
Structural models

Structural models depict causal relations amongst a set of variables. For
example, suppose we have a structural model of equilibrium (supply equals
demand)

q = α1p+ α2x1 + ε1

p = β1q + β2x2 + ε2

where q, quantity, and p, price, are endogenous variables and x1 and x2 are
exogenous influences on supply and demand, with ε1 and ε2 unobservable quan-
tities unrelated to the exogenous variables. As written, the model likely suffers
an omitted, correlated variable (endogeneity) problem. However, reduced form
parameters can be identified and structural parameters recovered if rank and
order conditions are satisfied.

1 Reduced form and rank condition

First, rewrite the model in reduced form by moving the endogenous components
to the left-hand side.[
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. Provided the equations on the left are lin-

early independent (α1β1 6= 1; the rank condition is satisfied), the reduced form
is identified (typically estimated via 2SLS-GLS to address the error structure
implied by simultaneity; see V ar [δ] below).[
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Since there are four reduced form parameters from which to recover the four

structural parameters, we can proceed as follows.
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This identifies the denominator (1− α1β1) so that
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Also, the variance of the unobservables for the structural model can similarly
be recovered from the variance of the reduced form model.
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The variance of the structural model can be recovered from the following linear
system of equations.
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Solving yields
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2 Order condition

Alternatively, suppose x1 = x2 = x (the order condition fails), we have only one
exogenous variable (the same variable for each equation). Then, we have only
two reduced form parameters and recovery of the four structural parameters is
out of reach. [
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The order condition is more subtle than it may appear. The zeroes in the

matrix of structural parameters,
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, are key as the order condition

says we must exclude as many exogenous variables from each equation as there
are endogenous variables (in the equation). For instance, suppose there are two
exogenous variables but both are included in the first equation.[
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The problem is we are attempting to recover five structural parameters from
four reduced form parameters. We don’t have suffi cient information as in the
case above with only one exogenous variable.1 The order condition is simply a
counting rule.

1As before, we can recover β1 from the first column of reduced form parameters but we’re
unable to untangle α1 and the remaining structural parameters.
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