Ralph's Symmetry

The variance-covariance structure of two random variables is described by $V=$
$\left[\begin{array}{cc}\operatorname{Var}\left[v_{1}\right] & \operatorname{Cov}\left[v_{1}, v_{2}\right] \\ \operatorname{Cov}\left[v_{1}, v_{2}\right] & \operatorname{Var}\left[v_{2}\right]\end{array}\right]=\left[\begin{array}{ll}2 & 1 \\ 1 & 3\end{array}\right]$. Ralph is interested in exploring diagonalization of V.
A. Cholesky decomposition.

Suggested:

1. Find G such that $G G^{r}=V$ where G is lower triangular. Recall for a symmetric matrix V can be written as $L D L^{r}$ where D is a diagonal matrix containing the pivots of V. In other words, $L D^{12} D^{n / 2} L^{\tau}=G G^{r}$.
2. Find $G^{t}=D^{122} L^{\prime \prime}$ such that $V\left(G^{t}\right)^{\prime} G^{\prime}=I$ where G^{\prime} is lower triangular.
B. Spectral decomposition.

Suggested:

1. Find Z and M such that $Z M Z^{T}=V$ where Z contains the orthonormal eigenvectors of V and M is a diagonal matrix of the corresponding eigenvalues of V.
2. Write $Z M Z^{r}=W W^{\tau}=V$ where $W=Z M^{r n}$. Find W^{t} where $W^{v} V\left(W^{r}\right)^{s}=I$.
3. Compare the product of the pivots from part A with the product of the eigenvalues in part B. Compare these quantities with the determinant of V. Compare the trace of V (sum of the main diagonal elements) with the sum of the eigenvalues.
C. Simultaneous diagonalizability (commutativity)

Suggested:

1. Replace M above with some other eigenvalues, say the pivots D. Create a new matrix $U=Z D Z^{r}$. Compute $V U-U V$. What do you observe?
2. Why does U commute with V ?
3. Why does the identity matrix I commute with any other matrix?
