Ralph's Information Partition

We now find Ralph thinking about multiple sources of information.
A. Consider the following matrix, concerning the cash flow random variable $\mathrm{CF}=100$ or $\mathrm{CF}=200$, along with two information sources. One source reports "g" or "b" while the other reports " s " or " u ". Joint probabilities are given in the following table.

	$\mathrm{CF}=100$		$\mathrm{CF}=200$	
	g	b	g	b
s	.02	.16	.08	.04
u	.40	.02	.20	.08

Required:

Suppose Ralph installs both information sources. Determine the expected value of CF conditional on no information, on g only, on b only, on s only, on u only, and on g and s, g and u, b and s , and b and u .

Can you express these changes in CF expectation as $140+\varepsilon_{1}+\varepsilon_{2}$ (constant plus additive shocks), where the first "shock" term comes from the g / b report and the second shock comes from the s/u report? If not, explain.
B. Suppose cash flows are uniformly distributed between zero and 400, and Ralph installs an information system that reports two pairs of signals:
$\mathrm{y}_{1}=$ high $(\mathrm{CF} \in(200,400])$ or low $(\mathrm{CF} \in[0,200])$ and
$\mathrm{y}_{2}=$ "odd" $(\mathrm{CF} \in[0,100] \cup(200,300])$ or "even" $(\mathrm{CF} \in(100,200] \cup(300,400])$.
Hence, the joint density is

$$
\mathrm{f}\left(\mathrm{CF}, \mathrm{y}_{1}, \mathrm{y}_{2}\right)=1 / 400, \quad 0 \leq \mathrm{CF} \leq 400,
$$

with $\mathrm{E}[\mathrm{CF}]=200$ and $\operatorname{Var}[\mathrm{CF}]=40,000 / 3$.

Required:

1. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{1}=$ high .
2. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{1}=$ low.
3. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{2}=$ "odd".
4. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{2}=$ "even".
5. Determine the conditional distribution, mean, and variance for CF given $y_{1}=$ high and $\mathrm{y}_{2}=$ "odd".
6. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{1}=$ high and $\mathrm{y}_{2}=$ "even".
7. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{1}=$ low and $\mathrm{y}_{2}=$ "odd".
8. Determine the conditional distribution, mean, and variance for CF given $\mathrm{y}_{1}=$ low and $\mathrm{y}_{2}=$ "even".
9. Determine $\mathrm{E}_{\mathrm{y} 1}\left[\mathrm{E}\left[\mathrm{CF} \mid \mathrm{y}_{1}\right]\right], \mathrm{E}_{\mathrm{y} 2}\left[\mathrm{E}\left[\mathrm{CF} \mid \mathrm{y}_{2}\right]\right]$, and $\mathrm{E}_{\mathrm{y} 1, y 2}\left[\mathrm{E}\left[\mathrm{CF} \mid \mathrm{y}_{1}, \mathrm{y}_{2}\right]\right]$. How do these quantities compare with $\mathrm{E}[\mathrm{CF}]$?
10. Determine $\mathrm{E}_{\mathrm{y} 1}\left[\operatorname{Var}\left[\operatorname{CF} \mid \mathrm{y}_{1}\right]\right]+\operatorname{Var}_{\mathrm{y} 1}\left[\mathrm{E}\left[C F \mid \mathrm{y}_{1}\right]\right], \mathrm{E}_{\mathrm{y} 2}\left[\operatorname{Var}\left[C F \mid \mathrm{y}_{2}\right]\right]+\operatorname{Var}_{\mathrm{y} 2}\left[\mathrm{E}\left[C F \mid \mathrm{y}_{2}\right]\right]$, and $\mathrm{E}_{\mathrm{y} 1, y_{2}}\left[\operatorname{Var}\left[\operatorname{CF} \mid \mathrm{y}_{1}, \mathrm{y}_{2}\right]\right]+\operatorname{Var}_{\mathrm{y} 1, \mathrm{y} 2}\left[\mathrm{E}\left[\mathrm{CF} \mid \mathrm{y}_{1}, \mathrm{y}_{2}\right]\right]$. How do these quantities compare with $\operatorname{Var}[\mathrm{CF}]$?
