
THE JOURNAL OF FINANCE • VOL. LXX, NO. 2 • APRIL 2015

The Recovery Theorem

STEVE ROSS∗

ABSTRACT

We can only estimate the distribution of stock returns, but from option prices we
observe the distribution of state prices. State prices are the product of risk aversion—
the pricing kernel—and the natural probability distribution. The Recovery Theorem
enables us to separate these to determine the market’s forecast of returns and risk
aversion from state prices alone. Among other things, this allows us to recover the
pricing kernel, market risk premium, and probability of a catastrophe and to construct
model-free tests of the efficient market hypothesis.

FINANCIAL MARKETS PRICE SECURITIES with payoffs extending out in time, and
the hope that they can be used to forecast the future has long fascinated both
scholars and practitioners. Nowhere is this more apparent than for the fixed
income markets, with an enormous literature devoted to examining the predic-
tive content of forward rates. However, with the exception of foreign exchange
and some futures markets, a similar line of research has not developed for
other markets. This absence is most notable for the equity markets.

While there exists a rich market in equity options and a well-developed theory
of how to use their prices to extract the martingale or risk-neutral probabilities
(see Cox and Ross (1976a, 1976b)), there has been a theoretical hurdle to using
these probabilities to forecast the probability distribution of future returns,
that is, real or natural probabilities. Risk-neutral returns are natural returns
that have been “risk adjusted.” In the risk-neutral measure, the expected re-
turn on all assets is the risk-free rate because the return under the risk-neutral
measure is the return under the natural measure with the risk premium sub-
tracted out. The risk premium is a function of both risk and the market’s risk
aversion, and, thus, to use risk-neutral prices to estimate natural probabilities
we have to know the risk adjustment so we can add it back in. In models with
a representative agent this is equivalent to knowing both the agent’s risk aver-
sion and the agent’s subjective probability distribution, and neither is directly
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observable. Instead, we infer them from fitting or “calibrating” market mod-
els. Unfortunately, efforts to empirically measure the aversion to risk have led
to more controversy than consensus. For example, measures of the coefficient
of aggregate risk aversion range from two or three to 500 depending on the
model and the macro data used. Additionally, financial data are less helpful
than we would like because we have a lengthy history in which U.S. stock
returns seemed to have consistently outperformed fixed income returns—the
equity premium puzzle (Mehra and Prescott (1985))—which has even given rise
to worrisome investment advice based on the view that stocks are uniformly
superior to bonds. These conundrums have led some to propose that finance
has its equivalent to the dark matter that cosmologists posit to explain their
models’ behavior for the universe when observables seem insufficient. The dark
matter of finance is the very low probability of a catastrophic event and the
impact that changes in that perceived probability can have on asset prices (see,
for example, Barro (2006) and Weitzmann (2007)). Apparently, however, such
events are not all that remote and “five sigma events” seem to occur with a
frequency that belies their supposed low probability.

When we extract the risk-neutral probabilities of such events from the prices
of options on the S&P 500, we find the risk-neutral probability of, for example,
a 25% drop in one month to be higher than the probability calculated from
historical stock returns. But since the risk-neutral probabilities are the nat-
ural probabilities adjusted for the risk premium, either the market forecasts
a higher probability of a stock decline than has occurred historically or the
market requires a very high risk premium to insure against a decline. Without
knowing which is the case, it is impossible to separate the two and infer the
market’s forecast of the event probability.

Determining the market’s forecast for returns is important for other reasons
as well. The natural expected return of a strategy depends on the risk premium
for that strategy, and, thus, it has long been argued that any tests of efficient
market hypotheses are simultaneously tests of both a particular asset pricing
model and the efficient market hypothesis (Fama (1970)). However, if we knew
the kernel, we could estimate the variation in the risk premium (see Ross
(2005)), and a bound on the variability of the kernel would limit how predictable
a model for returns could be and still not violate efficient markets. In other
words, it would provide a model-free test of the efficient market hypothesis.

A related issue is the inability to find the current market forecast of the
expected return on equities. Unable to obtain this directly from prices as we do
with forward rates,1 we are left to using historical returns and opinion polls of
economists and investors, asking them to reveal their estimated risk premiums.
It certainly does not seem that we can derive the risk premium directly from op-
tion prices because by pricing one asset (the derivative) in terms of another (the
underlying), the elusive risk premium does not appear in the resulting formula.

But all is not quite so hopeless. While quite different, the results in this paper
are in the spirit of Dybvig and Rogers (1997), who showed that if stock returns
follow a recombining tree (or diffusion), then we can reconstruct the agent’s

1 Although these too require a risk adjustment.
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utility function from an agent’s observed portfolio choice along a single path.
Borrowing their nomenclature, we call these results recovery theorems as
well. Section I presents the basic analytic framework tying the state price
density to the kernel and the natural density. Section II derives the Recovery
Theorem, which allows us to estimate the natural probability of asset returns
and the market’s risk aversion—the kernel—from the state price transition
process alone. To do so, two important nonparametric assumptions are intro-
duced in this section. Section III derives the Multinomial Recovery Theorem,
which offers an alternative route for recovering the natural distribution for
binomial and multinomial processes. Section IV examines the application of
these results to some examples and highlights important limitations of the
approach. Section V estimates the state price densities at different horizons
from S&P 500 option prices on a randomly chosen recent date (April 27, 2011),
estimates the state price transition matrix, and applies the Recovery Theorem
to derive the kernel and the natural probability distribution. We compare the
model’s estimate of the natural probability to the histogram of historical stock
returns. In particular, we shed some light on the dark matter of finance by
highlighting the difference between the odds of a catastrophe as derived from
observed state prices and the odds obtained from historical data. The analysis
of Section V is meant to be illustrative and is far from the much needed
empirical analysis, but it provides the first use of the Recovery Theorem to
estimate the natural density of stock returns. Section VI outlines a model-free
test of efficient market hypotheses. Section VII concludes the paper, and points
to future research directions.

I. The Basic Framework

Consider a discrete-time world with asset payoffs g(θ ) at time T, contingent
on the realization of a state of nature, θ ! ". From the Fundamental Theorem of
Asset Pricing (see Dybvig and Ross (1987, 2003)), no arbitrage (NA) implies the
existence of positive state space prices, that is, Arrow-Debreu (Arrow (1952),
Debreu (1952)) contingent claims prices, p(θ ) (or in general spaces, a price
distribution function, P(θ )), paying $1 in state θ and nothing in any other states.
If the market is complete, then these state prices are unique. The current value,
pg, of an asset paying g(θ ) in one period is given by

pg =
∫

g (θ ) dP (θ ) . (1)

Since the sum of the contingent claims prices is the current value of a dollar
for sure in the future, letting r(θ0) denote the riskless rate as a function of the
current state, θ0, we can rewrite this in the familiar form

pg =
∫

g (θ ) dP (θ ) = (∫ dP (θ ))
∫

g (θ )
dP (θ )

∫ dP (θ )

≡ e−r(θ0)T
∫

g (θ ) dπ∗ (θ ) ≡ e−r(θ0)T E∗ [g (θ )] = E [g (θ ) φ (θ )] , (2)
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where an asterisk denotes the expectation in the martingale measure and
where the pricing kernel, that is, the state price/probability, φ(θ ), is the Radon-
Nikodym (see Gurevich and Shilov (1978)) derivative of P(θ ) with respect to the
natural measure, which we will denote as F(θ ). With continuous distributions,
φ(θ ) = p(θ )/f(θ ), where f(θ ) is the natural probability, that is, the actual or
relevant subjective probability distribution, and the risk-neutral probabilities,
are given by π∗(θ ) = p(θ)

∫ p(θ)dθ
= er(θ0)T p(θ ).

Let θi denote the current state and θ j a state one period forward. We assume
that this is a full description of the state of nature, including the stock price
itself and other information that is pertinent to the future evolution of the
stock market index, and thus the stock price can be written as S(θi). From the
forward equation for the martingale probabilities we have

Q(θi, θ j, T ) =
∫

θ

Q(θi, θ, t)Q(θ, θ j, T − t)dθ, (3)

where Q
(
θi, θ j, T

)
is the forward martingale probability transition function for

going from state θi to state θ j in T periods and where the integration is over
the intermediate state θ at time t. Notice that the transition function depends
on the time interval and is independent of calendar time.

This is a very general framework that allows for many interpretations. For
example, the state could be composed of parameters that describe the motion
of the process, for example, the volatility of returns, σ , as well as the current
stock price, S, that is, θ = (S,σ ). If the distribution of martingale returns is
determined only by the volatility, then a transition could be written as a move
from θi =(S,σ ) to θ j =

(
S (1 + R) , σ ′) where R is the rate of return and

Q(θi, θ j, t) = Q((S, σ ), (S(1 + R), σ ′), t). (4)

To simplify notation we use state prices rather than the martingale probabil-
ities so that we do not have to be continually correcting for the interest factor.
Defining the state prices as

P(θi, θ j, t, T ) ≡ e−r(θi )(T −t) Q(θi, θ j, T − t) (5)

and assuming a time homogeneous process where calendar time is irrelevant,
for the transition from any time t to t+1, we have

P(θi, θ j) = e−r(θi ) Q(θi, θ j). (6)

Letting f denote the natural (time-homogeneous) transition density, the ker-
nel in this framework is defined as the price per unit of probability in continuous
state spaces,

φ(θi, θ j) = p(θi, θ j)
f (θi, θ j)

, (7)

and an equivalent statement of NA is that a positive kernel exists.
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A canonical example of this framework is an intertemporal model with a
representative agent with additively time-separable preferences and a constant
discount factor, δ. We use this example to motivate our results but it is not
necessary for the analysis that follows. Letting c(θ ) denote consumption at time
t as a function of the state, over any two periods the agent seeks to maximize

max
{c(θi ),{c(θ)}θ∈"}

{U (c (θi)) + δ

∫
U (c (θ )) f (θi, θ ) dθ} (8)

subject to

c(θi) +
∫

c(θ )p(θi, θ )dθ = w.

The first-order condition for the optimum allows us to interpret the kernel
as

φ(θi, θ j) = p(θi, θ j)
f (θi, θ j)

= δU ′(c(θ j))
U ′(c(θi))

. (9)

Equation (9) for the kernel is the equilibrium solution for an economy with
complete markets in which, for example, consumption is exogenous and prices
are defined by the first-order condition for the optimum. In a multiperiod model
with complete markets and state-independent, intertemporally additive sepa-
rable utility, there is a unique representative agent utility function that sat-
isfies the above optimum condition. The kernel is the agent’s marginal rate
of substitution as a function of aggregate consumption (see Dybvig and Ross
(1987, 2003)).

Notice, too, that in this example the pricing kernel depends only on the
marginal rate of substitution between future and current consumption. This
path independence is a key element of the analysis in this paper, and the kernel
is assumed to have the form of (9), that is, it is a function of the ending state
and it depends on the beginning state only through dividing to normalize it.

DEFINITION 1: A kernel is transition independent if there is a positive function
of the states, h, and a positive constant δ such that, for any transition from θi to
θ j , the kernel has the form

φ
(
θi, θ j

)
= δ

h
(
θ j

)

h (θi)
. (10)

The intertemporally additive utility function is a common example that gen-
erates a transition-independent kernel but there are many others.2

Using transition independence we can rewrite (7) as

p
(
θi, θ j

)
= φ

(
θi, θ j

)
f
(
θi, θ j

)
= δ

h
(
θ j

)

h(θi)
f
(
θi, θ j

)
, (11)

2 For example, it is easy to show that Epstein-Zin (1989) recursive preferences also produce
a transition independent kernel. Also, see Heston (2004) who uses a similar path-independence
assumption to derive the risk-neutral probabilities from the natural probabilities.
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where h(θ ) = U ′ (c (θ )) in the representative agent model. Assuming that we
observe the state price transition function, p

(
θi, θ j

)
, our objective is to solve

this system to recover the three unknowns: the natural probability transition
function, f

(
θi, θ j

)
, the kernel, φ

(
θi, θ j

)
= δh(θ j )/h(θi), and the discount rate, δ.

Transition independence, or some variant, is necessary to allow us to separately
determine the kernel and the natural probability distribution from equation
(7). With no restrictions on the kernel, φ

(
θi, θ j

)
, or the natural distribution,

f
(
θi, θ j

)
, it would not be possible to identify them separately from knowledge

of the product alone, p
(
θi, θ j

)
. Roughly speaking, there are more unknowns on

the right-hand side of (7) than equations.
An extensive literature provides a variety of approaches to solving this prob-

lem. For example, Jackwerth and Rubinstein (1996) and Jackwerth (2000) use
implied binomial trees to represent the stochastic process. Ait-Sahalia and Lo
(2000) combine state prices derived from option prices with estimates of the
natural distribution to determine the kernel. Bliss and Panigirtzoglou (2004)
assume constant relative or absolute risk aversion preferences and estimate
the elasticity parameter by comparing the predictions of this form with histori-
cal data. Bollerslev and Tederov (2011) use high-frequency data to estimate the
premium for jump risk in a jump diffusion model and, implicitly, the kernel.
These approaches have a common feature: they use the historical distribution
of returns to estimate the unknown kernel and thereby link the historical esti-
mate of the natural distribution to the risk-neutral distribution or they make
parametric assumptions on the utility function of a representative agent (and
often assume that the distribution follows a diffusion).

In the next section, we take a different tack and show that the equilibrium
system of equations, (11), can be solved without using either historical data or
any assumptions other than a transition independent kernel.

II. The Recovery Theorem

To gain some insight into equation (11) and to position the apparatus for
empirical work, from now on we specialize it to a discrete state space model,
and, while it is not necessary, we illustrate the analysis with the representative
agent formulation

U
′

i pij = δU
′

j fij, (12)

where we can interpret

U
′

i ≡ U ′ (c (θi)) . (13)

But, more generally, U´ is any positive function of the state. Writing this in
terms of the kernel and denoting the current state θi as state i = 1,

φ j ≡ φ(θ1, θ j) = δ(U
′

j/U
′

1). (14)

We define the states from the filtration of the stock value, so that the kernel is
the projection of the kernel across the broader state space onto the more limited
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space defined by the filtration of the asset price. Notice that, while marginal
utility is monotone declining in consumption, it need not be monotone declining
in the asset value, S(θi).

Rewriting the state equations (11) in matrix form we have

DP = δFD, (15)

where P is the m × m matrix of state contingent Arrow-Debreu (1952) prices,
pij, F is the m × m matrix of the natural probabilities, fij, and D is the diagonal
matrix with the undiscounted kernel, that is, the marginal rates of substitution,
ϕj /δ, on the diagonal,

D =
(

1
U ′

1

)




U ′

1 0 0

0 U ′

i 0

0 0 U ′

m



 =





φ1 0 0

0 φi 0

0 0 φm




(

1
δ

)
. (16)

With a discrete or compact state space for prices, we have to make sure that the
model does not permit arbitrage. In a model with exogenous consumption the
absence of arbitrage is a simple consequence of an equilibrium with positive
state prices, which ensures that the carrying cost net of the dividend compen-
sates for any position that attempts to profit from the increase from the lowest
asset value or the decrease from the highest value.

Continuing with the analysis, recall that we observe the state prices, P, and
our objective is to see what, if anything, we can infer about the natural measure,
F, and the pricing kernel, that is, the marginal rates of substitution. Solving
(15) for F as a function of P, we have

F =
(

1
δ

)
DPD−1. (17)

Clearly, if we knew D, we would know F. It appears that we only have m2

equations in the m2 unknown probabilities, the m marginal utilities, and the
discount rate, δ, and this appears to be the current state of thought on this
matter. We know the risk-neutral measure but without the marginal rates of
substitution across the states, that is, the risk adjustment, there appears to be
no way to close the system and solve for the natural measure, F. Fortunately,
however, since F is a matrix whose rows are transition probabilities, it is a
stochastic matrix, that is, a positive matrix whose rows sum to one, and there
is an additional set of m constraints,

Fe = e, (18)

where e is a vector with “1” in all the entries.
Using this condition we have

Fe =
(

1
δ

)
DPD−1e = e, (19)
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or

Pz = δz, (20)

where

z ≡ D−1e. (21)

This is a characteristic root problem and offers some hope that the solution set
is discrete and not an arbitrary cone. With one further condition, the theorem
below verifies that this is so and provides us with a powerful result. From NA,
P is nonnegative and we will also assume that it is irreducible, that is, all states
are attainable from all other states in k steps. For example, if P is positive then
it is irreducible. More generally, though, even if there is a zero in the ij entry, it
could be possible to get to j in, say, two steps by going from i to k and then from
k to j or along a path with k steps. A matrix P is irreducible if there is always
some path such that any state j can be reached from any state i.3

THEOREM 1 (The Recovery Theorem): If there is NA, if the pricing matrix
is irreducible, and if it is generated by a transition independent kernel, then
there exists a unique (positive) solution to the problem of finding the natural
probability transition matrix, F, the discount rate, δ, and the pricing kernel, φ.
In other words, for any given set of state prices there is a unique compatible
natural measure and a unique pricing kernel.

Proof: Existence can also be proven directly, but it follows immediately from
the fact that P is assumed to be generated from F and D as shown above.
The problem of solving for F is equivalent to finding the characteristic roots
(eigenvalues) and characteristic vectors (eigenvectors) of P since, if we know δ

and z such that

Pz = δz, (22)

the kernel can be found from z = D−1e.
From the Perron Frobenius Theorem (see Meyer (2000)) all nonnegative irre-

ducible matrices have a unique positive characteristic vector, z, and an associ-
ated positive characteristic root, λ. The characteristic root λ = δ is the subjective
rate of time discount. Letting z denote the unique positive characteristic vector
with root λ, we can solve for the kernel as

U ′ (c (θi))
U ′ (c (θ1))

=
(

1
δ

)
φi = dii = 1

zi
. (23)

To obtain the natural probability distribution, from our previous analysis,

F =
(

1
δ

)
DPD−1 (24)

3 Notice that, since the martingale measure is absolutely continuous with respect to the natural
measure, P is irreducible if F is irreducible.
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and

fij =
(

1
δ

)
φi

φ j
pij =

(
1
δ

)
U ′

i

U ′
j
pij =

(
1
λ

)
zj

zi
pij. (25)

Q.E.D.

Notice that if the kernel is not transition independent then we have no
assurance that the probability transition matrix can be separated from the
kernel as in the proof. Notice, too, that there is no assurance that the kernel
will be monotone in the ordering of the states by, for example, stock market
values.4

COROLLARY 1: The subjective discount rate, δ, is bounded above by the largest
interest factor.

Proof: From The Recovery Theorem the subjective rate of discount, δ, is the
maximum characteristic root of the price transition matrix, P. From the Per-
ron Frobenius Theorem (see Meyer (2000)) this root is bounded above by the
maximum row sum of P. Since the elements of P are the pure contingent claim
state prices, the row sums of P are the interest factors and the maximum row
sum is the maximum interest factor. Q.E.D.

Now let’s turn to the case in which the riskless rate is the same in all states.

THEOREM 2: If the riskless rate is state independent, then the unique natu-
ral density associated with a given set of risk-neutral prices is the martingale
density itself, that is, pricing is risk-neutral.

Proof: In this case we have

Pe = γ e, (26)

where γ is the interest factor. It follows that Q = (1/γ )P is the risk-neutral
probability matrix and, as such, e is its unique positive characteristic vector
and one is its characteristic root. From Theorem 1

F =
(

1
γ

)
P. (27)

Q.E.D.

Given the apparent ease of creating intertemporal models satisfying the
usual assumptions without risk-neutrality, this result may seem strange, but it
is a consequence of having a finite irreducible process for state transition. When
we extend the recovery result to multinomial processes that are unbounded,
this is no longer the case.

4 In an earlier draft it was shown that the Recovery Theorem also holds if there is an absorbing
state.
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Before going on to implement these results, a simple extension of this ap-
proach appears not to be well known, and is of interest in its own right.

THEOREM 3: The risk-neutral density for consumption and the natural den-
sity for consumption have the single crossing property and the natural density
stochastically dominates the risk-neutral density. Equivalently, in a one-period
world, the market natural density stochastically dominates the risk-neutral
density.

Proof: From

π∗ (
θi, θj

)

f
(
θi, θj

) =
er(θi ) p

(
θi, θj

)

f
(
θi, θj

) = er(θi )φ
(
θi, θj

)
= er(θi )

δU ′ (c
(
θ j

))

U ′ (c (θi))
, (28)

we know that the ratio is declining in c
(
θ j

)
. Fixing θi, since both densities

integrate to one, defining v by er(θi )δU ′ (v) = U ′ (c (θi)), it follows that π∗ > f
for c < v and π∗ < f for c > v. This is the single crossing property and verifies
that f stochastically dominates p. In a single-period model, terminal wealth
and consumption are the same. Q.E.D.

COROLLARY 2: In a one-period world the market displays a risk premium, that
is, the expected return on the asset is greater than the riskless rate.

Proof: In a one-period world consumption coincides with the value of the
market. From stochastic dominance at any future date, T, the return in the
risk-neutral measure is

R∗ ∼ R − Z + ε, (29)

where R is the natural return, Z is strictly nonnegative and ε is mean zero
conditional on R − Z. Taking expectations we have

E[R] = r + E[Z] > r. (30)

Q.E.D.

The Recovery Theorem embodies the central intuitions of recovery and is
sufficiently powerful for the subsequent empirical analysis. However, before
leaving this section we should note that, while there are extensions to continu-
ous state spaces, the Recovery Theorem as developed here relies heavily on the
finiteness of the state space. In the next section, we take a different tack and
derive a recovery theorem when the state space is infinite and generated by a
binomial or multinomial process, and in Section IV we examine a continuous
state space example.

III. A Binomial and Multinomial Recovery Theorem

While the Recovery Theorem can be applied to a binomial or multinomial
process, doing so requires a truncation of the state space. To avoid this step and
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since such processes are so ubiquitous in finance (see Cox, Ross, and Rubinstein
(1979)), it is useful to look at them separately. Throughout this analysis the
underlying metaphorical model is a tree of height H that grows exogenously
and bears exogenous “fruit” dividends that are wholly consumed. Tree growth
is governed by a multinomial process and the state of the economy is <θi, H>,
i = 1, . . . , m. The multinomial process is state dependent and the tree grows to
ajH with probability fij. In every period the tree pays a consumption dividend
kH where k is a constant. Notice that the state only determines the growth
rate and the current dividend depends only on the height of the tree, H, and
not on the complete state, <θi, H>. The value of the tree—the market value of
the economy’s assets—is given by S = S(θi, H). Since tree height and therefore
consumption follow a multinomial process, S also follows a multinomial, but in
general jump sizes change with the state.

The marginal utility of consumption depends only on the dividend, and with-
out loss of generality we set initial U′(kH) = 1. The equilibrium equations are

pij(H) = δU ′(kaj H) fij, (31)

or, in terms of the undiscounted kernel ϕ j = U ′
j

pij(H) = δφ j fij. (32)

In matrix notation,

P = δFD, (33)

F =
(

1
δ

)
PD−1, (34)

and, since F is a stochastic matrix,

Fe =
(

1
δ

)
PD−1e = e, (35)

or

PD−1e = δe. (36)

Assuming P is of full rank, this solves for the undiscounted kernel, D, as
(

1
δ

)
D−1e = P−1e, (37)

and F is recovered as

F =
(

1
δ

)
PD−1. (38)

We can now proceed node by node and recover F and δD, but the analysis does
not recover δ and φ separately. However, taking advantage of the recombining
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feature of the process we can recover δ and φ separately. For simplicity, consider
a binomial process that jumps to a or b. The binomial is recurrent, that is, it
eventually returns arbitrarily close to any starting position, which is equivalent
to irreducibility in this setting. For a binomial, the infinite matrix has only two
nonzero elements in any row, and at a particular node we only see the marginal
price densities at that node. To observe the transition matrix we want to return
to that node from a different path. For example, if the current stock price is S
and there is no exact path that returns to S, then we can get arbitrarily close
to S along a path where the number of up (a) steps, i, and the number of down
(b) steps, n – i, satisfy

i
n − i

→ − log b
log a

(39)

for large n.
Sparing the obvious continuity analysis, we simply assume that the binomial

recurs in two steps, that is, ab = 1. At the return step from aH to H, then, since
the current state is <θa, aH>, the price of receiving one in one period is

pab (aH) = δ

(
U ′ (kH)
U ′ (kaH)

)
fab = δ

(
1
φa

)
fab. (40)

Since we have recovered δφa from equation (37) we can now solve separately
for δ and φa. The analysis is similar for the general multinomial case.

To implement recovery, if the current state is a, say, we need to know pba(H)
and pbb(H), and if there are no contingent forward markets that allow them to
be observed directly, we can compute them from current prices. The prices of
going from the current state to a or b in three steps along the paths (a,b,a) and
(a,b,b) when divided by the price of returning to the current state in two steps
by the path (a,b) are pba(H) and pbb(H), respectively. Alternatively, if we know
the current price of returning to the current state in two steps, pa·1, then

pa·1 = paa (H) pab (aH) + pab (H) pba (bH)
= δ2

[
φa faa

(
1
φa

)
(1 − faa) + φb (1 − faa)

(
1
φb

)
(1 − fbb)

]

= δ2 (1 − faa) (1 + faa − fbb) .
(41)

is an independent equation that completes the system and allows it to be solved
for δ, F, and φ.

If the riskless rate is state independent, then P has identical row sums and
if it is of full rank, then, as with the first Recovery Theorem, we must have
risk-neutrality. To see this, let

Pe = γ e. (42)

Hence,
(

1
δ

)
D−1e = P−1e =

(
1
γ

)
e, (43)
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all the marginal utilities are identical, and the natural probabilities equal the
martingale probabilities.

If P is not of full rank, while there is a solution to

Fe =
(

1
δ

)
PD−1e = e, (44)

in general there is a (nonlinear) subspace of potential solutions with dimension
equal to the rank of P, and we cannot uniquely recover the kernel and the prob-
ability matrix. As an example, consider a simple binomial process that jumps
to a with probability f. In this case P has two identical rows and recombining
gives us a total of three equations in the four unknowns δ, f, φa and φb:

pa = δφa f , (45)

pb = δφb (1 − f ) , (46)

and

pa.1 = 2δ2 f (1 − f ) , (47)

which, with positivity, has a one-dimensional set of solutions.
However, in the special case where the interest rate is state independent

even if the matrix is of less than full rank, risk-neutrality is one of the potential
solutions. We summarize these results in the following theorem.

THEOREM 4: (The Multinomial Recovery Theorem): Under the assumed condi-
tions on the process and the kernel, the transition probability matrix and the
subjective rate of discount of a binomial (multinomial) process can be recovered
at each node from a full rank state price transition matrix alone. If the transi-
tion matrix is of less than full rank, then we can restrict the potential solutions,
but recovery is not unique. If the state prices are independent of the state, then
risk-neutrality is always one possible solution.

Proof: See the analysis above preceding the statement of the theorem.

Q.E.D.

In Section V, we use the Recovery Theorem but we could also have used the
Multinomial Recovery Theorem. Which approach is preferable depends on the
availability of contingent state prices and, ultimately, is an empirical question.
Now we look at some special cases.

A. Relative Risk Aversion

An alternative approach to recovery is to assume a functional form for the
kernel. Suppose, for example, that the kernel is generated by a constant relative
risk aversion (CRRA) utility function and that we specialize the model to a
binomial with tree growth of a or b, a > b. State prices are given by

pxy (H) = φ (kH, kyH) fxy. (48)
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Hence, after the current dividend, the value of stock (the tree) is

S (a, H) = paa (H)
[
S (a, aH) + kaH

]
+ pab (H)

[
S (b, bH) + kbH

]
(49)

and

S (b, H) = pba (H)
[
S (a, aH) + kaH

]
+ pbb (H)

[
S (b, bH) + kbH

]
. (50)

Assuming CRRA,

φ (x, y) = δ
( y

x

)−γ

, (51)

this system is linear with the solution

S (x, H) = γx H, (52)

where
(

γa

γb

)

=
[

1 − δ faa1−γ −δ (1 − fa) b1−γ

−δ (1 − fb) a1−γ 1 − δ fbb1−γ

]−1 (
δ faka1−γ + δ (1 − fa) kb1−γ

δ(1 − fb)ka1−γ + δ fbkb1−γ

)

. (53)

Thus, the stock value S follows a binomial process and at the next step takes on
the values S(a,aH) or S(b,bH) depending on the current state and the transition,

S (a, H) = γaH → γaaH = S (a, aH) , or γbbH = S (b, bH) (54)

and

S (b, H) = γbH → γaaH = S (a, aH) , or γbbH = S (b, bH) . (55)

Notice, that, even if ab = 1, the binomial for S is not recombining. If it starts
at S(a,aH) and first goes up and then down, it returns to S(b,abH) = S(b,H) "
S(a,H), but, if it goes down and then up, it does return to S(a,baH)= S(a,H).

Without making use of recombination, the state price equations for this sys-
tem are given by

paa = δ faa−γ , (56)

pab = δ(1 − fa)b−γ , (57)

pba = δ(1 − fb) a−γ , (58)

and

pbb = δ fbb−γ . (59)
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Assuming state independence, fb " 1 – fa, these are four independent equations
in the four unknowns δ, γ , fa, fb, and the solution is given by

(
fa
fb

)
=

(
pab pba

paa pbb
− 1

)−1
(

pab
pbb

− 1
pba
paa

− 1

)

, (60)

γ =
−ln

(
fa

1− fa

)
+ ln

(
paa
pab

)

ln
( b

a

) , (61)

and

δ = paaaγ

fa
. (62)

This example also further clarifies the importance of state dependence. With
state independence there are only two equilibrium state equations in the three
unknowns, γ , f, and δ:

pa (H) = δfa−γ (63)

and

pa (H) = δ (1 − f ) b−γ . (64)

This cannot be augmented by recombining since, assuming ab = 1,

pa (bH) = δ f
(

1
b−γ

)
= δfbγ = δfa−γ , (65)

which is identical to the first equation. In other words, while the parametric
assumption has reduced identifying the two-element kernel to recovering a
single parameter, γ , it has also eliminated one of the equations. As we have
shown, however, assuming meaningful state dependency once again allows full
recovery.

This approach also allows for recovery if the rate of consumption is state
dependent. Suppose, for example, that consumption is ka or kb in the respective
states, a and b. The equilibrium state equations are now

paa = δ faa−γ , (66)

pab = δ(1 − fa)
(

ka

kb

)γ

b−γ , (67)

pba = δ(1 − fb)
(

kb

ka

)γ

a−γ , (68)
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and

pbb = δ fbb−γ . (69)

These are four independent equations that can be solved for the four unknowns
δ, γ , fa, and fb.

IV. An Example, Comments, and Extensions

Consider a model with a lognormally distributed payoff at time T and a
representative agent with a CRRA utility function,

U (ST ) =
S1−γ

T

1 − γ
. (70)

The future stock payoff, the consumed dividend, is lognormal,

ST = e(µ− 1
2 σ 2)T +σ

√
Tz, (71)

where the parameters are as usual and z is a unit standard normal variable.
The pricing kernel is given by

φT = e−δT U ′ (ST )
U ′ (S)

= e−δT
[

ST

S

]−γ

, (72)

where S is the current stock dividend that must be consumed at time 0.
Given the natural measure and the kernel, state prices are given by

PT (S, ST )=φT

(
ST

S

)
nT (lnST )=e−δT

[
ST

S

]−γ

n

(
lnST −

(
µ − 1

2σ 2) T

σ
√

T

)(
1

ST

)
,

(73)

where n(·) is the normal density function, or, in terms of the log of consumption,
s # ln(S) and sT # ln(ST),

PT (s, sT ) = e−δT e−γ (sT −s)n

(
sT −

(
µ − 1

2σ 2) T

σ
√

T

)

. (74)

In this model we know both the natural measure and the state price density
and our objective is to see how accurately we can recover the natural measure
and thus the kernel from the state prices alone using the Recovery Theorem.
Setting T = 1, Table I displays natural transition probability matrix, F, the
pricing kernel, and the matrix P of transition prices. The units of relative stock
movement, ST/S, are units of sigma on a grid from −5 to +5. While sigma can
be chosen as the standard deviation of the derived martingale measure from
P, we chose the current at-the-money implied volatility from option prices on
the S&P 500 index as of March 15, 2011.
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Table I
Fixed Lognormally Distributed Future Payoff and a Constant

Relative Risk Aversion(γ = 3) Pricing Kernel
The matrices below are derived from the one-period model presented in Section IV. The rows
and columns in the matrices refer to ranges for the stock price state variable, for example, three
standard deviations from the current level is 1.82. The Sigma = 0 row is the current state.

Panel A: The State Space Transition Matrix (P)

Sigmas −5 −4 −3 −2 −1 0 1 2 3 4 5

Sigmas S0\ST 0.37 0.45 0.55 0.67 0.82 1 1.22 1.49 1.82 2.23 2.72
−5 0.37 0.000 0.000 0.001 0.005 0.015 0.019 0.008 0.001 0.000 0.000 0.000
−4 0.45 0.000 0.000 0.001 0.008 0.028 0.034 0.015 0.003 0.000 0.000 0.000
−3 0.55 0.000 0.000 0.002 0.015 0.051 0.062 0.028 0.005 0.000 0.000 0.000
−2 0.67 0.000 0.000 0.003 0.028 0.092 0.113 0.051 0.008 0.001 0.000 0.000
−1 0.82 0.000 0.000 0.006 0.051 0.168 0.205 0.092 0.015 0.001 0.000 0.000
0 1 0.000 0.000 0.010 0.092 0.306 0.374 0.168 0.028 0.002 0.000 0.000
1 1.22 0.000 0.001 0.019 0.168 0.558 0.681 0.306 0.051 0.003 0.000 0.000
2 1.49 0.000 0.001 0.034 0.306 1.016 1.241 0.558 0.092 0.006 0.000 0.000
3 1.82 0.000 0.003 0.062 0.558 1.852 2.262 1.016 0.168 0.010 0.000 0.000
4 2.23 0.000 0.005 0.113 1.016 3.374 4.121 1.852 0.306 0.019 0.000 0.000
5 2.72 0.000 0.008 0.205 1.852 6.148 7.509 3.374 0.558 0.034 0.001 0.000
Kernel, φ = 20.086 11.023 6.05 3.32 1.822 1 0.549 0.301 0.165 0.091 0.05

Panel B: The Natural Probability Transition Matrix (F)

Sigmas −5 −4 −3 −2 −1 0 1 2 3 4 5

Sigmas S0\ST 0.37 0.45 0.55 0.67 0.82 1 1.22 1.49 1.82 2.23 2.72
−5 0.37 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
−4 0.45 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
−3 0.55 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
−2 0.67 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
−1 0.82 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
0 1 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
1 1.22 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
2 1.49 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
3 1.82 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
4 2.23 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000
5 2.72 0.000 0.000 0.002 0.028 0.171 0.381 0.312 0.094 0.010 0.000 0.000

With an assumed market return of 8%, and a standard deviation of 20%
we calculate the characteristic vector of P. As anticipated, there is one posi-
tive vector that exactly equals the pricing kernel shown in Table I, and the
characteristic root is e-0.02 = 0.9802, as was assumed. Solving for the natural
transition matrix, F, we have exactly recovered the posited lognormal density.

This static example fits the assumptions of the Recovery Theorem closely ex-
cept for having a continuous rather than a discrete distribution. The closeness
of the results with the actual distribution and kernel suggests that apply-
ing the theorem by truncating the tail outcomes is an appropriate approach
in this case. Notice that, since we can take the truncated portions as the
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cumulative prices of being in those regions, there is no loss of accuracy in
estimating cumulative tail probabilities.

Finding this result in a continuous space example is important since the
Recovery Theorem was proven on a discrete and, therefore, bounded state
space. To explore the impact of significantly loosening this assumption, we can
extend the example to allow for consumption growth.

Assuming that consumption follows a lognormal growth process,

ST = S0e(µ− 1
2 σ 2)T+σ

√
Tz, (75)

state prices are given by

PT (s, sT ) = e−δT e−γ (sT −s)n

(
sT − s −

(
µ − 1

2σ 2) T

σ
√

T

)

. (76)

Taking logs,

log PT (x, y) = −δT − γ (sT − s) −
(

1
2σ 2T

) (
sT − s −

(
µ − 1

2
σ 2

)
T

)2

−log
√

2πT σ, (77)

and as (sT − s) varies, state prices depend on the quadratic form

−
(

1
2σ 2T

)
(sT − s)2 −

(
γ −

(
1
σ 2

) (
µ − 1

2
σ 2

))
(sT − s)

−
(

δT +
(

T
2σ 2

)(
µ − 1

2
σ 2

)2

+ log
√

2πT σ

)

. (78)

Since the prices follow a diffusion, even if we assume that we know σ it is
not possible to extract the three parameters µ, γ , and δ from the two relevant
parameters of the quadratic,

γ −
(

1
σ 2

)(
µ − 1

2
σ 2

)
and

(

δ +
(

1
2σ 2

) (
µ − 1

2
σ 2

)2
)

T . (79)

This indeterminacy first arose with the Black-Scholes (1973) and Merton (1973)
option pricing formula and similar diffusion equations for derivative pricing in
which, with risk-neutral pricing, the risk-free interest rate is substituted for
the drift, µ, in the valuation formulas.

What happens, then, if we attempt a continuous space analogue to the Re-
covery Theorem? The analogous space characteristic equation to be solved is

∫ ∞

0
p (s, y) v (y) dy = λv (s) . (80)
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By construction v(x) = 1/U′(x) and e-δT satisfy this equation, but they are not
the unique solutions, and a little mathematics verifies that any exponential,
eαx, also satisfies the characteristic equation with characteristic value

λ(α) = e−δT e(α−γ )(µ− 1
2 σ 2)T + 1

2 σ 2T (α−γ )2
. (81)

Since α is arbitrary, this agrees with the earlier finding and the well-
established intuition that, given risk-neutral prices and even assuming that σ

is observable (as it would be for a diffusion), we cannot determine the mean
return, µ, of the underlying process.

Why, then, did we have success in finding a solution in the original static
version?5 One important difference between the two models arises when we
discretize by truncation. By truncating the process we are implicitly making
the marginal utility the same in all states beyond a threshold, which is a substi-
tute for bounding the process and the state space. A natural conjecture would
be that if the generating kernel has a finite upper bound on marginal utility
(and, perhaps, a nonzero lower bound as well), then the recovered solution will
be unique.6 Whether the kernel is generated by a representative agent with
bounded marginal utility cannot be resolved by theory alone, but a practical ap-
proach would be to examine the stability of the solution with different extreme
truncations.

A more directly relevant comparison between the two models is that in the
growth model the current state has no impact on the growth rate. When com-
bined with a CRRA kernel, the result is that state prices depend only on the dif-
ference between the future state and the current state. This makes the growth
model a close relative of the state independent binomial process examined in
the previous section. As we show, an alternative approach to aid recovery is
to introduce explicit state dependence. For example, we could model the de-
pendence of the distribution on a volatility process by taking advantage of the
observed strong empirical inverse relation between changes in volatility and
current returns. This could once again allow us to apply the Recovery Theorem
as above.7

V. Applying the Recovery Theorem

With the rich market for derivatives on the S&P 500 index and on futures on
the index, we assume that the market is effectively complete along dimensions
related to the index, that is, both value and the states of the return process.
The Recovery Theorem relies on knowledge of the martingale transition ma-
trix and, given the widespread interest in using the martingale measure for
pricing derivative securities, it is not surprising that an extensive literature

5 From (74) it is easy to see that eγ x is the unique characteristic solution.
6 The multiplicity of solutions in the continuous case was pointed out to me by Xavier Gabaix.

Carr and Yu (2012) have established recovery with a bounded diffusion and Ross (2013) has done
so with a bounded kernel.

7 An explicit example is available from the author upon request.
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Figure 1. The implied volatility surface on March 20, 2011. The surface of implied volatil-
ities on puts and calls on the S&P500 index on March 20, 2011 is drawn as a function of both
time to maturity in years (“tenor”) and the strike price divided by current price (“moneyness”).
Option prices are typically quoted in terms of implied volatilities from the Black-Scholes (1973)
and Merton (1973) formula, and are displayed here on the vertical axis. The source of the data
used in this paper is a bank over-the-counter bid/offer sheet.

estimates the martingale measure (see, for example, Rubinstein (1994), Jack-
werth and Rubinstein (1996), Jackwerth (2000), Derman and Kani (1994 and
1998), Dupire (1994), Ait-Sahalia and Lo (1998), Figlewski (2008)). We draw
on only the most basic findings of this work.

Figure 1 displays the surface of implied volatilities on S&P puts and calls, the
“volatility surface,” on March 20, 2011, drawn as a function of time to maturity,
“tenor,” and the strike. Option prices are typically quoted in terms of implied
volatilities from the Black-Scholes (1973) and Merton (1973) formula, that is,
the volatilities that when put into the model give the market premium for the
option. Note that doing so is not a statement of the validity of the Black-Scholes
(1973) and Merton (1973) model; rather, it is simply a transformation of the
market determined premiums into a convenient way to quote them. The source
of the data used in this paper is a bank over-the-counter bid/offer sheet. While
the data are in broad agreement with exchange traded options, we choose this
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source since the volume on the over-the-counter market is multiples of that on
the exchange even for at the money contracts.8

The surface displays a number of familiar features. There is a “smile” with
out-of-the-money and in-the-money options having the highest implied volatil-
ities. The shape is actually a “smirk” with more of a rise in implied volatility for
out-of-the-money puts (in-the-money calls). One explanation for this problem is
that there is an excess demand for out-of-the-money puts to protect long equity
positions relative to the expectations the market has about future volatilities.
Notice, too, that the surface has the most pronounced curvature for short dated
options and that it rises and flattens out as the tenor increases. An explanation
for this pattern is the demand for long dated calls by insurance companies that
have sold variable annuities. Whatever the merit of these explanations, these
are persistent features of the vol surface at least since the crash in 1987.

Implied volatilities are a function of the risk-neutral probabilities, the prod-
uct of the natural probabilities and the pricing kernel (that is, risk aversion
and time discounting), and as such they embody all of the information needed
to determine state prices. Since all contracts can be formed as portfolios of
options (Ross (1976a)), it is well known that from the volatility surface and the
formula for the value of a call option we can derive the state price distribution,
p(S,T) at any tenor T:

C (K, T ) =
∞∫

0

[
S − K

]+ p (S, T ) dS =
∞∫

K

[
S − K

]
p (S, T ) dS, (82)

where C(K,T) is the current price of a call option with a strike of K and a tenor
of T. Differentiating twice with respect to the strike, we obtain the Breeden
and Litzenberger (1978), result that

p (K, T ) = C ′′ (K, T ) . (83)

Numerically approximating this second derivative as a second difference
along the surface at each tenor yields the distribution of state prices looking
forward from the current state, with state defined by the return from holding
the index until T. Setting the grid size of index movements at 0.5%, the S&P
500 call options on April 27, 2011 produced the state prices reported in the
top table of Table II. The results are broadly sensible with the exception of the
relatively high implied interest rates at longer maturities, which we address
below.

To apply the Recovery Theorem, though, we need the m × m state price
transition matrix,

8 Bank for International Settlements Quarterly Review, June 2012 Statistical Annex, pages A135
and A136. While there is some lack of clarity as to the exact option terms, the notional on listed
equity index options is given as $197.6 billion of notional, and that for over-the-counter equity
options is given as $4.244 trillion.
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Table II
State Prices and Recovered Probabilities

Panel A displays the Arrow-Debreu (1952) state prices for the current values of $1 in the relevant stock price return range given in the left-hand
column at the tenors given in the top row. These are derived by taking the numerical second derivative with respect to the strikes of traded call
option prices from a bank offer sheet. The row labeled “discount factor” sums each column of the first state price matrix to obtain the implied risk-free
discount factors. Panel B is the estimated table of contingent state prices that are consistent with the given Arrow-Debreu (1952) state prices. These
are derived by applying the forward equation to find the transition matrix that best fits the Arrow-Debreu (1952) state prices subject to the constraint
that the resulting transition matrix has unimodal rows. The two top rows and two leftmost columns express the state variable in terms of both
standard deviations from the current level and the stock price.

Panel A: State Prices on April 27, 2011

Return\Tenor 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

−36% 0.005 0.023 0.038 0.050 0.058 0.064 0.068 0.071 0.073 0.075 0.076 0.076
−30% 0.007 0.019 0.026 0.030 0.032 0.034 0.034 0.035 0.035 0.035 0.034 0.034
−24% 0.018 0.041 0.046 0.050 0.051 0.052 0.051 0.050 0.050 0.049 0.048 0.046
−16% 0.045 0.064 0.073 0.073 0.072 0.070 0.068 0.066 0.064 0.061 0.058 0.056
−9% 0.164 0.156 0.142 0.128 0.118 0.109 0.102 0.096 0.091 0.085 0.081 0.076
0% 0.478 0.302 0.234 0.198 0.173 0.155 0.141 0.129 0.120 0.111 0.103 0.096
9% 0.276 0.316 0.278 0.245 0.219 0.198 0.180 0.164 0.151 0.140 0.130 0.120
20% 0.007 0.070 0.129 0.155 0.166 0.167 0.164 0.158 0.152 0.145 0.137 0.130
31% 0.000 0.002 0.016 0.036 0.055 0.072 0.085 0.094 0.100 0.103 0.105 0.105
43% 0.000 0.000 0.001 0.004 0.009 0.017 0.026 0.036 0.045 0.053 0.061 0.067
57% 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.001 0.002 0.002 0.003 0.003

Discount Factor 1.000 0.993 0.983 0.969 0.953 0.938 0.920 0.900 0.883 0.859 0.836 0.809

Panel B: The State Price Transition Matrix (P)

Sigmas −5 −4 −3 −2 −1 0 1 2 3 4 5

Sigmas S0\ST 0.64 0.70 0.76 0.84 0.91 1 1.09 1.20 1.31 1.43 1.57
−5 0.64 0.671 0.241 0.053 0.005 0.001 0.001 0.001 0.001 0.001 0.000 0.000
−4 0.70 0.280 0.396 0.245 0.054 0.004 0.000 0.000 0.000 0.000 0.000 0.000
−3 0.76 0.049 0.224 0.394 0.248 0.056 0.004 0.000 0.000 0.000 0.000 0.000

(Continued)
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Table II—Continued

Panel B: The State Price Transition Matrix (P)

Sigmas −5 −4 −3 −2 −1 0 1 2 3 4 5

−2 0.84 0.006 0.044 0.218 0.390 0.250 0.057 0.003 0.000 0.000 0.000 0.000
−1 0.91 0.006 0.007 0.041 0.211 0.385 0.249 0.054 0.002 0.000 0.000 0.000
0 1.00 0.005 0.007 0.018 0.045 0.164 0.478 0.276 0.007 0.000 0.000 0.000
1 1.09 0.001 0.001 0.001 0.004 0.040 0.204 0.382 0.251 0.058 0.005 0.000
2 1.20 0.001 0.001 0.001 0.002 0.006 0.042 0.204 0.373 0.243 0.055 0.004
3 1.31 0.002 0.001 0.001 0.002 0.003 0.006 0.041 0.195 0.361 0.232 0.057
4 1.43 0.001 0.000 0.000 0.001 0.001 0.001 0.003 0.035 0.187 0.347 0.313
5 1.57 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.032 0.181 0.875
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P = [p (i, j)] , where p (i, j) is the state i price of an Arrow-

Debreu security paying off in state j. (84)

Unfortunately, since a rich forward market for options does not exist, and we
do not directly observe P, we have to estimate it from the state price distribu-
tions at different tenors.

Currently, the system is in some particular state, c, and we observe the
current prices of options across strikes and tenors. As shown above in equation
(83), from these option prices we can extract the state prices at each future
date T,

pT (c) = 〈p (1, T ) , . . . , p (m, T )〉 . (85)

Let the stock price at time T, ST , index the states and denote the current
stock price, S0. The row of the state price transition matrix, P, corresponding
to the current state, c, is simply pc, that is, the vector of one period ahead state
prices with T = 1 in equation (85). Since our intention is illustrative, we have
ignored the potential state dependence on past returns and on other variables
such as implied volatility itself, and identified the states only by the price level.
For relatively short periods this may not be much different than if we also used
returns, since the final price over, for example, a quarter, is a good surrogate
for the price path—this is clearly a matter for further study.

To solve for the remaining elements of P, we apply the forward equation
recursively to create the sequence of m − 1 equations:

pt+1 = pt P, t = 1, . . . , m− 1, (86)

where m is the number of states. Each of the equations in (86) indicates that
the current state price for a security paying off in state j at time T + 1 is the
state price for a payment at time T in some intermediate state k multiplied
by the transition price of going from state k to state j, p(k,j), added up over all
the possible intermediate states, k. Thus, by looking at only m time periods we
have the m2 equations necessary to solve for the m2 unknown p(i,j) transition
prices.

This is a system of m2 individual equations in the m2 variables Pij , and since
we know the current prices, pt it can be solved by recursion. In an effort to
minimize the errors in the estimation of P, it was required that the resulting
state prices, the rows of P, should be unimodal.

The grid is chosen to be from −5 to +5 standard deviations with a standard
deviation of 9% per quarter. This seems to be a reasonable compromise between
fineness and coverage in the tails. We then implement the analysis above
numerically to derive the transition pricing matrix, P, by varying the choice of
P so as to minimize the sum of squared deviations between the resulting prices
and the state price vectors of Table II. The resulting forward transition price
matrix, P, is shown in Table II under the table of the state prices, pt.

The state prices in Table II should sum to the riskless interest factor. The
rates are relatively accurate out to about one year but then rise from 1.85% at
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one year to 7.93% at three years. The three-year rate is significantly higher than
three-year (swap) rates at the time and indicative of a bias in the computation
of the state prices, which impacts some subsequent results as we point out
below. This result has nothing to do with the recovery theory per se, but rather
is a consequence of the crudeness in the computation of state prices from option
prices and speaks to the critical need to do a better job at this step.

The final step applies the Recovery Theorem to the transition pricing matrix,
P, to recover the pricing kernel and the resulting natural probability (quarterly)
transition matrix shown in Table III. The kernel declines monotonically as the
stock value rises, but this need not be the case. The recovered characteristic
root, δ, the social discount rate in a representative agent model, is 1.0018.
Alternatively, if we were to use monthly data instead of quarterly observations,
the characteristic root is 0.9977, which is less than one—as it should be. This
serves as a warning about the sensitive nature of the estimation procedure.

Table IV shows the recovered natural marginal distributions at the future
dates, summary statistics for the recovered distributions, and comparable sum-
mary statistics for the historical distribution estimated by a bootstrap of S&P
500 returns from 60 years of data (1960 to 2010). Table IV also displays the
implied volatilities from the option prices on April 27, 2011. The summary
statistics display significant differences between the recovered and historical
distributions. For the recovered distribution, which is a forward-looking mea-
sure, the annual expected return at all horizons is approximately 6% per year
as compared with 10% per year for the historical measure. The recovered stan-
dard deviation, on the other hand, is comparable at about 15% per year—an
unsurprising result given the greater accuracy inherent in implied volatilities
and the fact that with diffusions they coincide, albeit with bias, more closely
with realized volatilities than do expected and realized returns. The upward
biased estimates of the risk-free interest rate beyond two years are the source
of the risk premium (and thus the Sharpe ratio) in Table IV declining and
turning negative at 2.5 years.

Notice that the at-the-money implied volatilities are significantly higher than
those derived from the recovered distribution. This is a phenomenon closely
related to the observation that implied volatilities are generally significantly
greater than realized volatility and it is not surprising that the volatilities
from the recovered distribution have a similar relation to realized volatility.
This difference is consistent with the existence of a risk premium for bearing
volatility risk, but in and of itself it is not dispositive.

Table V compares the recovered natural density and distribution with those
obtained from a bootstrap of historical data, and Figure 2 plots these densities.
Of particular interest is what the results say about the long-standing concern
with tail events. Rietz (1988) argues that a large but unobserved probability
of a catastrophe—“tail risk”—could explain the equity risk premium puzzle,
that is, the apparent dominance of stocks over bonds and related questions.
Barro (2006) lends support to this view by expanding the data set to include a
wide collection of catastrophic market drops beyond what one would see with a
single market and Weitzmann (2007) provides a deep theoretical argument in
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Table IV—Continued

Panel C: Annualized Monthly S&P 500 Returns

Mean 0.103
Sigma 0.155
Risk-free 0.055
E – r 0.049
Sharpe 0.316

Table V
The Densities and the Cumulative Distributions for the Recovered

and the Bootstrapped Natural Probabilities
(Six month horizon, bootstrap using data from 1/1/1960 to 11/30/2010)

The rows of the table correspond to ranges for the S&P 500 index for six months from the date April
27, 2011. The first and third columns are from the historical distribution obtained by bootstrapping
independent monthly return observations from the period 1960 to 2010. The second and fourth
columns display the comparable distribution results from the recovered distribution of Table IV.

Densities Distribution Functions

Range Bootstrapped Recovered Bootstrapped Recovered

−32% 0.0008 0.0120 0.0008 0.0120
−26% 0.0012 0.0103 0.0020 0.0223
−19% 0.0102 0.0250 0.0122 0.0473
−12% 0.0448 0.0438 0.0570 0.0912
−4% 0.1294 0.1242 0.1864 0.2153
0% 0.2834 0.2986 0.4698 0.5139
4% 0.3264 0.3765 0.7962 0.8904
14% 0.1616 0.1047 0.9578 0.9951
24% 0.0384 0.0047 0.9962 0.9998
35% 0.0036 0.0002 0.9998 1.0000
48% 0.0002 0.0000 1.0000 1.0000

support of fat tails. More pithily, Merton Miller observed after the 1987 crash
that 10 standard deviation events seemed to be happening every few years.

As was suggested in the introduction, tail risk is economists’ version of cos-
mologists’ dark matter. It is unseen and not directly observable but it exerts
a force that can change over time and that can profoundly influence markets.
By separating the kernel from the forward-looking probabilities embedded in
option prices, we can shed some light on the dark matter and estimate the mar-
ket’s probability of a catastrophe. As Figure 2 shows, the recovered density has
a fatter left tail than the historical distribution. Table V puts the probability
of a six-month decline in excess of 32% at 0.0008, or four in 5,000 bootstraps.
By contrast, the recovered density puts this probability at 1.2%. Similarly, the
historical probability of a decline in excess of 26% in a six-month period is 0.002
(10 times in 5,000 bootstraps) while the recovered market probability of 0.0223
is 10 times greater, at over 2%.
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Figure 2. The recovered and the bootstrapped natural densities.

This is only a first pass at applying the Recovery Theorem, and it is in-
tended to be indicative rather than conclusive. There is an enormous amount
of work to be done, starting with more carefully estimating the state price
density from option prices and then estimating the state price transition
matrix from the state price density at different horizons and strikes. Many
improvements are also required to accurately recover the kernel and the
natural measure implicit in the state prices. Such improvements could cer-
tainly alter the implications drawn from the single example analyzed in this
section.

VI. Testing the Efficient Market Hypothesis

It has long been thought that tests of efficient market hypotheses are neces-
sarily joint tests of both market efficiency and a particular asset pricing model
(see Fama (1970)). Under the hypothesized conditions of the Recovery Theo-
rem we can separate efficiency from a pricing model and to that extent we can
derive model-free tests of the efficient market hypothesis. Ross (2005) proposes
an approach to testing efficient market hypotheses that depends on finding an
upper bound to the volatility of the pricing kernel; such a bound is a simple
byproduct of recovery.
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Assume that µ is stochastic and depends on some unspecified or unobserved
conditioning information set, I. From the Hansen-Jagannathan bound (1991)
we have a lower bound on the volatility of the pricing kernel

σ (φ) ≥
(
e−rT )µ

σ
, (87)

where µ is the absolute value of the mean excess return and σ is the standard
deviation on any asset, which implies that σ (φ) is bounded from below by the
largest observed discounted Sharpe ratio.

Equivalently, this is also an upper bound on the Sharpe ratio for any invest-
ment. From the recovered marginal density function reported in Table V we can
compute the variance of the kernel, for example, one year out. The computation
is straightforward and the resulting variance is

σ 2 (φ) = 0.1065, (88)

or an annual standard deviation of

σ (φ) = 0.3264, (89)

which, ignoring the small interest factor, is the upper limit for the Sharpe ratio
for any strategy to be consistent with efficient markets. It is also a bound used
in the literature on when a deal is “too good” (see Cochrane (2000) and Bernardo
and Ledoit (2000) for a discussion of good deals, and Ross (1976a) for an early
use of the bound for asset pricing).

Alternatively (see Ross (2005)), we can decompose excess returns, xt, on an
asset or portfolio strategy according to

xt = µ (It) + εt, (90)

where the mean depends on the particular information set, I, and the residual
term is uncorrelated with I, and

σ 2 (xt) = σ 2 (µ (It)) + σ 2 (εt) ≤ E
[
µ2 (It)

]
+ σ 2 (εt) . (91)

Rearranging yields an upper bound on the R2 of the regression,

R2 = σ 2 (µ (It))
σ 2 (xt)

≤
E

[
µ2 (It)

]

σ 2 (xt)
≤ e2rT σ 2 (ϕ) , (92)

that is, the R2 is bounded above by the volatility of the pricing kernel (see Ross
(2005)). Notice that the kernel can have arbitrarily high volatility by simply
adding orthogonal noise to it, so the proper maximum to be used is the volatility
of the projection of the kernel on the stock market, and hence these are tests
on strategies that are based on stock returns and the filtration they generate.
A potential advantage of tests such as these is that they depend on the second
moments, much like the volatility tests of efficiency, and as such might be more
robust than standard t-statistic tests on coefficient.
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Using our estimate of the variance of the pricing kernel, we find that the
maximum it can contribute to the R2 of an explanatory regression is about 10%.
In other words, 10% of the annual variability of an asset return is the maximum
amount that can be attributed to movements in the pricing kernel with 90%
idiosyncratic in an efficient market. Hence, any test of an investment strategy
that uses publicly available data and has the ability to predict future returns
with R2 > 10% would be a violation of efficient markets independent of the
specific asset pricing model being used, subject to the maintained assumptions
of the Recovery Theorem. Of course, any such strategy must also overcome
transactions costs to be an implementable violation—a strategy that could not
overcome those costs would be purely of academic interest.

VII. Summary and Conclusions

NA implies the existence of positive Arrow-Debreu (1952) state prices, a
risk-neutral measure under which the expected return on any asset is the risk-
free rate, and, equivalently, the existence of a strictly positive pricing kernel
that can be used to price all assets by taking the expectation of their payoffs
weighted by the kernel. To this framework we add some additional nonpara-
metric conditions. First, we make the common assumption that the underlying
process is Markov in the state variables, and for implementation we discretized
the state space. Second, we assume that the kernel is transition independent,
that is, it is a function of the final state and depends only on the current state
as a normalization, as is the case for the marginal rate of substitution over
time for an agent with an intertemporally additively separable utility function.

In this setting, we are able to prove the Recovery Theorem, which allows
us to uniquely determine the kernel, the discount rate, future values of the
kernel, and the underlying natural probability distribution of returns from
the transition state prices alone. There is no need to use either the historical
distribution of returns or independent parametric assumptions on preferences
to find the market’s subjective distribution of future returns. Put another way,
we have a setting in which, even though risk-neutral probabilities are the
product of an unknown kernel (that is, risk aversion) and natural probabilities,
the two can be disentangled from each other.

A novel element of the approach is that it focuses on the state transition
matrix whose elements give the price of one dollar in a future state, conditional
on any other state. This is a challenge for implementation when we do not
observe the price of a dollar in a future state conditional on being in a different
state from the current one, due to the absence of appropriate contingent forward
markets. An example illustrates how to find these transition prices from the
state prices for different maturities derived from the market prices of simple
options by using a version of the forward equation for Markov processes. The
accuracy with which this can be done and the accuracy with which state prices
can be estimated from option prices will eventually determine how useful the
Recovery Theorem will be both empirically and practically. In an example we
assume that the state could be summarized by the current level of the index.
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This is clearly not the case: for example, implied volatility is also a relevant
state variable. Extending the empirical analysis to include such variables will
be important, along with gauging the extent to which this has a significant
impact. Particularly for short horizons, this remains to be explored.

Finding the limitations and appropriate extensions of the Recovery Theorem
is a rich research agenda. Several conjectured extensions to allow recovery
include bounding the assumed kernel, bounding the underlying process, and
incorporating various forms of state dependence in the process. In general,
we want to know what is necessary to apply the theorem or extensions to
continuous or unbounded processes, and what sort of bounds on the underlying
process or bounds on the assumed kernel will allow recovery. We also need
to further explore the Multinomial Recovery Theorem and perhaps introduce
weak parametric assumptions into both recovery theorems. While we have
focused on the equity markets, bounds on the process are natural for interest
rates and fixed income markets, and this will be an important area to explore
(see Carr and Yu (2012)).

Once we have recovered the kernel (that is, the market’s risk aversion) and
the market’s subjective assessment of the distribution of returns, these can be
used in a host of applications. We can use the market’s future distribution of
returns much as we use forward rates as forecasts of future spot rates, albeit
without a theoretical bias. Institutional asset holders, such as pension funds,
use historical estimates of the risk premium on the market as an input in asset
allocation models. The market’s current subjective forecast should be superior,
and at the least is of interest. Project valuation also uses historical estimates of
the risk premium. Risk control models, such as VAR (Value at Risk), typically
use historical estimates to determine the risk of various books of business and
this too would be enhanced by using the recovered distribution. Moreover, with
time-series data we will be able to test these predictions against realizations.

The above results can also be applied to a wide variety of markets, such
as fixed income, currency, and futures. Indeed, beyond using forward rates,
we make little use of interest rate options to estimate the future probability
distribution of rates, and applying recovery techniques to this market is a
promising line of research. For the stock market, the kernel and the recovered
distribution can be used to recover the distribution of returns for individual
stocks and to examine the host of market anomalies and potential violations
of market efficiency. The ability to better assess the market’s perspective of
the likelihood of a catastrophic decline will have both practical and theoretical
implications. The kernel is important on its own since it measures the degree
of risk aversion in the market, and just as the market portfolio is a benchmark
for performance measurement and portfolio selection, the pricing kernel serves
as a benchmark for preferences. Knowledge of both the kernel and the natural
distribution would also shed light on the controversy as to whether the market
is too volatile to be consistent with rational pricing models (see, for example,
Leroy and Porter (1981), Shiller (1981)).

In conclusion, contrary to finance folklore, under the appropriate assump-
tions it is possible to separate risk aversion from the natural distribution, and
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estimate each from market prices. With a pun intended, we have only scratched
the surface of discovering the forecasts imbedded in market prices both for the
market itself and, more generally, for the economy as a whole.
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