Ralph's long-run incentives

Ralph manages Alice's operations. Ralph knows the following regarding asset returns. In initial state one state-transition returns are

$$
A_{1}=\left[\begin{array}{ccc}
& \text { state }_{11} & \text { state }_{12} \\
\text { asset }_{1} & 0.99 & 0.99 \\
\text { asset }_{2} & 1.089 & 0.989
\end{array}\right], x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

while initial state two state-transition returns are

$$
A_{2}=\left[\begin{array}{ccc}
& \text { state }_{21} & \text { state }_{22} \\
\text { asset }_{1} & 1.019 & 1.021 \\
\text { asset }_{2} & 1.1231 & 1.0209
\end{array}\right], x=\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

Arbitrage-free state (or Arrow-Debreu) prices are $y>0$ such that $A y=x$. State-transition probabilities are

$$
\begin{aligned}
F & =\frac{1}{\delta} D P D^{-1} \\
& =\left[\begin{array}{cc}
0.0103128 & 0.9896872 \\
0.00098999 & 0.99901001
\end{array}\right]
\end{aligned}
$$

where initial states are referred to by the rows and transition states are reported in columns with steady-state probabilities

$$
\begin{aligned}
p^{T} F & =p^{T} \\
p^{T} & =\left[\begin{array}{ll}
0.000999311 & 0.999000689
\end{array}\right]
\end{aligned}
$$

Alice only knows the Kelly criterion will achieve her goal of long-run wealth maximization. Hence, Alice motivates Ralph to maximize long-run wealth by emphasizing compound growth. She implements this strategy by evaluating Ralph's performance based on logarithmic returns.

Suggested:

1. The risk-free return in initial state one produces shrinkage at rate 0.99 , what is the risk-free return in initial state two?
2.. Determine state prices in each initial state $i=1,2, y_{i}$.
2. Determine Alice's returns and Ralph's log-returns per unit of total wealth invested from a Kelly investment strategy in each transition state, $r_{11}, r_{12}, r_{21}, r_{22}$.
4.If Ralph employs a short-run strategy expected returns are unbounded
(with unlimited borrowing/short-selling), what is the probability of bankruptcy, or equivalently, the probability Ralph is fired?

Suppose Ralph can acquire the following information where $z_{i j}$ refers to information in initial state i regarding signal j.

	state $_{\text {i1 }}$	state $_{i 2}$	$\operatorname{Pr}\left(z_{j}\right)$
z_{11}	0.0000102026	9.89005×10^{-7}	0.0000111916
z_{12}	1.03057×10^{-7}	0.000988016	0.00098812
z_{21}	0.000979115	0.000998012	0.00197713
z_{22}	9.89005×10^{-6}	0.997013672	0.997023562
$\operatorname{Pr}(s)$	0.000999311	0.999000689	

5. Determine Alice's returns and Ralph's log-returns per unit of total wealth invested from a Kelly investment strategy in each transition state, $r_{11}, r_{12}, r_{21}, r_{22}$ for each signal $z_{i j}$.
6. What is the expected gain from the information if the initial state is unknown? Compare

$$
E[\text { gain }]=E[r \mid z]-E\left[r^{p s s}\right]
$$

with mutual information

$$
I(s ; z)=H(s)+H(z)-H(s, z)
$$

where H refers to entropy

$$
H(\circ)=-\sum p_{i} \log p_{i}
$$

and $E\left[r^{p s s}\right]$ is the expected log-return when the fraction of wealth invested in each Arrow-Debreu portfolio equals p - the steady-state probability (in other words, Ralph has no information - not even initial state information) and $E[r \mid z]$ is the expected log-return when the fraction of wealth invested in each Arrow-Debreu portfolio equals the conditional state probability given information $z_{i j}$.
7. What is the expected gain from the information in each initial state i when the initial state is known? Compare

$$
E\left[\text { gain }_{i}\right]=E\left[r_{i} \mid z_{i}\right]-E\left[r_{i}\right]
$$

with mutual information

$$
I\left(s_{i} ; z_{i}\right)=H\left(s_{i}\right)+H\left(z_{i}\right)-H\left(s_{i}, z_{i}\right)
$$

