
Ralph’s partially-identified DAG

Ralph wishes to identify causal effects associated with the DAG below where
Z is treatment assigned, X is treatment received, Y is outcome or response, and
U is latent (unobserved) factors.

DAG G and its subgraphs

Suppose Y,X, and Z are binary and Ralph focuses on the aggregate or average
causal effect1

ACE (X → Y ) = Pr (y1 | do (x1))− Pr (y1 | do (x0))

Suggested:

1. Suppose W = U where W is observable. Can Ralph employ a back-door
adjustment (see Ralph’s back-door adjustment) to point-identify causal effects
of X on Y ? In this W observable setting, is it necessary for Ralph to condition
on Z to identify causal effects of X on Y ?

2. With U unobservable, can Ralph point-identify causal effects? Hint: can
the back-door adjustment be implemented?

As a result of the challenges associated with latent factors U , Ralph decides
an alternative frame is in order. Let Rx be a variable describing compliance
behavior where rx = 0, 1, 2, 3 denotes, respectively, a never-taker, complier,
defier, and always-taker. Then,

x =

x0 if rx = 0,
x0 if rx = 1 and Z = z0,
x1 if rx = 1 and Z = z1,
x1 if rx = 2 and Z = z0,
x0 if rx = 2 and Z = z1,
x1 if rx = 3

1Since Y is binary E [Y ] = Pr (y1).
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Likewise, let the variable Ry convey response to treatment where ry =
0, 1, 2, 3 represents never-recover, helped, harmed, always-recover, respectively.

y =

y0 if ry = 0,
y0 if ry = 1 and X = x0,
y1 if ry = 1 and X = x1,
y1 if ry = 2 and X = x0,
y0 if ry = 2 and X = x1,
y1 if ry = 3

3. Determine Pr (y1 | do (x1)), Pr (y1 | do (x0)), and ACE (X → Y ) in terms
of ry.

Further, Ralph recognizes that causal effect identification demands that he
work with distributions over observables. In this case, the conditional distri-
butions, Pr (y, x | z0) and Pr (y, x | z1), are observable. For simplicity, Ralph
denotes the conditional distributions pij.k where i, j, k = 0, 1 for yi, xj , zk.

Ralph knows Pearl describes natural bounds on the causal effects.

p11.1 ≤ Pr (y1 | do (x1)) ≤ 1− p01.1

and
p10.0 ≤ Pr (y1 | do (x0)) ≤ 1− p00.0

4. Write an expression for the natural bounds on ACE (X → Y ) in terms
of pij.k.

Suppose the DGP (data generating process) is

p00.0 = 0.919 p00.1 = 0.315
p01.0 = 0.000 p01.1 = 0.139
p10.0 = 0.081 p10.1 = 0.073
p11.0 = 0.000 p11.1 = 0.473
Pr (z1) = 0.500 Pr (z0) = 0.500

5. What is the compliance rate, Pr (x1 | z1)?

6. What is the encouragement or intent to treat effect, Pr (y1 | z1)−Pr (y1 | z0)?2

7. What is the mean (observation not action) difference Pr (y1 | x1) −
Pr (y1 | x0)?

2Policy decisions are sometimes based on this effect due to partial compliance complica-
tions.
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8. What are the natural bounds on Pr (y1 | do (x1)), Pr (y1 | do (x0)), and
ACE (X → Y )?

The natural bounds can be tightened via usage of a dual linear program.
The lower bound on Pr (y1 | do (x1)) is

Pr (y1 | do (x1)) ≥ max


p11.1,
p11.0,

−p00.0 − p01.0 + p00.1 + p11.1,
−p01.0 − p10.0 + p10.1 + p11.1


The upper bound on Pr (y1 | do (x1)) is

Pr (y1 | do (x1)) ≤ min


1− p01.1,
1− p01.0,

p00.0 + p11.0 + p10.1 + p11.1,
p10.0 + p11.0 + p00.1 + p11.1,


The lower bound on Pr (y1 | do (x0)) is

Pr (y1 | do (x0)) ≥ max


p10.1,
p10.0,

p10.0 + p11.0 − p00.1 − p11.1,
p01.0 + p10.0 − p00.1 − p01.1


The upper bound on Pr (y1 | do (x0)) is

Pr (y1 | do (x0)) ≤ min


1− p00.1,
1− p00.0,

p01.0 + p10.0 + p10.1 + p11.1,
p10.0 + p11.0 + p01.1 + p10.1,


9. What are the linear programming bounds on Pr (y1 | do (x1)), Pr (y1 | do (x0)),

and ACE (X → Y )? Interpret the results in light of the degree of noncompli-
ance.

10. Ralph is also interested in the effect of the existing program under its
current incentive system and current participants which is treatment on treated.
Average treatment on the treated is quantified as

ETT (X → Y ) = Pr (Yx̂1 = y1 | x1)− Pr (Yx̂0 = y1 | x1)
=

∑
u
[Pr (y1 | x1, u)− Pr (y1 | x0, u)] Pr (u | x1)

where Yx̂j refers to outcome when intervening with action xj and conditioning
on x1 refers to the subpopulation observed in the treatment regime. Again,
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this utilizes unobservable U so Ralph employs partial identification once again.
Natural bounds on ETT are

P (y1)− P (x1 | z0)− P (y1, x0 | z0)
P (x1)

≤ ETT (X → Y ) ≤
P (y1)− P (y1, x0 | z0)

P (x1)

Natural bounds on the untreated (say, ETUT ) complement natural bounds on
the treated to give the natural bounds on ACE as

ACE (X → Y ) = Pr (x1)ETT (X → Y ) + Pr (x0)ETUT (X → Y )

where

−P (y1) + P (y1, x1 | z1)
P (x0)

≤ ETUT (X → Y ) ≤
−P (y1) + P (x0 | z1) + P (y1, x1 | z1)

P (x0)

Determine the natural bounds for ETT , and ETUT and verify their comple-
mentarity with ACE.

Alternatively, suppose the DGP is

p00.0 = 0.55 p00.1 = 0.45
p01.0 = 0.45 p01.1 = 0.
p10.0 = 0. p10.1 = 0.
p11.0 = 0. p11.1 = 0.55

Pr (z1) = 0.50 Pr (z0) = 0.50

11. Repeat 5 through 10 for this DGP .
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