Ralph's MLE Accruals

Continue with the setting in Ralph's Optimal Accruals but build a frame beginning with m_0 .

$$m_0 = \mu + \varepsilon_0, \quad \varepsilon_0 \sim N(0, a\sigma^2)$$

Then, cash flow information relates to the quantity of interest, m_3 , as follows.

$$\mu = m_3 - \varepsilon_0 - \varepsilon_1 - \varepsilon_2 - \varepsilon_3$$

$$y_1 = m_3 - \varepsilon_2 - \varepsilon_3 + e_1$$

$$y_2 = m_3 - \varepsilon_3 + e_2$$

$$y_3 = m_3 + e_3$$

where $\eta^T = \begin{bmatrix} \varepsilon_0 & \varepsilon_1 & \varepsilon_2 & \varepsilon_3 & e_1 & e_2 & e_3 \end{bmatrix} \sim N(0, \Sigma), \Sigma = \begin{bmatrix} a\sigma^2 & 0 \\ 0 & \sigma^2 I_6 \end{bmatrix}$. This can be compactly written

$$Y = m_3\iota + A\eta$$

where $Y^T = \begin{bmatrix} \mu & y_1 & y_2 & y_3 \end{bmatrix}$, ι is a vector of ones, and

A =	-1	-1	-1	-1	0	0	0
	0	0	-1	-1	1	0	0
	0	0	0	-1	0	1	0
	0	0	0	0	0	0	1

Let $\sigma^2 = 1$. The sampling distribution for Y given m_3 is

$$(Y \mid m_3; \Sigma) \sim N\left(m_3\iota, A\Sigma A^T\right)$$

and the likelihood function for m_3 given cash flows μ, y_1, y_2, y_3 is

$$\ell(m_3; Y, \Sigma) \propto \exp\left[-\frac{1}{2} \left(Y - m_3 \iota\right)^T \left(A \Sigma A^T\right)^{-1} \left(Y - m_3 \iota\right)\right]$$

Suggested:

1. Utilize the log-likelihood to find the modal value (or most likely value) for m_3 given Y.

2. Evaluate $Var[m_3 | Y; \Sigma] = -\left(\frac{\partial^2 \log -\ell}{\partial (m_3)^2}\right)^{-1}$.

3. Suppose m_0 is known, then a = 0. Evaluate your expression in 1 and 2.

4. Suppose m_0 is equally uncertain as m_t for t > 0, a = 1. Evaluate your expression in 1 and 2.

5. Suppose m_0 is extremely uncertain so as to be uninformative, $a \to \infty$. Evaluate your expression in 1 and 2.