Ralph's partially-identified Gibbs sampler

This is a continuation of Ralph's partially-identified DAG. After struggling with partial identification of causal effects, Ralph is now interested in addressing inference from a sample plagued by imperfect compliance.

Ralph knows the 16 compliance-response ($c r$) pairs define the causal effects of interest.

$$
\begin{aligned}
& \operatorname{Pr}\left(y_{1} \mid d o\left(x_{0}\right)\right)=\sum_{i=0}^{3} v_{c=i, r=2}+\sum_{i=0}^{3} v_{c=i, r=3}, \\
& \operatorname{Pr}\left(y_{1} \mid d o\left(x_{1}\right)\right)=\sum_{i=0}^{3} v_{c=i, r=1}+\sum_{i=0}^{3} v_{c=i, r=3}, \\
& A C E(X \rightarrow Y)=\sum_{i=0}^{3} v_{c=i, r=1}-\sum_{i=0}^{3} v_{c=i, r=2}
\end{aligned}
$$

where $v_{c r}$ is the probability associated with the $c r$ pair.
Since only $p_{y x . z}$ is observed in the sample and $v_{c r}$ is latent, Ralph decides to employ Markov-chain Monte Carlo simulation in the form of a Gibbs sampler (that is, from the full set of conditional posterior distributions). The first conditional posterior is

$$
\operatorname{Pr}\left(c r^{i} \mid v_{c r^{i}}, \text { data }=\left\{p_{y x . z}\right\}\right) \propto f\left(x^{i}, y^{i} \mid z^{i}, c r^{i}\right) v_{c r^{i}}
$$

where the superscript refers to individual i in the sample and $f\left(x^{i}, y^{i} \mid z^{i}, c r^{i}\right)$ is an indicator function equal to one when x, y, z agrees with $c r$ and zero otherwise. Ralph recognizes this as a multinomial distribution and generates values for the latent variable $c r$.

$c r$	$y x . z$
00	$00.0,00.1$
01	$00.0,00.1$
02	$10.0,10.1$
03	$10.0,10.1$
10	$00.0,01.1$
11	$00.0,11.1$
12	$10.0,01.1$
13	$10.0,11.1$
20	$01.0,00.1$
21	$11.0,00.1$
22	$01.0,10.1$
23	$11.0,10.1$
30	$01.0,01.1$
31	$11.0,11.1$
32	$01.0,01.1$
33	$11.0,11.1$

As $v_{c r^{i}}$ is unknown, Ralph begins with some initial value and replaces it in subsequent rounds with draws from the second conditional posterior distribution

$$
\operatorname{Pr}\left(v_{C R} \mid c r^{1}, \ldots, c r^{n}\right) \propto \prod_{i=0}^{3} \prod_{j=0}^{3}\left(v_{c r_{i j}}\right)^{N_{i j}+N_{i j}^{\prime}-1}
$$

where $N_{i j}$ refers to the number of draws corresponding to $c r_{i j}$ from the first conditional posterior and $N_{i j}^{\prime}$ refers to the prior concentration parameter for a Dirichlet distribution. This conditional posterior follows a Dirichlet distribution and generates $v_{c r}$ draws.

Suppose the $D G P$ is

$$
\begin{array}{cc}
p_{00.0}=0.55 & p_{00.1}=0.45 \\
p_{01.0}=0.45 & p_{01.1}=0 \\
p_{10.0}=0 . & p_{10.1}=0 . \\
p_{11.0}=0 . & p_{11.1}=0.55 \\
\operatorname{Pr}\left(z_{1}\right)=0.50 & \operatorname{Pr}\left(z_{0}\right)=0.50
\end{array}
$$

Suggested:

1. For the $D G P$, generate a sample of $n=100$. Using a Gibbs sampler, simulate 15,000 draws and discard the first 5,000 burn-in draws. Examine plots, histograms, and descriptive statistics (mean, standard deviation, and quantiles) for the post burn-in draws.
2. Repeat 1 for a sample of $n=1,000$. Compare inferences for the two sample sizes relative to the known $D G P$.

Now, suppose the $D G P$ is

$$
\begin{array}{cc}
p_{00.0}=0.919 & p_{00.1}=0.315 \\
p_{01.0}=0.000 & p_{01.1}=0.139 \\
p_{10.0}=0.081 & p_{10.1}=0.073 \\
p_{11.0}=0.000 & p_{11.1}=0.473 \\
\operatorname{Pr}\left(z_{1}\right)=0.500 & \operatorname{Pr}\left(z_{0}\right)=0.500
\end{array}
$$

3. Repeat 1 and 2 for the second $D G P$.
