Ralph's random probability and variance

This is a continuation of Ralph's uncertain variance. Everything is the same except Ralph views the proposition probability p (that the state is favorable) as a random variable (in other words, Ralph is uncertain about the probability assignment for the proposition). Accordingly, Ralph believes $E[\log p]=$ $E[\log 1-p]=-1.96191$ (geometric mean $\exp (-1.96191)=0.14059)$ or, in other words, p has a beta distribution with concentration parameters $a=b=$ 0.3 .

Ralph knows Bayesian (sum and product rules) updating of the proposition probability based on conditionally normally distributed evidence (with a given variance) is

$$
\begin{aligned}
& f(p \mid y=24 ; \sigma) \\
= & \frac{f(p, y=24 ; \sigma)}{f(y=24 ; \sigma)} \\
= & \frac{[p f(y=24 \mid s=f)+(1-p) f(y=24 \mid s=u)] p^{a-1}(1-p)^{b-1}}{\int_{0}^{1}[p f(y=24 \mid s=f)+(1-p) f(y=24 \mid s=u)] p^{a-1}(1-p)^{b-1} d p}
\end{aligned}
$$

where $f(y \mid s)$ is a normal density function and the denominator is

$$
f(y=24 ; \sigma)=\beta(1+a, b) f(y=24 \mid s=f)+\beta(a, 1+b) f(y=24 \mid s=u)
$$

and $\beta(a, b)=\frac{\Gamma(a) \Gamma(b)}{\Gamma(a+b)}$. Also,

$$
\begin{aligned}
& E[p \mid y=24 ; \sigma] \\
= & \frac{\frac{1+a}{1+a+b} \beta(1+a, b) f(y=24 \mid s=f)+\frac{a}{1+a+b} \beta(a, 1+b) f(y=24 \mid s=u)}{f(y=24 ; \sigma)}
\end{aligned}
$$

When the variance or standard deviation σ is also uncertain with kernel $\frac{1}{\sigma}$ Bayesian updating of the proposition probability is

$$
\begin{aligned}
& f(p \mid y=24 ; 1<\sigma<3) \\
= & \frac{f(p, y=24 ; 1<\sigma<3)}{f(y=24 ; 1<\sigma<3)} \\
= & \frac{\int_{1}^{3} \frac{1}{\sigma}[p f(y=24 \mid s=f)+(1-p) f(y=24 \mid s=u)] p^{a-1}(1-p)^{b-1} d \sigma}{\int_{0}^{1} \int_{1}^{3} \frac{1}{\sigma}[p f(y=24 \mid s=f)+(1-p) f(y=24 \mid s=u)] p^{a-1}(1-p)^{b-1} d \sigma d p}
\end{aligned}
$$

where the numerator is

$$
\begin{aligned}
f(p, y=24 ; 1<\sigma<3)= & p^{a}(1-p)^{b-1} \frac{\left[F\left(\frac{24-\mu_{f}}{3}\right)-F\left(\frac{24-\mu_{f}}{1}\right)\right]}{\mu_{f}-24} \\
& +p^{a-1}(1-p)^{b} \frac{\left[F\left(\frac{24-\mu_{u}}{3}\right)-F\left(\frac{24-\mu_{u}}{1}\right)\right]}{\mu_{u}-24}
\end{aligned}
$$

$F()$ is the cumulative standard normal distribution function, μ_{j} is the mean of y conditional on state j and the denominator is

$$
\begin{aligned}
f(y=24 ; 1<\sigma<3)= & \beta(1+a, b) \frac{\left[F\left(\frac{24-\mu_{f}}{3}\right)-F\left(\frac{24-\mu_{f}}{1}\right)\right]}{\mu_{f}-24} \\
& +\beta(a, 1=b) \frac{\left[F\left(\frac{24-\mu_{u}}{3}\right)-F\left(\frac{24-\mu_{u}}{1}\right)\right]}{\mu_{u}-24}
\end{aligned}
$$

And,

$$
\begin{aligned}
& E[p \mid y=24 ; 1<\sigma<3] \\
= & \left\{\begin{array}{c}
\frac{1+a}{1+a+b} \beta(1+a, b) \frac{\left[F\left(\frac{24-\mu_{f}}{3}\right)-F\left(\frac{24-\mu_{f}}{1}\right)\right]}{\mu_{f}-24} \\
+\frac{a}{1+a+b} \beta(a, 1=b) \frac{\left[F\left(\frac{24-\mu_{u}}{3}\right)-F\left(\frac{24-\mu_{u}}{1}\right)\right]}{\mu_{u}-24}
\end{array}\right\} / f(y=24 ; 1<\sigma<3)
\end{aligned}
$$

Suggested:

1. Verify via maximum entropy probability assignment the kernel for p is $p^{-0.7}(1-p)^{-0.7}$.
2. Derive the density function for proposition probability given the evidence $f(p \mid y=24 ; \sigma)$ and expected value $E[p \mid y=24 ; \sigma]$ if σ is assigned 1 or if σ is assigned 3.
3. Derive the density function for proposition probability given the evidence $f(p \mid y=24 ; 1<\sigma<3)$ and expected value $E[p \mid y=24 ; 1<\sigma<3]$ if σ is assigned density $\frac{1}{\sigma}$ with support between 1 and 3 .
4. How do these results compare with those in Ralph's uncertain variance?
