
Ralph’s long-run quantum accounting
Ralph makes production-investment decisions to maximize long-run wealth

(or equivalently, maximize expected log returns). By the law of large numbers,
accounting rate of return converges to expected log return, E [r].

ln

(
1 +

income

assets

)
−→ E [r]

In a world of inherent uncertainty, quantum information describes the prop-
erties of a system as residing in superposition (a sort of simultaneous existence in
all possible states) until measurement reveals a specific property. Superposition
is conveyed via qubits (quantum bits) such as

|ψ〉 = α |0〉+ β |1〉

where α2 + β2 = 1 , |0〉 =

[
1
0

]
, and |1〉 =

[
0
1

]
. |ψ〉 is called ket and 〈ψ| is

bra, where bra is the conjugate-transpose of ket, a row vector. Hence, 〈ψi|ψj〉

bra-ket is the vector inner product.

Ralph’s Kelly-Ross maximum entropy probability assignment algorithm ap-
plies to incomplete as well as complete market settings (at least, so long as a
riskless asset exists). The algorithm follows.

1. For a state-act-outcome matrix A (in return form) with states by columns
and assets by rows, solve Ayp = v for yp any consistent solution (not necessarily
unique) where v is ι a vector of ones (normalized asset prices).

2. Solve ANT = 0 for N (if any exists other than zero), the nullspace of A.

3. Let y = yp +NT k.

4. Find z = yT ι.

5. Create yz = 1
z y.

6. max h (yz ) = −(yz)T ln yz by choosing k = k∗.

7. Let yzk = (yz | k = k∗).

8. Let yk = (y | k = k∗).

9. Let Ω =


1
yk1
· · · 0

...
. . .

...
0 · · · 1

ykn

. Find expected log returns given perfect

information.
E [r | PI] =

(
yzk
)T

ln (Ωι)

10. Find expected log returns without information.

E [r] =
(
yzk
)T

ln
(
Ωyzk

)
(1)

1



11. Verify E [r | PI] = E [r] + h
(
yzk
)
.

12. Create a t X t quantum density operator ρ =
∑
iy
zk
i |ψi〉 〈ψi| = QΛQT

where Λ is a diagonal matrix with the eigenvalues λ along its main diagonal and
Q is a matrix of the corresponding orthonormal eigenvectors.

13. Create an accounting observable Oq = Q

 ln λ1

yq · · · 0
...

. . .
...

0 · · · ln λt

yq

QT .

14. Solve E [rq] ≡ Tr [ρOq] = E [r] for yq.

15. Find expected log returns with perfect information for the quantum

transformed production system. E [rq | PI] = Tr [ρOp] whereOp = Q

 ln 1
yq · · · 0
...

. . .
...

0 · · · ln 1
yq

QT .

16. Compute quantum (von Neumann) entropy s (ρ) = −λT lnλ.

17. Verify E [rq | PI] = E [rq] + s (ρ).

Complete economy

Case 1:

state |0〉 |1〉
probability 0.5 0.5
invest1 1 1
invest2

1
2

3
2

Incomplete economy

Case 2 — two nonorthogonal component ensemble:

state |0〉 |ψ1〉
probability 0.5 0.5
invest1 1 1
invest2

1
2

3
2

where |ψ1〉 = 3
5 |0〉+ 4

5 |1〉 (given the second state, |ψ1〉 indicates the proba-
bility of |0〉 is only 9

25 and the probability of its complement |1〉 is 16
25 ).

Case 3 — create riskless asset from two nonorthogonal component ensemble:

state |0〉 |ψ1〉
probability 0.5 0.5
invest1 1.05 0.95
invest2

1
2

3
2

2



case 4 — three component ensemble:

state |0〉 |ψ1〉
probability 0.3 0.5
invest1 1 1
invest2 1.45099 0.129403

|ψ2〉
0.2
1

2.5

where |ψ2〉 = 1√
10

.

[
1
3

]
(given the third state, |ψ2〉 indicates the probability

of |0〉 is only 1
10 and the probability of its complement |1〉 is 9

10 ).

Case 5 — create riskless asset from three component ensemble:

state |0〉 |1〉
probability 1

3
1
3

invest1 1.071 1.02
invest2 0.51 1.02

|+〉
1
3

0.969
1.53

where |+〉 = 1√
2

(|0〉+ |1〉). This suggests the first two states are mutually

exclusive but the third state is completely indistinguishable from either of the
first two states.

Part A

Suggested:

1. For cases 1 through 5, apply Ralph’s Kelly-Ross maximum entropy al-
gorithm to identify expected log returns with perfect information and without
information for the classical frame and the quantum frame. How does yzk

compare with the assigned state probabilities?

2. Compare the classical frame with the quantum frame based on expected
log returns without information as well as entropy.

3. What is the riskless return in each case? (hint: find the weights on the
assets that produce a constant payoff in all states; the weights sum to one.)
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Part B

Suppose Ralph has the opportunity to acquire information x for cases 1
through 3 as follows.

Pr (|ψi〉 , xj) |ψ0〉 = |0〉 |ψ1〉 Pr (x)

x1
1
4 0 1

4

x2
1
4

1
2

3
4

Pr (|ψi〉) 1
2

1
2

Information x for case 4 is

Pr (|ψi〉 , xj) |ψ0〉 = |0〉 |ψ1〉 |ψ2〉 Pr (x)

x1 0.2 0.4 0 0.6

x2 0.1 0.05 0.1 0.25
x3 0 0.05 0.1 0.15

Pr (|ψi〉) 0.3 0.5 0.2

and information x for case 5 is

Pr (|ψi〉 , xj) |ψ0〉 = |0〉 |ψ1〉 = |1〉 |ψ2〉 = |+〉 Pr (x)

x1
1
6

1
12

1
12

1
3

x2
1
12

1
12

1
6

1
3

x3
1
12

1
6

1
12

1
3

Pr (|ψi〉) 1
3

1
3

1
3

Then, a conditional density operator is

ρ (xj) =
∑
i

Pr(|ψi〉 | xj) |ψi〉 〈ψi|

= Q (xj) Λ (xj)Q (xj)
T

and conditional (composite) classical/quantum entropy is

s (ρ (x)) =
∑
j

Pr (xj) s (ρ (xj))

where s (ρ (xj)) = −λ (xj)
T

lnλ (xj).
Further, a conditional accounting observable is

Oq (xj) = Q (xj)


ln

λ1(xj)
yq · · · 0
...

. . .
...

0 · · · ln
λn(xj)
yq

Q (xj)
T
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Also,
E [r | xj ] = Tr[ρ (xj)Oq (xj)]

and
E [r | x] =

∑
j

Pr (xj)E [r | xj ]

The expected gain (in log returns) from information x is

E [gain | x] ≡ E [r | x]− E [r]

= I (|ψi〉 ;x) ≡ s (ρ)− s (ρ (x))

I (|ψi〉 ;x) is (composite) classical/quantum mutual information.

Suggested:

1. Determine E [r | x] and E [gain | x] for cases 1 through 5.

2. Verify E [gain | x] = I (|ψi〉 ;x) for cases 1 through 5.
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