
Appendix A
Asymptotic theory

Approximate or asymptotic results are an important foundation of statistical in-
ference. Some of the main ideas are discussed below. The ideas center around the
fundamental theorem of statistics, laws of large numbers (LLN), and central limit
theorems (CLT). The discussion includes definitions of convergence in probabil-
ity, almost sure convergence, convergence in distribution and rates of stochastic
convergence.
The fundamental theorem of statistics states that if we sample randomly with

replacement from a population, the empirical distribution function is consistent
for the population distribution function (Davidson andMacKinnon [1993], p. 120-
122). The fundamental theorem sets the stage for the remaining asymptotic theory.

A.1 Convergence in probability (laws of large
numbers)

Definition A.1 Convergence in probability.

xn converges in probability to constant c if lim
n!"

Pr (|xn ! c| > !) = 0 for all

! > 0. This is written p lim (xn) = c.

A frequently employed special case is convergence in quadratic mean.

Theorem A.1 Convergence in quadratic mean (or mean square).

If xn has mean µn and variance "
2
n such that ordinary limits of µn and "

2
n are c

and 0, respectively, then xn converges in mean square to c and p lim (xn) = c.

A proof follows from Chebychev’s Inequality.
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414 Appendix A. Asymptotic theory

Theorem A.2 Chebychev’s Inequality.

If xn is a random variable and cn and ! are constants then

Pr (|xn ! cn| > !) " E
!
(xn ! cn)

2
"
/!2

A proof follows from Markov’s Inequality.

Theorem A.3 Markov’s Inequality.

If yn is a nonnegative random variable and # is a positive constant then

Pr (yn # #) " E [yn] /#

Proof.

E [yn] = Pr (yn < #)E [yn | yn < #] + Pr (yn # #)E [yn | yn # #]

Since yn # 0 both terms are nonnegative.
Therefore, E [yn] # Pr (yn # #)E [yn | yn # #].
Since E [yn | yn # #] must be greater than #, E [yn] # Pr (yn # #) #.

Proof. To prove Theorem A.2, let yn = (xn ! c)
2 and # = !2 then

(xn ! c)
2
> #

implies |x! c| > !.

Proof. Now consider a special case of Chebychev’s Inequality. Let c = µn,
Pr (|xn ! µn| > !) " "2/!2. Now, if lim

n!"
E [xn] = c and lim

n!"
V ar [xn] = 0,

then lim
n!"

Pr (|xn ! µn| > !) " lim
n!"

"2/!2 = 0. The proof of Theorem A.1 is

completed by Definition A.1 p lim (xn) = µn.

We have shown convergence in mean square implies convergence in probability.

A.1.1 Almost sure convergence

Definition A.2 Almost sure convergence.

zn
as!$ z if Pr

#
lim
n!"

|zn ! z| < !
$
= 1 for all ! > 0.

That is, there is large enough n such that the probability of the joint event
Pr (|zn+1 ! z| > !, |zn+2 ! z| > !, ...) diminishes to zero.

Theorem A.4 Markov’s strong law of large numbers.

If {zj} is sequence of independent random variables with E [zj ] = µj < % and
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if for some # > 0,
E
!
|zj#µj|

1+!
"

j1+!
< % then zn ! µn converges almost surely to

0, where zn = n
#1

n%
j=1

zj and µn = n
#1

n%
j=1

µj .

This is denoted zn ! µn
as!$ 0.

Kolmogorov’s law is somewhat weaker as it employs # = 1.

Theorem A.5 Kolmogorov’s strong law of large numbers.

If {z} is sequence of independent random variables with E [zj ] = µj < %,

V ar [zj ] = "
2
j <% and

n%
j=1

!2j
j2 <% then zn ! µn

as!$ 0.

Both of the above theorems allow variances to increase but slowly enough that
sums of variances converge. Almost sure convergence states that the behavior of
the mean of sample observations is the same as the behavior of the average of the
population means (not that the sample means converge to anything specific).
The following is a less general result but adequate for most econometric appli-

cations. Further, Chebychev’s law of large numbers differs from Kinchine’s in that
Chebychev’s does not assume iid (independent, identical distributions).

Theorem A.6 Chebychev’s weak law of large numbers.

If {z} is sequence of uncorrelated random variables with E [zj ] = µj < %,

V ar [zj ] = "
2
j <%, and lim

n!"
n#2

"%
j=1

"2j <%, then zn ! µn
p!$ 0.

Almost sure convergence implies convergence in probability (but not necessarily
the converse).

A.1.2 Applications of convergence

Definition A.3 Consistent estimator.

An estimator $̂ of parameter $ is a consistent estimator iff p lim
#
$̂
$
= $.

Theorem A.7 Consistency of sample mean.

The mean of a random sample from any population with finite mean µ and finite
variance "2 is a consistent estimator of µ.

Proof. E [x̄] = µ and V ar [x̄] = !2

n , therefore by Theorem A.1 (convergence in
quadratic mean) p lim (x̄) = µ.
An alternative theorem with weaker conditions is Kinchine’s weak law of large
numbers.

Theorem A.8 Kinchine’s theorem (weak law of large numbers).

Let {xj}, j = 1, 2, ..., n, be a random sample (iid) and assume E [xj ] = µ (a

finite constant) then x̄
p!$ µ.

The Slutsky Theorem is an extremely useful result.
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Theorem A.9 Slutsky Theorem.

For continuous function g (x) that is not a function of n,

p lim (g (xn)) = g (p lim (xn))

A proof follows from the implication rule.

Theorem A.10 The implication rule.

Consider events E and Fj , j = 1, ..., k, such that E & 'j=1,kFj .

Then Pr
&
Ē
'
"

k%
j=1

Pr
&
F̄j
'
.

Notation: Ē is the complement to E, A & B means event B implies event A
(inclusion), and A 'B ( AB means the intersection of events A and B.

Proof. A proof of the implication rule is from Lukacs [1975].
1. Pr (A )B) = Pr (A) + Pr (B)! Pr (AB).
2. Pr

&
Ā
'
= 1! Pr (A).

from 1

3. Pr (A )B) " Pr (A) + Pr (B)

4. Pr ()j=1,"Aj) "
k%
j=1

Pr (Aj)

1 and 2 implyPr (AB) = Pr (A)!Pr (B)+1!Pr (A )B). Since 1!Pr (A )B) #
0, we obtain

5. Pr (AB) # Pr (A)! Pr
&
B̄
'
= 1! Pr

&
Ā
'
! Pr

&
B̄
'
(Boole’s Inequality).

Pr ('jAj) # 1! Pr
&
Ā1
'
! Pr

&
'j=2,"Aj

'
= 1! Pr (A1)! Pr

&
)j=2,"Āj

'
.

This inequality and 4 imply

6. Pr ('j=1,kAj) # 1!
k%
j=1

Pr
&
Āj
'
(Boole’s Generalized Inequality).

5 can be rewritten as

7. Pr
&
Ā
'
+ Pr

&
B̄
'
# 1! Pr (AB) = Pr

&
AB

'
= Pr

&
Ā ) B̄

'
.

Now let C be an event implied by AB, that is C & AB, then C̄ * Ā ) B̄ and

8. Pr
&
C̄
'
" Pr

&
Ā ) B̄

'
.

Combining 7 and 8 obtains
The Implication Rule.

Let A, B, and C be three events such that C & AB, then
Pr
&
C̄
'
" Pr

&
Ā
'
+ Pr

&
B̄
'
.
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Proof. Slutsky Theorem (White [1984])
Let gj + g. For every ! > 0, continuity of g implies there exists # (!) > 0 such that
if |xnj (w)! xj | < # (!), j = 1, ..., k, then |gj (xn (w))! gj (x)| < !. Define
events

Fj ( [w : |xnj (w)! xj | < # (!)]
and

E ( [w : |gj (xnj (w))! gj (x)| < !]

Then E & 'j=1,kFj , by the implication rule, leads to Pr
&
Ē
'
"

k%
j=1

Pr
&
F̄j
'
.

Since xn
p!$ x for arbitrary % > 0 and all n sufficiently large, Pr (Fj) " %.

Thus, Pr
&
Ē
'
" k% or Pr (E) # 1 ! k%. Since Pr [E] " 1 and % is arbitrary,

Pr (E) !$ 1 as n !$ %. Hence, gj (xn (w))
p!$ gj (x). Since this holds for

all j = 1, ..., k, g (xn (w))
p!$ g (x).

Comparison of Slutsky Theoremwith Jensen’s Inequality highlights the difference
between the expectation of a random variable and probability limit.

Theorem A.11 Jensen’s Inequality.

If g (xn) is a concave function of xn then g (E [xn]) # E [g (x)].

The comparison between the Slutsky theorem and Jensen’s inequality helps ex-
plain how an estimator may be consistent but not be unbiased.1

Theorem A.12 Rules for probability limits.

If xn and yn are random variables with p lim (xn) = c and p lim (yn) = d then
a. p lim (xn + yn) = c+ d (sum rule)

b. p lim (xnyn) = cd (product rule)

c. p lim
#
xn
yn

$
= c

d if d ,= 0 (ratio rule)

IfWn is a matrix of random variables and if p lim (Wn) = ! then

d. p lim
&
W#1
n

'
= !#1 (matrix inverse rule)

IfXn and Yn are random matrices with p lim (Xn) = A and p lim (Yn) = B then

e. p lim (XnYn) = AB (matrix product rule).

A.2 Convergence in distribution (central limit
theorems)

Definition A.4 Convergence in distribution.

xn converges in distribution to random variable x with CDF F (x) if
lim
n!"

|F (xn)! F (x)| = 0 at all continuity points of F (x).

1Of course, Jensen’s inequality is exploited in the construction of concave utility functions to rep-
resent risk aversion.
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Definition A.5 Limiting distribution.

If xn converges in distribution to random variable x with CDF F (x) then F (x)

is the limiting distribution of xn; this is written xn
d!$ x.

Example A.1 tn#1
d!$ N (0, 1).

Definition A.6 Limiting mean and variance.

The limiting mean and variance of a random variable are the mean and variance

of the limiting distribution assuming the limiting distribution and its moments

exist.

Theorem A.13 Rules for limiting distributions.

(a) If xn
d!$ x and p lim (yn) = c, then xnyn

d!$ xc.

Also, xn + yn
d!$ x+ c, and

xn
yn

d!$ x
c , c ,= 0.

(b) If xn
d!$ x and g (x) is a continuous function then g (xn)

d!$ g (x) (this is
the analog to the Slutsky theorem).

(c) If yn has limiting distribution and p lim (xn ! yn) = 0, then xn has the same
limiting distribution as yn.

Example A.2 F (1, n)
d!$ &2 (1).

Theorem A.14 Lindberg-Levy Central Limit Theorem (univariate).

If x1, ..., xn are a random sample from probability distribution with finite mean µ

and finite variance "2 and x̄ = n#1
n%
t=1
xt, then

-
n (x̄! µ) d!$ N

&
0,"2

'
.

Proof. (Rao [1973], p. 127)
Let f (t) be the characteristic function ofXt ! µ.2 Since the first two moments

exist,

f (t) = 1!
1

2
"2t2 + o

&
t2
'

The characteristic function of Yn = 1$
n!

%n
i=1 (Xi ! µ) is

fn (t) =

(
f

)
t

"
-
n

*+n
=

(
1!

1

2
"2t2 + o

&
t2
'+n

2The characteristic function f (t) is the complex analog to the moment generating function

f (t) =

!
eitxdF (x)

=

!
cos (tx) dF (x) + i

!
sin (tx) dF (x)

where i =
!
"1 (Rao [1973], p. 99).
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And

log

(
1!

1

2
"2t2 + o

&
t2
'+n

= n log

(
1!

1

2
"2t2 + o

&
t2
'+n

$ !
t2

2

That is, as n$%
fn (t)$ e#

t2

2

Since the limiting distribution is continuous, the convergence of the distribution
function of Yn is uniform, and we have the more general result

lim
n!"

[FYn (xn)! " (xn)]$ 0

where xn may depend on n in any manner. This result implies that the distribution
function of Xn can be approximated by that of a normal random variable with
mean µ and variance !

2

n for sufficiently large n.

Theorem A.15 Lindberg-Feller Central Limit Theorem (unequal variances).

Suppose {x1, ..., xn} is a set of random variables with finite means µj and finite

variance "2j . Let µ̄ = n#1
n%
t=1
µt and "̄

2
n = n#1

&
"21 + "

2
2 + ...

'
. If no single

term dominates the average variance ( lim
n!"

max(!j)
n!̄n

= 0), if the average vari-

ance converges to a finite constant ( lim
n!"

"̄2n = "̄2), and x̄ = n#1
n%
t=1
xt, then

-
n (x̄! µ̄) d!$ N

&
0, "̄2

'
.

Multivariate versions apply to both; the multivariate version of the Lindberg-Levy
CLT follows.

Theorem A.16 Lindberg-Levy Central Limit Theorem (multivariate).

IfX1, ..., Xn are a random sample from multivariate probability distribution with

finite mean vector µ and finite covariance matrix Q, and x̄ = n#1
n%
t=1
xt, then

-
n
&
X̄ ! µ

' d!$ N (0, Q).

Delta method.
The “Delta method” is used to justify usage of linear Taylor series approxima-

tion to analyze distributions and moments of a function of random variables. It
combines Theorem A.9 Slutsky’s probability limit, Theorem A.13 limiting distri-
bution, and the Central Limit Theorems A.14-A.16.

Theorem A.17 Limiting normal distribution of a function.

If
-
n (zn ! µ)

d!$ N
&
0,"2

'
and if g (zn) is a continuous function not involving

n, then -
n (g (zn)! g (µ))

d!$ N
#
0, {g% (µ)}

2
"2
$
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A key insight for the Delta method is the mean and variance of the limiting dis-
tribution are the mean and variance of a linear approximation evaluated at µ,
g (zn) . g (µ) + g/ (µ) (zn ! µ).

Theorem A.18 Limiting normal distribution of a set of functions (multivariate).

If zn is aK 0 1 sequence of vector-valued random variables such that

-
n (zn ! µn)

d!$ N (0,#)

and if c (zn) is a set of J continuous functions of zn not involving n, then

-
n (c (zn)! c (µn))

d!$ N
&
0, C#CT

'

where C is a J 0 K matrix with jth row a vector of partial derivatives of jth

function with respect to zn,
"c(zn)
"zTn

.

Definition A.7 Asymptotic distribution.

An asymptotic distribution is a distribution used to approximate the true finite

sample distribution of a random variable.

Example A.3 If
-
n
,
xn#µ
!

- d!$ N (0, 1), then approximately or asymptotically

x̄n 1 N
#
µ, !

2

n

$
. This is written x̄n

d!$ N
#
µ, !

2

n

$
.

Definition A.8 Asymptotic normality and asymptotic efficiency.

An estimator .$ is asymptotically normal if
-
n
#
.$ ! $

$
d!$ N (0, V ). An esti-

mator is asymptotically efficient if the covariance matrix of any other consistent,

asymptotically normally distributed estimator exceeds n#1V by a nonnegative

definite matrix.

Example A.4 Asymptotic inefficiency of median in normal sampling.

In sampling from a normal distribution with mean µ and variance "2, both the
sample mean x̄ and median M are consistent estimators of µ. Their asymptotic

properties are x̄n
a!$ N

#
µ, !

2

n

$
and M

a!$ N
#
µ, #2

!2

n

$
. Hence, the sample

mean is a more efficient estimator for the mean than the median by a factor of

'/2 . 1.57.

This result for the median follows from the next theorem (see Mood, Graybill, and
Boes [1974], p. 257).

Theorem A.19 Asymptotic distribution of order statistics.

Let x1, ..., xn be iid random variables with density f and cumulative distribution
function F . F is strictly monotone. Let (p be a unique solution in x of F (x) = p
for some 0 < p < 1 ((p is the pth quantile). Let pn be such that npn is an integer

and n |pn ! p| is bounded. Let y
(n)
npn denote (np)th order statistic for a random

sample of size n. Then y
(n)
npn is asymptotically distributed as a normal distribution

with mean (p and variance
p(1#p)
n[f($p)]

2 .
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Example A.5 Sample median.

Let p = 1
2 (implies (p = sample median). The sample median

M
a!$ N

/
(p,

1

4n [f (1/2)]
2

0

Since ( 1
2
= µ, f

#
( 1
2

$2
=
&
2'"2

'#1
and the variance is

1
2 (

1
2 )

nf

#
$ 1
2

$2 =
#
2
!2

n , the

result asserted above.

Theorem A.20 Asymptotic distribution of nonlinear function.

If .$ is a vector of estimates such that .$ a!$ N
&
$, n#1V

'
and if c ($) is a set of J

continuous functions not involving n, then

c
#
.$
$

a!$ N
#
c ($) , n#1C ($)V C ($)

T
$

where C ($) = "c(%)

"%T
.

Example A.6 Asymptotic distribution of a function of two estimates.

Suppose b and t are estimates of ) and $ such that

(
b
t

+
a!$ N

)(
)

$

+
,

(
"&& "&%
"%& "%%

+*

We wish to find the asymptotic distribution for c = b
1#t . Let * =

&
1#% – the true

parameter of interest. By the Slutsky Theorem and consistency of the sample mean,

c is consistent for *. Let *& =
"'
"&
= 1

1#% and *% =
"'
"%
= &

(1#%)2 . The asymptotic

variance is

Asy.V ar [c] =
,
*& *%

-
#

(
*&
*%

+
= *&"&& + *%"%% + 2*&*%"&%

Notice this is simply the variance of a linear approximation .* . *+*) (b! ))+
*$ (t! $).

Theorem A.21 Asymptotic normality of MLE Theorem

MLE, $̂, for strongly asymptotically identified model represented by log-likelihood

function + ($), when it exists and is consistent for $, is asymptotically normal if
(i) contributions to log-likelihood +t (y, $) are at least twice continuously differ-
entiable in $ for almost all y and all $,
(ii) component sequences

1
D2
%%+t (y, $)

2
t=1," satisfy WULLN (weak uniform

law) on $,

(iii) component sequences {D%+t (y, $)}t=1," satisfy CLT.
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A.3 Rates of convergence

Definition A.9 Order 1/n (big-O notation).

If f and g are two real-valued functions of positive integer variable n, then the
notation f (n) = O (g (n)) (optionally as n $ %) means there exists a constant

k > 0 (independent of n) and a positive integer N such that

333 f(n)g(n)

333 < k for all

n < N . (f (n) is of same order as g (n) asymptotically).

Definition A.10 Order less than 1/n (little-o notation).
If f and g are two real-valued functions of positive integer variable n, then the

notation f (n) = o (g (n)) means the lim
n!"

f(n)
g(n) = 0 (f (n) is of smaller order

than g (n) asymptotically).

Definition A.11 Asymptotic equality.

If f and g are two real-valued functions of positive integer variable n such that

lim
n!"

f(n)
g(n) = 1, then f (n) and g (n) are asymptotically equal. This is written

f (n)
a
= g (n).

Definition A.12 Stochastic order relations.

If {an} is a sequence of random variables and g (n) is a real-valued function of
positive integer argument n, then
(1) an = op (g (n)) means lim

n!"
an
g(n) = 0,

(2) similarly, an = Op (g (n))means there is a constant k such that (for all ! > 0)

there is a positive integer N such that Pr
#333 ang(n)

333 > k
$
< ! for all n > N , and

(3) If {bn} is a sequence of random variables, then the notation an
a
= bn means

lim
n!"

an
bn
= 1.

Comparable definitions apply to almost sure convergence and convergence in dis-
tribution (though these are infrequently used).

Theorem A.22 Order rules:

O (np)±O (nq) = O
#
nmax(p,q)

$

o (np)± o (nq) = o
#
nmax(p,q)

$

O (np)± o (nq) = O
&
nmax(p,q)

'
if p # q

= o
&
nmax(p,q)

'
if p < q

O (np)O (nq) = O
&
np+q

'

o (np) o (nq) = o
&
np+q

'

O (np) o (nq) = o
&
np+q

'
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Example A.7 Square-root n convergence.

(1) If each x = O (1) has mean µ and the central limit theorem applies
n%
t=1
xt =

O (n) and
n%
t=1
(xt ! µ) = O (

-
n).

(2) Let Pr (yt = 1) = 1/2, Pr (yt = 0) = 1/2, zt = yt ! 1/2, and bn =
-
n

n%
t=1
zt. V ar [bn] = n

#1V ar [zt] = n
#1 (1/4).

-
nbn = n

# 1
2

n%
t=1
zt.

E
,-
nbn

-
= 0

and

V ar
,-
nbn

-
= 1/4

Thus,
-
nbn = O (1) which implies bn = O

#
n#

1
2

$
.

These examples represent common econometric results. That is, the average of n

centered quantities is O
#
n#

1
2

$
, and is referred to as square-root n convergence.

A.4 Additional reading

Numerous books and papers including Davidson and MacKinnon [1993, 2003],
Greene [1997], and White [1984] provide in depth review of asymptotic theory.
Hall and Heyde [1980] reviews limit theory (including laws of large numbers and
central limit theorems) for martingales.


