Ralph's partnership ${ }^{1}$

Alice, Bob, and Ralph are contemplating a partnership in which they borrow $600 @ 2 \%$ (with no chance of default as any deficit is made up out of personal assets) and return $b=612$ to the lender at the end of one period. These proceeds are invested in productive assets that return $y=1,000,2,000$, or $-1,000$ with equal likelihood. All preferences are negative exponential, $U(x)=$ $-\exp [-\rho x]=-\exp \left[-\frac{x}{\tau}\right]$ with Alice's risk tolerance $\tau_{A}=\frac{1}{\rho_{A}}=\frac{1}{0.005}$, Bob's $\tau_{B}=\frac{1}{\rho_{B}}=\frac{1}{0.0002}$, and Ralph's $\tau_{R}=\frac{1}{\rho_{R}}=\frac{1}{0.0001}$.

Suggested:

1. If individually they could arrange the same financing terms as above, would any of them pursue this investment opportunity on their own? (Hint: determine Alice's, Bob's, and Ralph's certainty equivalent.)

Efficient risk sharing is Pareto efficient or optimal (no one can be made better of without harming another individual). A sharing rule defined as $\alpha_{A}+$ $\alpha_{B}+\alpha_{R}=1$ maps out an efficient frontier by solving the following constrained optimization problem for each state by varying α_{A}, α_{B}, and α_{R}.

$$
\begin{array}{cc}
\max _{x_{A}, x_{B}, x_{R}} & \alpha_{A} U_{A}\left(x_{A}\right)+\alpha_{B} U_{B}\left(x_{B}\right)+\alpha_{R} U_{R}\left(x_{R}\right) \\
\text { s.t. } & x_{A}+x_{B}+x_{R}=y-b
\end{array}
$$

2. Solve the above program for each state when the sharing rule assigns weight proportional to each partner's risk tolerance, $\alpha_{A}=\frac{\tau_{A}}{T}, \alpha_{B}=\frac{\tau_{B}}{T}, \alpha_{R}=$ $\frac{\tau_{R}}{T}$ where $T=\tau_{A}+\tau_{B}+\tau_{R}$. (Hint: solver will need some help with starting values. Try $x_{A}=\frac{\tau_{A}}{T} x, x_{B}=\frac{\tau_{B}}{T} x, x_{R}=\frac{\tau_{R}}{T} x$. Alternatively, solve the first order conditions directly.) Is the allocation to each potential partner linear, $x_{j}=\beta_{j 0}+\beta_{j 1}(y-b)$ for $j=A, B$, or R, across the states? If so, what properties describe $\beta_{j 1}$? Determine each partners expected utility and certainty equivalent for this arrangement. Is the investment attractive to each individual when a partnership is formed along these lines?
3. How would efficient arrangements change if Ralph is risk neutral?
[^0]
[^0]: ${ }^{1}$ This example draws from Kreps, 1990, A course in microeconomic theory, Princeton University Press, 169-174.

