
 

Class Notes -- Best Depreciation Schedules:   

A Solution to an Allocation and a Statistical Problem  

1.  Introduction 

Depreciation is probably the most discussed and disputatious topic in all 
accounting.  Sydney Davidson (1957, p. 191).  
 

 Accounting for long-lived or depreciable assets is difficult to explain as 

Davidson's quote suggests.  Sometimes it is argued that depreciation should be the 

decline in value of the asset.  However, secondary markets for these assets sometimes 

don't exist and even when they do market value is ambiguous (buying and selling prices 

can be quite different).  Our objective in this note is to offer an explanation for why 

depreciation practice persists -- or more broadly, why accruals persist, why accruals are 

useful?  It is frequently asserted that financial statements should provide information that 

is useful in assessing the expected (future) cash flows of a firm.  In this note, depreciation 

is both an allocation of cost (of services of the asset) and can be a basis for efficiently 

assessing expected cash outflows related to investment. 

 The note is organized as follows.  First, the idea of steady state accounting is 

illustrated via a classic taxicab example that involves certain periodic investments.  

Second,  steady state is revisited in an uncertain world.  Third, the idea of best 

depreciation is explored in the context of a stationary (constant mean) investment 

population.  Best depreciation is defined to be the minimum variance unbiased estimate 

of the unknown periodic investment population mean; straight-line depreciation is best in 

this stationary setting.  Fourth, best depreciation is re-examined when the population 

means change (stochastically; that is, the means are subject to random shocks) through 

time.  Best depreciation is accelerated in the nonstationary setting.  Fifth, a simple 

investment problem illustrates why investors prefer minimum variance statistics -- they 
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minimize the expected opportunity costs associated with making potentially incorrect 

decisions. 
 

2.  The Question 
 
The certainty case 
 
 In some circumstances annual depreciation equals in value the annual investment.  
The simplest illustration of this is provided in Hatfield (1971, pp. 140-141).  A cab driver 
purchases a cab at the beginning of every year for $1000.  Each cab lasts four years.  At 
the end of four years, the first cab will, by hypothesis, be worn out, and new cabs 
continue to be purchased.  The same circumstances will exist at the end of the fifth year 
and at the end of each following year. This is referred to as steady state:  starting year 
four, one cab is fully depreciated and one new cab is purchased every year and the plant 
consists of four cabs.  In steady state the annual investment is $1000 and the annual 
depreciation using the straight-line method is also $1000 ($250 for each of the four cabs).  
In fact, annual investment equals annual depreciation under any depreciation method as 
long as each cab is fully depreciated over four years. 
 

    * denotes steady state 
   

Denote by It and Dept the investment and depreciation amounts in period t.  Each 
investment is assumed to have a useful life of T periods.  Steady state is both implied by 
and implies the following condition.  

 time periodic investment periodic 
depreciation charge 

book value of 
depreciable asset 

 1 $1,000 $   250 $   750 
 2 $1,000 $   500 $1,250 
 3 $1,000 $   750 $1,500 
 4* $1,000 $1,000 $1,500 
 5* $1,000 $1,000 $1,500 

 

  M* $1,000 $1,000 $1,500 
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Steady state condition:  Dept = It for all t ≥ T. 

Uncertainty case 
 
If cash outflows are uncertain or stochastic (subject to random shocks), then an 

analogous definition of steady state can be written by applying an expectations operator 
to the above condition.  Say, the investment in period t, It, is drawn from a population of 
investment opportunities that is randomly distributed with an unknown mean I t .  It can be 
expressed as:  It = I t  + et, where et is randomly distributed with mean 0 and variance ! e2 .  
The steady state condition can now be written as follows. 

Stochastic steady state condition:  E(Dept) = I t  for all t ≥ T. 

 In the nonstochastic case the book value of the asset stays the same period to 
period.  In the stochastic case, the same is true of the expected book value.  This is 
because the expected depreciation in each period is the same as expected investment.  In 
other words, the steady state condition is equivalent to depreciation being an unbiased 
estimate of the investment mean.  Suppose the example above involves uncertain 
investment amounts but whose mean is, say, $1,000.  The stochastic steady condition is 
illustrated below. 
 

    * denotes steady state 
 

 time mean of periodic 
investment 

expected value of 
periodic 

depreciation charge 

expected book value 
of depreciable asset 

 1 $1,000 $   250 $   750 
 2 $1,000 $   500 $1,250 
 3 $1,000 $   750 $1,500 
 4* $1,000 $1,000 $1,500 
 5* $1,000 $1,000 $1,500 

 

  M* $1,000 $1,000 $1,500 
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Of course, the actual depreciation amount may differ considerably from I t .  A 
measure of this dispersion is E[(Dept - I t )2].  This number is the variance associated with 
any unbiased estimate of I t .  An additional, and seemingly natural, condition to impose 
on depreciation is that this variance be made as small as possible.1   

 
Assume each investment has 0 salvage value.  Alternatively, It can be viewed as 

being net of salvage value.  The firm chooses a depreciation (rate) schedule (d1, d2,...,dT), 
di ≥ 0, i = 1,2…,T.  Each investment, say investment It, is depreciated an amount d1It in 
its first year of existence, d2It in its second year and so on till year T.  The investment is 

fully depreciated after T periods: dt

t=1

T

!  = 1.  From the Tth period on, the firm is in 

(stochastic) steady state.  The depreciation amount in period t (t ≥ T) is denoted by Dept. 

Dept = d1It + d2It-1 + ... + dTIt-T+1.   

Depreciation amounts are linear transformations of investments.  We term as 
"best" a depreciation schedule such that the resulting depreciation charge in each period 
is (1) an unbiased estimate of I t  and (2) among all unbiased estimates (that employ the 
most recent T realizations), it has minimum variance.  Deriving best depreciation 
schedules is an exercise in Gaussian estimation -- depreciation charge in each period is 
required to be the BLU (best linear unbiased) estimate of the period's unknown 
population mean of investment. 

 
Returning to the taxicab example, assume cash outflows are stochastic, i.e., it is 

not certain how much a cab will cost every period.  The questions we confront in this 
note are as follows.  Given a particular stochastic cash outflow process, what is the best 
depreciation schedule?  Does the best depreciation schedule resemble what we observe?  

 
3.  The Best Depreciation Schedule 
 
The objective is to choose the best depreciation schedule.  Recall, a best depreciation 
schedule results in Dept being an unbiased, minimum variance estimate of the unknown 

underlying population mean I t .  We present the result via a numerical example.  Assume 
T = 4. 

                                                
1  The utility of this assumption is illustrated in section 4. 
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The stationary case 

 The investment population mean, I t , is not known but the cash outflow process is  
 
     I

t
= I + e

t
.  

 
Since the population mean is constant, there is only one parameter to be estimated.  
Denote this unknown population mean by I .  The BLU estimate for this parameter 
computed at time t using the last T (= 4) investment observations is the OLS (ordinary 
least squares) solution to the following problem and ! e2  = 1. 
 

  I = Hs I  + η, where I =

It!3

It!2
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The error vector η has mean 0 and its variance-covariance matrix is the identity matrix.  
The OLS estimate for I  is ˆ 

I = (HS
T
HS )

!1
HS

T
I = (

1

4
)It + (

1

4
)It!1 + (

1

4
)It!2 + (

1

4
)It!3 .  Our goal is to 

choose a depreciation schedule, d1 through d4, such that Dept = ˆ I .  This can be 
accomplished only by setting d1 = d2 = d3 = d4 = 1/4.  The best depreciation schedule is 
straight-line.  The variance of the estimate is (HSTHS)!1 .  For our example this is 1/4, 
which is equal to the depreciation rate times ! e2  (1/4 x 1 = 1/4). 
  

The nonstationary case 

 Again, in the nonstationary case the investment population mean, I t , is not known.  
The cash outflow process is similar to that above but with the addition of (potential) 
stochastic shifts in the mean from period-to-period. 

       I
t
= I 

t
+ e

t
 

     I t+1  = I t  + εt+1,  

where ε t+1 is randomly distributed with mean 0 and variance !"
2 .  The error terms, et and 

εt', are assumed to be independent for all t and t'.  
 The nonstationarity in the population means increases the potential number of 
parameters that can be estimated; however, for our purposes we are usually only 
concerned with the most recent mean.  Hence, we'll pay particular attention to estimating 
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the most recent mean (and carry the others along as well).  These population means can 
be viewed as signals which now have to be filtered (separated) from the noise ε.  The 
BLU estimate can be found using a Kalman filter.  To see why this technique yields a 
BLU estimate, we recast the system in terms of a problem where OLS can be applied.  
The only difference is that instead of estimating only one population mean we now 
estimate the vector of population means I .  
 

The system of linear equations to be solved in our example (assume ! e2  = !"
2  = 1) 

is: 
 

It! 3 = I t!3 + et! 3

0 = I 
t! 2

! I 
t!3

! "
t!2

I
t! 2

= I 
t! 2

+ e
t! 2

0 = I t!1 ! I t!2 ! " t!1

It!1 = I t!1 + et!1

0 = I t ! I t!1 ! " t

I
t
= I 

t
+ e

t

 

 
In matrix form, I = HN I  + η, where 
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The error vector η has mean 0 and its variance-covariance matrix is the identity 

matrix.  The OLS estimate for I  is ˆ 
I = (HN

T
HN)

!1
HN

T
I.   The last element in the vector ˆ I 

t
 is 

the BLU estimate for I t .  For our example, ˆ 
I t = (

13

21
)It + (

5

21
)It!1 + (

2

21
)It!2 + (

1

21
)It!3 . Setting 

Dept = ˆ I 
t
 , implies d1 = 13/21, d2 = 5/21, d3 = 2/21, d4 = 1/21.  The best depreciation 

schedule is accelerated -- depreciation rates are higher in early years.  Note that the OLS 
weights are positive and sum to one:  13

21
+
5

21
+
2

21
+
1

21
= 1 .  The weights are valid 

depreciation rates. 
 
Fibonacci depreciation rates 
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The accelerated depreciation schedule that arises in the example deserves 

comment.  The numerators and denominators in the fractions that specify the depreciation 
schedule are Fibonacci numbers.  And the same holds for any choice of T (as long as ! e2  
= !"

2 ).  In fact, for a given T, the best depreciation schedule 
(d1,d2 ,...,dT ) = (

F2T !1

F2T
,
F2T ! 3

F2T
,...,

F1

F2T
) , where (F0,F1,F2,F3,F4,…) = (0,1,1,2,3,…) is the 

Fibonacci sequence (Ft = Ft-1 + Ft-2).  For T = 4, 

(d1,d2 ,d3 ,d4 ) = (
F7

F8
,
F5

F8
,
F3

F8
,
F1

F8
) = (

13

21
,
5

21
,
2

21
,
1

21
) ,which is what we derived using the 

Kalman filter.  The variance of ˆ 
I t  is the lower diagonal element in(H

N

T
H
N
)
!1.  For our 

example the variance of the estimate is 13/21 -- again, it is d1 times ! e2  (13/21 x 1 = 
13/21).2 

 
When the depreciation schedule is Fibonacci, another elegant number, the golden 

mean g = (1+ 5 )/2 ! 1.618, naturally arises.3  As n becomes large, the ratio of 
successive Fibonacci numbers Fn+1/Fn approaches g.  In our example, for large T, the 

depreciation rate in year one approaches 1/g, the depreciation rate in year two is 1/g3 and 
so on.4 

 
Group depreciation 

 

The same Dept charge can then be obtained by following a declining balance 

(group) depreciation schedule.  The sum of beginning book value and the investment in 

the period is depreciated using a constant group depreciation rate 1/g ≈ .618.  Note that 

declining balance depreciation results in It being depreciated at the rate of 1/g in its first 

                                                
2 If straight-line depreciation is used in this nonstationary example the variance of depreciation would be 

9/8 which is greater than the variance associated with the best depreciation schedule.  In general, the 

variance of straight-line depreciation in the nonstationary setting is 
!
e

2

T
+
1

T
2

k
2

k=1

T"1

# !$
2 .    

3  The most elegant rectangles have their sides in the ratio g to 1.  "It is said that some of the 
measurements of Greek vases, also the proportion of temples, exemplify the golden section; and one 
prominent psychologist even claimed to have proved that the pleasure experienced on viewing a 
masterpiece alleged to be constructed according to the golden section is a necessary consequence of 
the solid geometry of the rods and cones in the eye." (Bell, 1992, p. 115). 

4  
F
2T!3

F
2T

=
F
2T! 3

F
2T! 2

F
2T !2

F
2T!1

F
2T!1

F
2 T

 which approaches 
1

g3
. 
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period, at the rate of (1-1/g)(1/g) = 1/g3 in its second period and so on.5  Notice that 

reference to the assets' economic lives is not needed for group depreciation here. 

 In the nonstationary case, if ! e2  ≠ !"
2 , the depreciation schedule is no longer 

Fibonacci; however, it continues to be accelerated.  Generally stated, the best declining 
balance (group) rate is 2

1 + 1 + 4
!
e

2

!"

2

 and the variance of depreciation is equal to the rate 

times ! e2 . 

 

4.  Why minimum variance? 

  One might question why we’re interested in constructing depreciation, or more 
generally accruals, to yield the minimum variance estimate amongst all unbiased 
estimators of the mean of cash flows. Consider the valuation role of accounting.6  The 
usefulness of the minimum variance estimator is demonstrated if investment decisions 
based exclusively on accounting information yield the minimum expected opportunity 
loss.  That is, expected opportunity loss is minimized when the minimum variance 
estimate of expected free cash flows is employed to value the firm. 
 
 This goes as follows.  Opportunity losses occur when either one invests (a1) and 
the current price exceeds the (per share) value implied by the underlying (unobservable) 
mean of free cash flows.  Also, opportunity losses occur when one doesn’t invest (a2) and 

                                                
5  The equality follows, since for the golden mean 

1

g
= g ! 1 .  The succeeding period is calculated as 

follows:  1 !
1

g
!
1
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" 
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6    We're going outside of the depreciation context to illustrate that these ideas may be important for 
understanding accruals more broadly (e.g., in this context one can think of accrual 'income' as a 
statistic or estimate for expected cash flows).  Also, a similar argument can be made regarding the 
stewardship role of accounting.  For instance, if the owners believe that the world is populated by more 
and less talented managers.  Then, accounting information can help to discriminate whether a 
particular manager (or management team) belongs to the more talented or less talented poplutation and 
reward them accordingly.  Frequently, accounting information that provides a low variance estimate is 
desirable for such performance evaluation activities. 
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the (per share) value implied by the underlying (unobservable) mean of free cash flows 
exceeds the current price.7  Denote these opportunity losses as follows. 
 
     L(a1) = P - b' 
 
     L(a2) = b' - P 
 
where P = share price for the firm’s stock and b' = b

r
 (b = unobserved mean of free cash 

flows -- assumed to be a perpetuity for simplicity, and r = constant discount rate).  For 

simplicity, assume that b' conditioned on the estimator 
ˆ b 

r
 is normally distributed with 

mean 
ˆ b 

r
 and variance 1

r
2

Var[ ˆ b ].   

  
 The expected value of the opportunity loss indicates the magnitude of opporunity 
losses from investing or not investing, on average, over a number of such investment 
decisions.  This is the metric of interest to a risk neutral investor who wishes to increase 
his/her wealth.  The expected opportunity loss associated with investing (a1) is the 
expected loss P - b' given that value b' (unobserved) is less than observed price P. 
 
    EL(a1) = E[ P - b' | b' < P] 
 

To solve for EL(a1) let z = 
P ! ˆ b '

Var ˆ b '( )[ ]
1

2

 (i.e., let z be a standard normal random variable). 

Following Schlaifer (1959), EL(a1) = P ! ˆ b '! Var (ˆ b ' )[ ]
1

2 f z( )

F z( )

" 
# 
$ 

% 
& 
' 

 

 

             = P ! ˆ b '( ) + Var( ˆ b ' )[ ]
1

2 f z( )

F z( )
 

 

                                                
7  Standard valuation of the firm's stock is based on the present value of future dividends, or equivalently, 

the present value of future 'free' cash flows.  If expected free cash flows are a perpetuity (a constant 
indefinitely into the future) and discount rates are constant, then value is equal to the perpetual amount 
of expected free cash flows divided by the discount rate. 
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where F •( )  and f •( )  are the cumulative distribution function and probability density 
function, respectively, for the standard normal distribution. 
 
 Similarly, the expected opportunity loss associated with not investing (a2) is the 
expected opportunity loss from not investing (b' - P) given that value b' (unobserved) 
exceeds the observed price P. 
 

    EL(a2) = ˆ b ' !P( ) + Var( ˆ b ' )[ ]
1

2 f z( )

1 ! F z( )[ ]
 

 
 Since the minimum expected opportunity loss is found by selecting the smaller of 
EL(a1) or EL(a2) and each of these are increasing in Var[ ˆ b '], even a risk neutral investor 
prefers the minimum variance estimator.  In other words, (everything else equal) 
investors prefer that accounting provides minimum variance statistics for expected cash 
flows.  And, we've discovered that carefully constructed accruals can be minimum 
variance estimates of cash flow means. 
 
Example 

 Suppose one estimates expected periodic free cash flows (the amount of the 
perpetuity) two different ways and each way the estimate is 1 (of course, different 
estimation methods will usually produce different assessments).  However the variance of 
the first method (accelerated) is 13/21 and the variance of the second method (straight-
line) is 9/8.  Further, suppose the observed price is 9 and the discount rate is a constant 
10% per period.  Therefore, the imputed value of the stock b' based on either of these 
estimates is 10 and the stock is acquired (b' > P). 

 The expected value of the opportunity loss associated with the first method 

(accelerated) is EL(a1|acc, invest) = P ! ˆ b 'acc( ) + Var( ˆ b ' acc )[ ]
1

2 f zacc( )
F zacc( )

 ≈ 

(!1) +
13

21

.1779

.1019

" 
# 

$ 
%  = .3739.  Likewise, the expected value of the opportunity loss 

associated with the second method (straight-line) is EL(a1|SL, invest) = 

P ! ˆ b 'SL( ) + Var( ˆ b ' SL )[ ]
1
2 f zSL( )

F zSL( )
 ≈ (!1) +

9

8

.2558

.1729

" 
# 

$ 
%  = .5693.  Clearly, if one relies on 

one of the estimates to guide decisions then the opportunity loss associated with reliance 
on the estimate with smaller variance is smaller, on average. 
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5.  Conclusion 

 This note views depreciation as a joint problem of allocating historical cost and of 
constructing a statistic that conveys information of an unknown population cost 
parameter.  Both objectives are met:  investments are depreciated fully over their useful 
life and the depreciation amount in each period is an unbiased, minimum variance 
estimate of the population mean.  The depreciation schedules we observe in practice, 
straight-line and accelerated, are shown to be best in particular settings.   
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