
Ralph’s Kelly-Ross Investments

Ralph believes managing his investments/projects in accordance with the
Kelly-Ross theorem gives him the best chance of meeting his financial goals.
The Kelly-Ross theorem combines Ross’ recovery theorem with Kelly’s mutual
information theorem. Ralph understands the strategy places demands on his
management skills as it involves no arbitrage (positive state prices) and scalable
investment projects that span the state space to accommodate construction of
Arrow-Debreu assets.

Ross’ recovery theorem. Ross’ [2011]1 recovery theorem says that in a com-
plete, pure exchange market setting, linear no arbitrage equilibrium state prices
convey a representative investor’s state probability assignments. That is, state
prices convey Markovian state transition probabilities (and preferences regard-
ing timing of consumption and risk) for a representative investor. This is in the
spirit of assigning probabilities based on what we know, in other words, maxi-
mum entropy probability assignment. The representative investor’s beliefs (and
risk preferences) are consistent with equilibrium asset (and state) prices and the
representative investor’s consumption preferences have at least the same order-
ing as aggregate consumption (the sum of individual investors’ consumption).
That is, we can characterize "market" beliefs and preferences as if there exists
a representative investor.
The key is the pricing kernel which says the (state) price, pij , per unit

probability, fij , is equal to a personal discount factor, , times the ratio of
marginal utilities for consumption in the future state, cj , to current, c0, where
j refers to the future state.

pij
fij

= 
U

0
(cj)

U 0 (c0)

In other words, a representative investor with wealth or endowment, W0, solves
for optimal consumption subject to a budget or wealth constraint.

max
c0,cj0

U (c0) + 
nX

j=1

fijU (cj)

s.t. c0 +
Pn

j=1 pijcj W0

The first order conditions for the Lagrangian representation of the above opti-
mization problem yield the pricing kernel.

 = U
0
(c0)

fijU
0
(cj) = pijU

0
(c0)

For Markovian transition probabilities assigned as F = 1
DPD

1 where D is
a diagonal matrix with elements U

0
(c1) , . . . , U

0
(cn) and with U

0
(c0) = U

0
(ci),

1Ross, S. 2011, "The recovery theorem," MIT working paper.
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then the pricing kernel for the representative investor is2

pij
fij

= 
U

0
(cj)

U 0 (ci)

State transition probability assignment follows from eigensystem decompo-
sition of the dynamic system of state prices P along with the requirement the
rows of F sum to one.

P  = 

where, by the Perron-Frobenius theorem,  is the positive-valued eigenvector
associated with the largest eigenvalue . The Perron-Frobenius theorem says
for a nonnegative matrix the largest eigenvalue and its associated eigenvector
are nonnegative. Since P is a matrix of state prices, P is a nonnegative matrix
(otherwise, there exist arbitrage opportunities).
Let  be a vector of ones and recall eigenvectors are scale-free, P () =  ()

implies P  = . Then, we can write

D1 = 

with  scaled appropriately. Notice, the pricing kernel is also scale-free as only
ratios of marginal utilities enter. Collecting terms, we have

P  = 

PD1 = D1
1


DPD1 = 

F  = 

which confirms that F is a proper probability assignment as the terms are
nonnegative and sum to one.
This eigensystem decomposition of P follows directly from the pricing kernel

2Constant relative risk aversion is represented as

U (c) =
c1r

1 r

where r ! 1 leads to U (c) = ln c. Constant relative risk aversion is attractive as a change in
wealth leads to no change in the relative composition of an individual’s portfolio (fraction of
wealth invested in various assets). For constant relative risk aversion, relative marginal utility
is

U
0
(cj)

U 0 (ci)
=


cj

ci

r

and logarithmic relative marginal utility is

U
0
(cj)

U 0 (ci)
=


cj

ci

1
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and risk preference independence over initial states.

pij
fij

= 
U

0
(cj)

U 0 (ci)

pij
U

0
(ci)

U 0 (cj)
= fij

Since fij is a probability distribution given initial state i,
P

j fij = 1. Therefore,

X

j

pij
U

0
(ci)

U 0 (cj)
= 

X

j

fij = 

pi1
U

0
(ci)

U 0 (c1)
+ · · ·+ pin

U
0
(ci)

U 0 (cn)
= 

pi1
1

U 0 (c1)
+ · · ·+ pin

1

U 0 (cn)
= 

1

U 0 (ci)

For initial states, i = 1, . . . , n, we have n equations. In matrix form, this is

P

2

664

1
U 0 (c1)

...
1

U 0 (cn)

3

775 = 

2

664

1
U 0 (c1)

...
1

U 0 (cn)

3

775

This is the eigensystem decomposition of P

PD1 = D1

where the eigenvector associated with the largest eigenvalue  is

D1 =

2

664

1
U 0 (c1)

0 0

0
. . . 0

0 0 1
U 0 (cn)

3

775

2

64
1
...
1

3

75

=

2

664

1
U 0 (c1)

...
1

U 0 (cn)

3

775

Kelly’s long-run wealth maximizing investment strategy. A Kelly in-
vestment strategy produces maximum long-run wealth where weights, k, on
Arrow-Debreu portfolios match assigned state probabilities, k = p, and in-
formation revising state probabilities, p (s), is met with portfolio rebalancing
accordingly.
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Long-run wealth maximization implies maximizing the geometric mean of
portfolio returns or expected compound returns

max
k

nY

i1


ki
yi

p(si)

s.t.
Pn

i=1 ki = 1

or equivalently, and perhaps more familiarly, (arithmetic) mean of logarithmic
returns

max
k

E
h
log ky

i
 p (s)T log (k)

s.t.
Pn

i=1 ki = 1

where ki is the fraction of wealth invested in project i, y > 0 is a vector of
no-arbitrage state prices (or Arrow-Debreu prices) derived from Ay = x,  is
a diagonal matrix comprised of 1

yi
, A is an n  n matrix of returns with rows

referring to projects and columns to states, and x is a vector of investments
(normalized to unity).3

The first order conditions for the Lagrangian associated with the logarithmic
returns frame above regarding long-run wealth maximization is

L =
nX

i=1

pi ln


ki
1

yi


 

 
nX

i=1

k  1

!

are
pi
ki
  = 0, for all i

Since
P
ki = 1 =

P pi
 = 1

 ,  = 1 and ki = pi. In other words, probability
assignment to state i identifies the optimal fractional investment in state i.

3Weights on the nominal assets are

wT = kTA1

where maximizing compound (or geometric mean) return on investment is

max
w

G [r] =
nQ
j=1


wTAj

pj

s.t. wT  = 1

or equivalently maximizing the arithmetic mean (expected value) of the natural logarithm of
returns is

max
w

E [r] =
Pn
j=1 pj ln


wTAj



s.t. wT  = 1

and wi (element i of vector w) is portion of wealth invested in project i (this quantity may
be negative which translates into borrowing against its future payo§, that is borrow the
investment amount and return the payo§ to the lender), Aj is column j of A or return (payo§
on investment equal to one) on project i in state j (so that

Pm
i=1 wirij = wTAj is the

return on the portfolio of projects in state j), pj is the probability assigned to state j, and
G [r] = exp (E [r]).
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Mutual information theorem. The mutual information theorem says the
expected gain from information equals mutual information.

E [r | z] E [r] = I (s; z)

where expected long-run wealth is maximized by equating portfolio weights on
Arrow-Debreu assets, kj , with assigned state probabilities, Pr (sj), and state
transition probabilities, Pr (sj | zi).4

E [ri] =

nX

j=1

Pr (sj | zi) log
kj
yij

=

nX

j=1

Pr (sj | zi) log
Pr (sj)

yij

for initial state i and transition (from state i to j) state price yij (returns are 1
yij

as the payo§ is one and a state price of yij). Unconditional expected long-run
returns are

E [r] =

nX

i=1

Pr (zi)E [ri]

On the other hand, information z fully accounts for state transition likelihoods,
Pr (sj | zi), and results in

E [ri | zi] =
nX

j=1

Pr (sj | zi) log
Pr (sj | zi)

yij

and

E [r | z] =
nX

i=1

Pr (zi)E [ri | zi]

The expected gain from information z is

E [r | z] E [r]

Mutual information is

I (s; z) = H (s) +H (z)H (s, z)

where H (·) = 
Pn

j=1 Pr (·) log Pr (·) or entropy associated with states (s), in-
formation (z), or states and information jointly (s, z). While expected gains
and mutual information appear to have entirely di§erent units, a Kelly invest-
ment strategy produces an equivalence between the two seemingly disparate
quantities.

4Pr (sj | zi) is equivalent to Fij in the discussion of Ross’ recovery theorem. The notation
adopted here is intended to emphasize the conditioning on knowledge of the current state as
well as price information dynamics.
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The Kelly-Ross theorem. The Kelly-Ross theorem says if state transition
probabilities are assigned in accordance with Ross’ recovery theorem to reflect
price dynamic information (z)

F =
1


DPD1

where spanning is satisfied and P > 0, and investments are made in accordance
with the Kelly criterion to maximize expected long-run value based on known
initial states then the expected long-run rate of return, E [r | z], equals log 1
and the expected long-run growth rate, exp (E [r | z]), equals 1

 .
Notice, this says if Ralph assigns probabilities that take into account the

information in prices and employs a Kelly investment strategy (to maximize ex-
pected long-run wealth) then the long-run expected growth rate is immediately
identified as 1 , the reciprocal of the largest eigenvalue of P , the transition state
price matrix. Hence, remarkably, as in the mutual information theorem, returns
and probabilities are linked even though they seem to involve di§erent units.

Scenario 1. Suppose Ralph believes returns associated with initial state one
are

A1 =

"
1.02 1.02

1.1 1
1.1

#

and for initial state two returns are

A2 =

"
1.02 1.02

1 1.1

#

Throughout investments are normalized to unity, that is,

x =


1
1



Suggested: 1. Solve Ay = x for each initial state and create the transition

state price matrix, P =

yT1
yT2


.

2. Find the largest eigenvalue, , and associated eigenvector, , for P .
3. Assign state transition probabilities based on state price information.

F =
1


DPD1

where D1 is a diagonal matrix comprised of the elements of .
4. Employ a Kelly investment strategy given the initial state is known and

find E [ri] = Fi log

iF

T
i


for each initial state i where i is a diagonal matrix

with elements 1
yi
(the reciprocal of state prices associated with initial state i)

and Fi is the ith row of F .
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5. Determine E [r] by first determining the unconditional steady-state prob-
abilities, p, then utilize p as weights on E [ri].

E [r] =

nX

i=1

piE [ri]

= pT

2

64
E [r1]
...

E [rn]

3

75

Hint: p is an eigenvector of FT associated with an eigenvalue equal to one. That
is, pTF = pT where p is scaled to add to one, pT  = 1.
6. Compare E [r] with log 1 and exp (E [r]) with

1
 .

7. Compare E [r] based on price information with expected log-returns where
Ralph’s investment strategy utilizes p instead of Fi for each initial state i

E [rpssi ] = Fi log (ip)

and

E [rpss] = pT

2

64
E [rpss1 ]
...

E [rpssn ]

3

75

How does this relate to mutual information? Hint: Joint probabilities are piFij
for i, j = 1, . . . , n.
8. Since the recovery theorem is Markovian, the recovery theorem is re-

versible. In other words, we can assign transition probabilities in the reverse
direction (from current to previous state). Let G denote the reverse transition
probability assignment.

G =
1


DGP

TD1
G

where D1
G is a diagonal matrix comprised of the elements of the eigenvector

for PT , say G, associated with . Assign G and verify EG [r] = log
1
 where

EG [ri] = Gi log

iG

T
i



and

EG [r] = p
T

2

64
EG [r1]
...

EG [rn]

3

75

(in other words, the Kelly-Ross theorem applies in reverse as well as forward).
9. F and G represent a full set of conditional probability distributions from

which the joint distribution can be derived. Let Pij denote the joint likelihood
associated with z = i and s = j. The ratio of joint likelihoods can be expressed
in terms of the full set of conditional likelihoods.

Pij
Pk`

=
Fij
Fi`

G`i
G`k

 ck`
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or

Pij 
Fij
Fi`

G`i
G`k

Pk` = 0

Pij  ck`Pk` = 0

Set i = j = 1 and create a system of equations with all permutations of k and `
other than k = ` = 1 along with one equation indicating the sum of Pij equals
one. Now, solve

AP = b

where

A =

2

664

1 c12 0 0
1 0 c21 0
1 0 0 c22
1 1 1 1

3

775

and

b =

2

664

0
0
0
1

3

775

How does the joint distribution P compare with that in 7?

Scenario 2. Suppose Ralph believes returns associated with initial state one
are

A1 =

"
1.01 1.01

1.1 1
1.1

#

and for initial state two returns are

A2 =

"
1.05 1.05

1 1.1

#

Suggested: Repeat 1-9 for scenario 2 and compare with scenario 1.

Scenario 3. Suppose Ralph believes returns associated with initial state one
are

A1 =

2

64

1.02 1.02 1.02

1.1 1
1.1 1

1 1.1 1
1.1

3

75

for initial state two returns are

A2 =

2

64

1.02 1.02 1.02

1 1.1 1
1.1

1.2 1
1.2 1

3

75
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and for initial state three returns are

A3 =

2

64

1.02 1.02 1.02

1 1.3 1
1.3

1.2 1
1.2 1

3

75

Suggested: Repeat 1-9 for scenario 3 and compare with scenarios 1 and 2.
(note: the A matrix in 9 is 9 9 rather than 4 4.)

Scenario 4. Suppose Ralph believes returns associated with initial state one
are

A1 =

2

64

1.01 1.01 1.01

1.1 1
1.1 1

1 1.1 1
1.1

3

75

for initial state two returns are

A2 =

2

64

1.03 1.03 1.03

1 1.1 1
1.1

1.2 1
1.2 1

3

75

and for initial state three returns are

A3 =

2

64

1.05 1.05 1.05

1 1.3 1
1.3

1.2 1
1.2 1

3

75

Suggested: Repeat 1-9 for scenario 4 and compare with scenarios 1, 2 and 3.

Hint: The largest eigenvalue of P can be determined via an iterative (power)
algorithm. Let

bk = Pbk1

where, for instance, the initial vector is b1 = . Next, rescale bk by µk q
bTk1P

TPbk1 (recall, eigenvectors are scale-free).

k =
bk
µk

As k ! n the quantity µk converges to  and k is the associated eigenvector,
that is, P k  µkk ! 0.

Alternatively, let µk 
bTk Pbk
bTk bk

. This follows as eigensystems are defined by

P k = k
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Now, multiply both sides by Tk to generate a quadratic form (scalars on both
sides of the equation).

Tk P k = 
T
k k

Then, isolate the eigenvalue, , by dividing both sides by the right-hand side
scalar, Tk k, to produce the result. As k ! n,

µk 
Tk P k
Tk k

! 

Scenario 5. Suppose Ralph believes returns associated with initial state one
are

A1 =

2

4
1.04 1.03 1.0244
1.1 1

1.1 1
1
1.1 1 1.1

3

5

for initial state two returns are

A2 =

2

4
1.04 1.03 1.01912
1.2 1

1.1 1
1
1.1 1 1.2

3

5

and for initial state three returns are

A3 =

2

4
1.04 1.03 1.01523
1.3 1

1.1 1
1
1.1 1 1.3

3

5

Suggested: Repeat 1-9 for scenario 5 and compare with scenarios 1, 2, 3, and
4.
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