Ralph's Normal Fallacy

Ralph is faced with two decisions and can acquire either of two, both, or no costly information systems. Each decision entails making a point estimate, \widehat{x}_{j}, regarding the eventual value of an outcome, x_{j}, where $j=1$ or 2 . Ralph's knowledge of the first variable is

$$
x_{1}=\mu_{1}+k \varepsilon_{1}+\varepsilon_{2}
$$

and the second variable is

$$
x_{2}=\mu_{2}+\varepsilon_{1}+\varepsilon_{2}
$$

where μ_{1}, μ_{2}, and k are known constants and ε_{1} and ε_{2} are mean zero normal random variables with variances, σ_{1}^{2} and σ_{2}^{2}, respectively. The first information system reports ε_{1} at cost c_{1} while the second information system reports ε_{2} at $\operatorname{cost} c_{2}$. For simplicity, the cost of decision error is $E\left[\left(\sum_{j=1}^{2} x_{j}-\widehat{x}_{j}\right)^{2}\right]$ where \widehat{x}_{j} is our best guess for x_{j} given the information for decision $j=1$ or 2 . Hence, if both information sources are acquired, perfect prediction is possible and the cost is $c_{1}+c_{2}$. While if neither information sources are acquired, the cost is

$$
\begin{aligned}
& L^{T}\left[\begin{array}{cccc}
k^{2} \sigma_{1}^{2}+\sigma_{2}^{2}+2 k \sigma_{12} & k \sigma_{1}^{2}+\sigma_{2}^{2}+(1+k) \sigma_{12} & k \sigma_{1}^{2}+\sigma_{12} & k \sigma_{12}+\sigma_{2}^{2} \\
k \sigma_{1}^{2}+\sigma_{2}^{2}+(1+k) \sigma_{12} & \sigma_{1}^{2}+\sigma_{2}^{2}+2 \sigma_{12} & \sigma_{1}^{2}+\sigma_{12} & \sigma_{12}+\sigma_{2}^{2} \\
k \sigma_{1}^{2}+\sigma_{12} & \sigma_{1}^{2}+\sigma_{12} & \sigma_{1}^{2} & \sigma_{12} \\
k \sigma_{12}+\sigma_{2}^{2} & \sigma_{12}+\sigma_{2}^{2} & \sigma_{12} & \sigma_{2}^{2}
\end{array}\right] L \\
& \quad=k^{2} \sigma_{1}^{2}+\sigma_{2}^{2}+2 k \sigma_{12}+\sigma_{1}^{2}+\sigma_{2}^{2}+2 \sigma_{12}+2\left(k \sigma_{1}^{2}+\sigma_{2}^{2}+(1+k) \sigma_{12}\right) \\
& \\
& =(k+1)^{2} \sigma_{1}^{2}+4 \sigma_{2}^{2}+2(2+2 k) \sigma_{12}
\end{aligned}
$$

where $L^{T}=\left[\begin{array}{llll}1 & 1 & 0 & 0\end{array}\right]$ is the transpose of L, a column vector, and σ_{12} refers to the covariance between ε_{1} and ε_{2}. Since ε_{1} and ε_{2} are normally distributed random variables so are x_{1} and x_{2}. Let $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, Ralph knows

$$
\begin{aligned}
E\left[x \mid \varepsilon_{1}=e_{1}\right] & =\left[\begin{array}{c}
\mu_{1}+k e_{1}+\frac{\sigma_{12}}{\sigma_{1}^{2}} e_{1} \\
\mu_{2}+e_{1}+\frac{\sigma_{12}}{\sigma_{1}^{2}} e_{1}
\end{array}\right] \\
\operatorname{Var}\left[x \mid \varepsilon_{1}\right] & =\left[\begin{array}{ll}
\sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}} & \sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}} \\
\sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2}} & \sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2}}
\end{array}\right]
\end{aligned}
$$

Hence, the cost of decision error given ε_{1} is acquired is

$$
\begin{aligned}
& c_{1}+\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{ll}
\sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2}} & \sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{1}} \\
\sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2}} & \sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
= & c_{1}+4\left(\sigma_{2}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{1}^{2}}\right)
\end{aligned}
$$

$$
\begin{aligned}
E\left[x \mid \varepsilon_{2}=e_{2}\right] & =\left[\begin{array}{c}
\mu_{1}+e_{2}+k \frac{\sigma_{12}}{\sigma_{2}^{2}} e_{2} \\
\mu_{2}+e_{2}+\frac{\sigma_{12}}{\sigma_{2}^{2}} e_{2}
\end{array}\right] \\
\operatorname{Var}\left[x \mid \varepsilon_{2}\right] & =\left[\begin{array}{cc}
k^{2}\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) & k\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) \\
k\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) & \sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}
\end{array}\right]
\end{aligned}
$$

Hence, the cost of decision error given ε_{2} is acquired is

$$
\begin{aligned}
& c_{2}+\left[\begin{array}{ll}
1 & 1
\end{array}\right]\left[\begin{array}{cc}
k^{2}\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) & k\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) \\
k\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right) & \sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}
\end{array}\right]\left[\begin{array}{l}
1 \\
1
\end{array}\right] \\
= & c_{2}+(k+1)^{2}\left(\sigma_{1}^{2}-\frac{\sigma_{12}^{2}}{\sigma_{2}^{2}}\right)
\end{aligned}
$$

Consider the following six cases.

case	k	σ_{1}^{2}	σ_{2}^{2}	σ_{12}	c_{1}	c_{2}
1	99	1	1	0	10	10
2	1	9	9	0	10	10
3	0	9	9	0.9	5	20
4	0	9	9	9	12	15
5	1	9	9	9	7	8
6	1	9	9	0	40	40

Required:

1. For cases $1-6$, what information systems, if any, are acquired and what is the total (information and decision error) cost considering both information systems and their full decision implications?
2. What does this example suggest about viewing accounting choice in isolation (of other information and other decisions)?
