Ralph's inverse

Let I be the identity matrix, that is, the matrix when multiplied by another matrix or vector leaves that matrix or vector as the product, $\mathrm{A} I=\mathrm{I} A=\mathrm{A}$. When a matrix is square and composed of linearly independent rows and columns (it is full rank), its inverse exists, $\mathrm{AA}^{-1}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$. Suppose $\mathrm{A}=\left[\begin{array}{ccc}1 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 1 & -1\end{array}\right]$ and $\mathrm{x}=\left[\begin{array}{c}5 \\ -2 \\ 2\end{array}\right]$.

Required:

1. Find a matrix A^{-1} such that $A^{-1}=A^{-1} A=I$.
2. Find y such that $A y=x$. Hint: multiply both sides of $A y=x$ by A^{-1}.
3. Use Gaussian elimination and back substitution to solve for y such that $\mathrm{Ay}=\mathrm{x}$. Notice, Gaussian elimination is effectively $\mathrm{A}=\mathrm{LU}$, the product of lower and upper triangular matrices, where $\mathrm{L}^{-1} \mathrm{~A}=\mathrm{L}^{-1} \mathrm{LU}=\mathrm{U}$ or $\mathrm{AU}^{-1}=\mathrm{LUU}^{-1}=\mathrm{L}$ and $\mathrm{U}^{-1} \mathrm{~L}^{-1} \mathrm{LU}=\mathrm{A}^{-1} \mathrm{~A}=\mathrm{I}$.
