB) = tr (A |ψ〉 〈ψ|)
=

∑
i

〈i|A |ψ〉 〈ψ| i〉

= 〈ψ|A |ψ〉

where |i〉 is an orthonormal basis for |ψ〉 with first element |ψ〉.5 The second
line implements tr (AB) =

∑
i,j aijbji while the third line follows from

orthogonality of the basis for |ψ〉, that is, 〈ψ| i〉 is either 0 or 1.

5Notice for a pure state |ψ〉, 〈ψ|A |ψ〉 = 〈A〉|ψ〉, the expected value of the observable
when the system is in state |ψ〉 equals tr (A |ψ〉 〈ψ|).
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Then, applying the first result followed by the third result in reverse and
repeating based on the second result we have

〈M〉 =

n∑
k=1

Pr (λk)λk

=

n∑
k=1

n∑
i=1

pi 〈k|ψi〉 〈ψi| k〉λk

=

n∑
k=1

〈k| ρ |k〉λk

= tr (Mρ)

=
n∑
k=1

n∑
i=1

pi 〈ψi| k〉 〈k|ψi〉λk

=

n∑
i=1

pi 〈ψi|M |ψi〉

= tr (ρM)

Consider an example. Suppose

ρ =

[
0.4 0
0 0.6

]
= 0.4

[
1
0

] [
1 0

]
+ 0.6

[
0
1

] [
0 1

]
and

M =

[
1 −2
−2 1

]
= 3

[
1√
2

− 1√
2

] [
1√
2
− 1√

2

]
− 1

[
1√
2

1√
2

] [
1√
2

1√
2

]

Then,

Pr (λ = 3) =
[

1√
2
− 1√

2

] [
0.4 0
0 0.6

] [ 1√
2

− 1√
2

]

= 0.4
[

1√
2
− 1√

2

] [
1
0

] [
1 0

] [ 1√
2

− 1√
2

]

+0.6
[

1√
2
− 1√

2

] [ 0
1

] [
0 1

] [ 1√
2

− 1√
2

]

=
1

2
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and

Pr (λ = −1) =
[

1√
2

1√
2

] [ 0.4 0
0 0.6

][ 1√
2

1√
2

]

= 0.4
[

1√
2

1√
2

] [
1
0

] [
1 0

] [ 1√
2

1√
2

]

+0.6
[

1√
2

1√
2

] [ 0
1

] [
0 1

] [ 1√
2

1√
2

]

=
1

2

Hence, the expected value for the observable M is

〈M〉 =

2∑
k=1

Pr (λk)λk

=
1

2
3 +

1

2
(−1) = 1

= tr (ρM) = tr (Mρ)

=

[
0.4 −0.8
−1.2 0.6

]
=

[
0.4 −1.2
−0.8 0.6

]
= 1

or

〈M〉 =
∑
i,j

pj 〈i|M |ψ〉 〈ψ| i〉

= 0.4
[

1 0
] [ 1 −2
−2 1

] [
1
0

] [
1 0

] [ 1
0

]
+0.4

[
0 1

] [ 1 −2
−2 1

] [
1
0

] [
1 0

] [ 0
1

]
0.6
[

1 0
] [ 1 −2
−2 1

] [
0
1

] [
0 1

] [ 1
0

]
+0.6

[
0 1

] [ 1 −2
−2 1

] [
0
1

] [
0 1

] [ 0
1

]
=

∑
j

pj 〈ψ|M |ψ〉

= 0.4
[

1 0
] [ 1 −2
−2 1

] [
1
0

]
+0.6

[
0 1

] [ 1 −2
−2 1

] [
0
1

]
= 0.4 + 0.6 = 1
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I.4.1 Quantum entropy

von Neumann defines quantum entropy as

S = −tr (ρ log ρ)

For pure states, ρ is a Hermitian matrix whose logarithm (discussed earlier)
involves its spectral decomposition ρ = QΛQT where Λ has one eigenvalue
equal to unity and the remainder equal to zero. Hence, log ρ = Q log ΛQT =
0 (by convention, 0 log 0 = 0) so that von Neumann entropy is zero for pure
states.
On the other hand, for mixed states spectral decomposition of ρ is∑n
j=1 λj |j〉 〈j|. This involves nonzero eigenvalues so that

S = −tr (ρ log ρ)

= −tr

 n∑
j=1

λj |j〉 〈j|
n∑
j=1

log (λj) |j〉 〈j|


= −tr

 n∑
j=1

λj log (λj) |j〉 〈j| |j〉 〈j|


= −tr

 n∑
j=1

λj log (λj) |j〉 〈j|


= −

n∑
i=1

λi log λi

The latter result follows from equality of the sum of the eigenvalues and
the trace of a matrix.

I.5 Some trigonometric identities

Most trigonometric identities follow directly from Euler’s equation:

e±iθ = cos θ ± i sin θ

Remark 1 cos2 θ + sin2 θ = 1

Proof.

eiθe−iθ = e0 = 1

(cos θ + i sin θ) (cos θ − i sin θ) = cos2 θ + i cos θ sin θ − i cos θ sin θ + sin2 θ

= cos2 θ + sin2 θ
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Remark 2 1−cos θ
2 = sin2 θ

2

Proof.

2−
(
eiθ + e−iθ

)
4

=
2− 2 cos θ

4
=

1− cos θ

2

2−
[(
e
iθ
2

)2

+
(
e−

iθ
2

)2
]

4
=

2−
[
2− 4 sin2 θ

2

]
4

= sin2 θ

2

Details related to the second line are below.

(
e
iθ
2

)2

=

(
cos

θ

2
+ i sin

θ

2

)2

= cos2 θ

2
− sin2 θ

2
+ 2i cos

θ

2
sin

θ

2

(
e−

iθ
2

)2

=

(
cos

θ

2
− i sin

θ

2

)2

= cos2 θ

2
− sin2 θ

2
− 2i cos

θ

2
sin

θ

2

(
e
iθ
2

)2

+
(
e−

iθ
2

)2

= 2 cos2 θ

2
− 2 sin2 θ

2

= 2− 4 sin2 θ

2

Remark 3 1−cos θ1 cos θ2
2 = cos2 θ1

2 sin2 θ2
2 + sin2 θ1

2 cos2 θ2
2

Proof. From the two preceding identities

1− cos θ

2
= sin2 θ

2
= 1− cos2 θ

2

and

cos θ = 1− 2 sin2 θ

2

= 2 cos2 θ

2
− 1
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Therefore,

1− cos θ1 cos θ2

2
=

1−
(
1− 2 sin2 θ1

2

) (
2 cos2 θ2

2 − 1
)

2

=
1−

(
2 cos2 θ2

2 − 2 sin2 θ1
2 2 cos2 θ2

2 − 1 + 2 sin2 θ1
2

)
2

= − cos2 θ2

2
+ 2 sin2 θ1

2
cos2 θ2

2
+ 1− sin2 θ1

2

= cos2 θ2

2

(
2 sin2 θ1

2
− 1

)
+ cos2 θ1

2

= cos2 θ2

2

(
2 sin2 θ1

2
− cos2 θ1

2
− sin2 θ1

2

)
+ cos2 θ1

2

= cos2 θ2

2

(
sin2 θ1

2
− cos2 θ1

2

)
+ cos2 θ1

2

= cos2 θ2

2
sin2 θ1

2
− cos2 θ2

2
cos2 θ1

2
+ cos2 θ1

2

= sin2 θ1

2
cos2 θ2

2
+ cos2 θ1

2

(
1− cos2 θ2

2

)
= cos2 θ1

2
sin2 θ2

2
+ sin2 θ1

2
cos2 θ2

2

Remark 4 sin 2θ = 2 cos θ sin θ

Proof.

ei2θ − e−i2θ
2i

=
cos 2θ + i sin 2θ − (cos 2θ − i sin 2θ)

2i

=
2i sin 2θ

2i
= sin 2θ(

eiθ
)2 − (e−iθ)2

2i
=

(cos θ + i sin θ)
2 − (cos θ − i sin θ)

2

2i

=
cos2 θ + 2i cos θ sin θ − sin2 θ −

(
cos2 θ − 2i cos sin θ − sin2 θ

)
2i

=
4i cos θ sin θ

2i
= 2 cos θ sin θ
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Appendix J
Common distributions

To try to avoid confusion, we list our descriptions of common multivariate
and univariate distributions and their kernels. Others may employ varia-
tions on these definitions.
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Multivariate
distributions

and their support

Density f (·) functions
and their kernels

conjugacy

Gaussian (normal)
x ∈ Rk
µ ∈ Rk

Σ ∈ Rk×k
positive definite

f (x;µ,Σ) = 1
(2π)k/2|Σ|1/2

×e− 1
2 (x−µ)TΣ−1(x−µ)

∝ e− 1
2 (x−µ)TΣ−1(x−µ)

conjugate prior for
mean of multi-

normal distribution

Student t
x ∈ Rk
µ ∈ Rk

Σ ∈ Rk×k
positive definite

f (x; ν, µ,Σ)

= Γ[(ν+k)/2]

Γ( ν2 )(νπ)k/2|Σ|1/2

×
[
1 + (x−µ)TΣ−1(x−µ)

ν

]− ν+k2
∝
[
1 + (x−µ)TΣ−1(x−µ)

ν

]− ν+k2
marginal posterior
for multi-normal
with unknown
mean and
variance

Wishart
W ∈ Rk×k

positive definite
S ∈ Rk×k

positive definite
ν > k − 1

f (W ; ν, S) = 1

2νk/2|S|ν/2Γk( ν2 )

× |W |
ν−k−1

2 e−
1
2Tr(S

−1W)

∝ |W |
ν−k−1

2 e−
1
2Tr(S

−1W)

see inverse
Wishart

Inverse Wishart
W ∈ Rk×k

positive definite
S ∈ Rk×k

positive definite
ν > k − 1

f
(
W ; ν, S−1

)
= |S|ν/2

2νk/2Γk( ν2 )

× |W |−
ν+k+1

2 e−
1
2Tr(SW

−1)

∝ |W |−
ν+k+1

2 e−
1
2Tr(SW

−1)

conjugate prior for
variance of multi-
normal distribution

Γ (n) = (n− 1)!, for n a positive integer
Γ (z) =

∫∞
0
tz−1e−tdt

Γk
(
ν
2

)
= πk(k−1)/4

k∏
j=1

Γ
(
ν+1−j

2

)
Multivariate distributions
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Univariate distributions
and their support

Density f (·) functions
and their kernels

conjugacy

Beta
x ∈ (0, 1)
α, β > 0

f (x;α, β)

= Γ(α+β)
Γ(α)Γ(β)x

α−1 (1− x)
β−1

∝ xα−1 (1− x)
β−1

beta is conjugate
prior to binomial

Binomial
s = 1.2. . . .
θ ∈ (0, 1)

F (s; θ)

=
(
n
s

)
θs (1− θ)n−s

∝ θs (1− θ)n−s
beta is conjugate
prior to binomial

Chi-square
x ∈ [0,∞)
ν > 0

f (x; ν)

= 1
2ν/2Γ(ν/2)

xν/2−1

exp[x/2]

∝ xν/2−1e−x/2

see scaled,
inverse chi-square

Inverse chi-square
x ∈ (0,∞)
ν > 0

f (x; ν)

= 1
2ν/2Γ(ν/2)

exp[−1/(2x)]
xν/2+1

∝ x−ν/2−1e−1/(2x)

see scaled,
inverse chi-square

Scaled, inverse
chi-square
x ∈ (0,∞)
ν, σ2 > 0

f
(
x; ν, σ2

)
=

(σ2ν)
ν/2

2ν/2Γ(ν/2)

exp[−νσ2/(2x)]
xν/2+1

∝ x−ν/2−1e−νσ
2/(2x)

conjugate prior for
variance of a

normal distribution

Exponential
x ∈ [0,∞)
λ > 0

f (x;λ)
= λ exp [−λx]
∝ exp [−λx]

gamma is
conjugate prior
to exponential

Extreme value (logistic)
x ∈ (−∞,∞)

−∞ < µ <∞, s > 0

f (x;µ, s)

= exp[−(x−µ)/s]

s(1+exp[−(x−µ)/s])2

∝ exp[−(x−µ)/s]

(1+exp[−(x−µ)/s])2

posterior for
Bernoulli prior
and normal
likelihood

Gamma
x ∈ [0,∞)
α, γ > 0

f (x;α, γ)

= xα−1 exp[−x/γ]
Γ(α)γα

∝ xα−1 exp [−x/γ]

gamma is
conjugate prior
to exponential
and others

Inverse gamma
x ∈ [0,∞)
α, γ > 0

f (x;α, γ)

= x−α−1 exp[−γ/x]
Γ(α)γ−α

∝ x−α−1 exp [−γ/x]

conjugate prior for
variance of a

normal distribution

Gaussian (normal)
x ∈ (−∞,∞)

−∞ < µ <∞, σ > 0

f (x;µ, σ)

= 1√
2πσ

exp
[
− (x−µ)2

2σ2

]
∝ exp

[
− (x−µ)2

2σ2

] conjugate prior for
mean of a

normal distribution

Student t
x ∈ (−∞,∞)
µ ∈ (−∞,∞)
ν, σ > 0

f (x; ν, µ, σ) =
Γ( ν+12 )
√
νπΓ( ν2 )

×
(

1 + 1
ν

(x−µ)2

σ2

)−( ν+12 )

∝
(

1 + 1
ν

(x−µ)2

σ2

)−( ν+12 )

marginal posterior
for a normal with
unknown mean
and variance

Pareto
x ≥ x0

α, x0 > 0

f (x;α, x0) =
αxα0
xα+1

∝ 1
xα+1

conjugate prior for
unknown bound
of a uniform

Univariate distributions


