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Ralph’s Technology 

As a manager of a productive operation (a firm), Ralph believes his (stewardship) 

responsibility includes 

– conduct low cost experiments to improve productive technology, 

– interpret data generated by the experiments (Ralph thinks tools may be helpful here), 

– make judgments based on experimental results tempered by background knowledge, 

– design and implement efficient strategies of production (production technologies). 

Ralph has two production facilities: A and B. He believes facility A is more efficient than 

facility B and would like to improve the efficiency of both, but is especially concerned 

about facility B. Ralph is considering a change in technology and has gathered data from 

a small experiment where facility B has been a focal point (productive efficiency is 

measured in terms of production successes). 

 Facility A Facility B Total 

Technology New Old New Old New Old 

Successes 10 120 133 25 143 145 

Trials 10 150 190 50 200 200 

% Success 100 80 70 50 71.5 72.5 

 

Part A. 

Suggested: 

 

1. a) Based on aggregate data (Total), does the new technology seem to produce an 

improvement? 

b) Based on facility A, does the new technology seem to produce an improvement? 

c) Based on facility B, does the new technology seem to produce an improvement? 

d) The contrast between aggregate and disaggregate data is an illustration of Simpson’s 

paradox. Explain. 

 

2. To affirm your findings above (and possibly extend your thinking to richer, more 

challenging settings) utilize a (linear probability) regression model to re-analyze these 

data. To facilitate this exercise, create a spreadsheet with a column designated outcome 
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(success => Y = 1, failure => Y = 0), another column designated facility (facility A => 

Dfac = 1, facility B => Dfac = 0), and a third column designated technology (new => Dtech = 

1, old => Dtech = 0). Your spreadsheet should consist of 400 rows (equal to the number of 

experimental trials) where the 1s and 0s match the data in the above table (this may 

require some trial and error but is an integral part of data analysis). 

 

a) Regress outcome on the technology variable alone (include the intercept in the 

regression).  Y = b0 + btech Dtech + residuals 

Interpret the results. 

Keep in mind btech = 

! 

Y (Dtech = 1) - 

! 

Y (Dtech = 0)  

and b0 = 

! 

Y  - 

! 

Dtech btech where 

! 

Y  and 

! 

D represent sample averages of Y and D, 

respectively. 

 

b) Regress outcome on the facility variable alone. 

 Y = b0 + bfac Dfac + residuals 

Interpret the results. 

Keep in mind bfac = 

! 

Y (Dfac = 1) - 

! 

Y (Dfac = 0)  

and b0 = 

! 

Y  - 

! 

Dfac bfac. 

 

c) Regress outcome on the technology and facility variables. 

 Y = b0 + btech Dtech + bfac Dfac + residuals 

Interpret the results. 

Keep in mind b0 = 

! 

Y  - 

! 

Dtech btech - 

! 

Dfac bfac. 
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3. Frequently, the effects are richer than those illustrated above.  

a) Repeat 1 and 2 for the data tabulated below (changes are in bold). 

 Facility A Facility B Total 

Technology New Old New Old New Old 

Successes 7 120 133 25 140 145 

Trials 10 150 190 50 200 200 

% Success 70 80 70 50 70 72.5 

 

b) Add a fourth column to your spreadsheet for the second data table that is the product 

of indicator variables for facility and technology. Now, regress outcome on the three 

variables. 

 Y = b0 + btech Dtech + bfac Dfac + btech*fac Dtech Dfac + residuals 

Interpret the results. What is the consequence of omitting the interaction term? In other 

words, what model restriction is relaxed when the variable is included? 

Keep in mind btech*fac = {

! 

Y (Dfac = 1, Dtech = 1) - 

! 

Y ( Dfac = 1, Dtech = 0)} 

   - {

! 

Y (Dfac = 0, Dtech = 1) - 

! 

Y ( Dfac = 0, Dtech = 0)}  

and b0 = 

! 

Y  - 

! 

Dtech btech - 

! 

Dfac bfac - 

! 

Dtech*fac btech*fac where 

! 

Dtech*fac is the sample mean of the 

product Dtech Dfac. 
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Part B. Causal effects. Ralph interprets the effect of technology on production success as 

causal, holding other things constant technology adoption causes a change in production 

success, if he can effectively address the counterfactual nature of potential outcome. That 

is, for a given trial Ralph observes either Y1, success (1) or failure (0) with the new 

technology, or Y0, success/failure with the old technology, but not both. The 

counterfactual potential outcome is success/failure with the technology not employed. Let 

(Y1|Dtech=1), the outcome with the new technology when new technology is assigned to 

the production trial, or (Y0|Dtech=0), the outcome with the old technology when the old 

technology is assigned to the production trial, be the observed outcome for any trial, 

hence observed outcome is  

Y = (Dtech=1) (Y1|Dtech=1) + (Dtech=0) (Y0|Dtech=0).  

On the other hand, (Y1|Dtech=0), potential outcome with the new technology but the 

production trial is assigned the old technology, and (Y0|Dtech=1), potential outcome with 

the old technology but the production trial is assigned the new technology, are the 

counterfactual potential outcomes. Then, the average causal effect of production 

technology on production success for trials assigned the new technology is  

ATT = E[Y1 – Y0|Dtech=1],  

called the average treatment effect on the treated, and for trials assigned the old 

technology is  

ATUT = E[Y1 – Y0|Dtech=0],  

called the average treatment effect on the untreated. And, the unconditional average 

treatment effect is  

ATE = pr(Dtech =1)ATT + pr(Dtech =0)ATUT = E[Y1 – Y0].  

Ralph recognizes the challenge is to utilize the observables to infer counterfactual means 

as any average treatment effect is counterfactual in nature. For example,  

ATT = E[Y1|Dtech=1] - E[Y0|Dtech=1]  

where the second term is unobservable (counterfactual). However, if Ralph can employ 

his state of knowledge to deduce E[Y0|Dtech=1] = E[Y0|Dtech=0], then, as the latter is 

observable, ATT can be inferred from the data. Ralph recognizes this typically lacks 

credibility as unspecified conditions would need to be balanced/randomized between the 

technology assignments and often these assignments are not random (as in the present 
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setting). Otherwise, the data is likely to exhibit selection bias. Selection bias associated 

with ATT, for instance, is 

 ATT(bias) = target estimand less estimator employed 

        = {E[Y1|Dtech=1] - E[Y0|Dtech=1]} – { E[Y1|Dtech=1] - E[Y0|Dtech=0]} 

      = E[Y0|Dtech=0] - E[Y0|Dtech=1] 

Consequently, Ralph concludes a more promising avenue is to focus on average effects 

conditional on recognized salient features of the setting, in this case the production 

facility employed. That is, Ralph can utilize his state of knowledge to deduce conditional 

mean independence 

E[Y0|Dtech=1, Dfac=1] = E[Y0|Dtech=0, Dfac=1]   (1)  

and  

E[Y0|Dtech=1, Dfac=0] = E[Y0|Dtech=0, Dfac=0]   (2).  

Now, Ralph can infer ATT(Dfac=1), via condition (1), and ATT(Dfac=0), via condition (2). 

Also, by iterated expectations, Ralph can infer  

ATT = Pr(Dfac=1 | Dtech=1) ATT(Dfac=1) + Pr(Dfac=0 | Dtech=1) ATT(Dfac=0),  

via conditions (1) and (2). Similarly, but separately deduced, ATUT can be teased out if 

conditional mean independence is consistent with Ralph’s state of knowledge regarding 

Y1. 

E[Y1|Dtech=1, Dfac=1] = E[Y1|Dtech=0, Dfac=1]   (3)  

and  

E[Y1|Dtech=1, Dfac=0] = E[Y1|Dtech=0, Dfac=0]   (4).  

Now, Ralph can infer ATUT(Dfac=1), via condition (3), and ATUT(Dfac=0), via condition 

(4). Again, by iterated expectations, Ralph can infer  

ATUT = Pr(Dfac=1 | Dtech=0) ATUT(Dfac=1) + Pr(Dfac=0 | Dtech=0) ATUT(Dfac=0),  

via conditions (3) and (4). 

Combining conditions (1) and (3) allows Ralph to infer  

ATE(Dfac=1) = Pr(Dtech=1| Dfac=1)ATT(Dfac=1) + Pr(Dtech=0| Dfac=1)ATUT(Dfac=1), 

while conditions (2) and (4) allow Ralph to infer  

ATE(Dfac=0) = Pr(Dtech=1| Dfac=0)ATT(Dfac=0) + Pr(Dtech=0| Dfac=0)ATUT(Dfac=0). 

Then, by iterated expectations,  

ATE = Pr(Dfac=1) ATE(Dfac=1) + Pr(Dfac=0) ATE(Dfac=0)  
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and 

ATE = Pr(Dtech=1) ATT + Pr(Dtech=0) ATUT. 

 

Suggested: 

 

4. For the original data, if facility is ignored determine Ralph’s inferred ATT, ATUT, and 

ATE. 

 

5. For the second data panel, if facility is ignored determine Ralph’s inferred ATT, 

ATUT, and ATE. 

6. For the original data, employ Ralph’s conditional mean independence arguments to 

infer ATT(Dfac=1), ATT(Dfac=0), ATT, ATUT(Dfac=1), ATUT(Dfac=0), ATUT, 

ATE(Dfac=1), ATE(Dfac=0), and ATE. 

 

7. For the second data panel, employ Ralph’s conditional mean independence arguments 

to infer ATT(Dfac=1), ATT(Dfac=0), ATT, ATUT(Dfac=1), ATUT(Dfac=0), ATUT, 

ATE(Dfac=1), ATE(Dfac=0), and ATE. 

 

8. Suppose conditional mean independence is consistent with the data generating process, 

what is the selection bias when facility is omitted in the analysis? 

 

9. Is conditional mean independence credible in this setting? 
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C. Causal effects via Bayesian networks. 

Ralph’s thought experiment regarding the causal connections amongst the variables is 

depicted in the network graph G below. Y is success (1)/failure (0), X is technology 

(new=1, old=0), and Z is facility (A=1, B=0). Arrows indicate causal direction and a 

dashed bow indicates a common set of unobservable variables (U) connecting the 

observable variables. 

 

 

 

 

 

 

The network graph represents a form of probability assignment. In particular, the graph 

indicates (conditional) independence between the variables and otherwise is 

representative of the considered data generating process (DGP) for any probability 

distribution consistent with the graph (accordingly, the graphical depiction is said to be 

nonparametric).  

A set of variables Z separates X and Y if and only if every path is blocked by Z. A set of 

variables separates (blocks) a path under the following conditions in the graph.  

1. The path contains a chain i–>m–> j or fork i<–m–>j where m is included in the set Z. 

2. The path contains an inverted fork (collider) i–>m<–j where m is excluded from the set 

Z and no descendant of m is in Z. 

Separation or blocking of paths indicates conditional independence in the graph. In other 

words, if a set of variables Z separates X and Y along every path, then X and Y are 

independent conditional on Z. 

Ralph would like to address the probability of success given that technology is set equal 

to new (1) or old (0). That is, Ralph poses a causal (or action) question which differs 

from observation. Action asks Pr(Y=1|do(X=1)) or Pr(Y=1|do(X=0)) while observation 

poses Pr(Y=1|X=1) or Pr(Y=1|X=0). 

In the current example, there is a back-door path through Z (and into X) between X and 

Y. A back-door adjustment yields the action probability statement 

X Z

Y

G

X Z

Y

GX

X Z

Y

GX

U
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Pr(Y=1|do(X=1)) = ΣzPr(Y=1|X=1,z)Pr(z) 

while observation produces the probability statement 

Pr(Y=1|X=1) = ΣzPr(Y=1|X=1,z)Pr(z|X=1) 

where Σz refers to summation over all values z. 

 

Suggested: 

 

10. For the first data set, determine Pr(Y=1|do(X=1)), Pr(Y=1|do(X=0)), Pr(Y=1|X=1), 

and Pr(Y=1|X=0), as well as ATE = E[Y| do(X=1)] - E[Y| do(X=0)], and E[Y| X=1] - 

E[Y| X=0]. 

 

11. Repeat 10 for the second data set. 

 

12. How does this analysis compare with that in part B? 

 

 

 


