Ralph's Information Partition

We now find Ralph thinking about multiple sources of information.

A. Consider the following matrix, concerning the cash flow random variable CF = 100 or CF = 200, along with two information sources. One source reports "g" or "b" while the other reports "s" or "u". Joint probabilities are given in the following table.

	CF = 100		CF = 200	
	g	b	g	b
s	.02	.16	.08	.04
u	.40	.02	.20	.08

Required:

Suppose Ralph installs both information sources. Determine the expected value of CF conditional on no information, on g only, on b only, on s only, on u only, and on g and s, g and u, b and s, and b and u.

Can you express these changes in CF expectation as $140 + \varepsilon_1 + \varepsilon_2$ (constant plus additive shocks), where the first "shock" term comes from the g/b report and the second shock comes from the s/u report? If not, explain.

B. Suppose cash flows are uniformly distributed between zero and 400, and Ralph installs an information system that reports two pairs of signals:

 $y_1 = high (CF \in (200,400]) \text{ or low } (CF \in [0,200]) \text{ and}$

 $y_2 = \text{``odd''} (CF \in [0,100] \cup (200,300]) \text{ or ``even''} (CF \in (100,200] \cup (300,400]).$

Hence, the joint density is

 $f(CF,y_1,y_2) = 1/400, \quad 0 \le CF \le 400,$

with E[CF] = 200 and Var[CF] = 40,000/3.

Required:

1. Determine the conditional distribution, mean, and variance for CF given $y_1 = high$.

2. Determine the conditional distribution, mean, and variance for CF given $y_1 = low$.

3. Determine the conditional distribution, mean, and variance for CF given $y_2 =$ "odd".

4. Determine the conditional distribution, mean, and variance for CF given $y_2 =$ "even".

5. Determine the conditional distribution, mean, and variance for CF given $y_1 =$ high and $y_2 =$ "odd".

6. Determine the conditional distribution, mean, and variance for CF given $y_1 =$ high and $y_2 =$ "even".

7. Determine the conditional distribution, mean, and variance for CF given $y_1 = low$ and $y_2 = "odd"$.

8. Determine the conditional distribution, mean, and variance for CF given $y_1 = low$ and $y_2 = "even"$.

9. Determine $E_{y_1}[E[CF | y_1]]$, $E_{y_2}[E[CF | y_2]]$, and $E_{y_1,y_2}[E[CF | y_1,y_2]]$. How do these quantities compare with E[CF]?

10. Determine $E_{y_1}[Var[CF | y_1]] + Var_{y_1}[E[CF | y_1]], E_{y_2}[Var[CF | y_2]] + Var_{y_2}[E[CF | y_2]],$ and $E_{y_1,y_2}[Var[CF | y_1,y_2]] + Var_{y_1,y_2}[E[CF | y_1,y_2]]$. How do these quantities compare with Var[CF]?