Ralph's inequality

Ralph believes Bell's inequality typifies quantum weirdness as well as the power of information (everything is fundamentally information). Suppose the entangled state of a system is $\left|\beta_{11}\right\rangle=\frac{1}{\sqrt{2}}(|01\rangle-|10\rangle)$ and an observable is

$$
A=X_{1} S_{2}+X_{1} T_{2}+Z_{1} S_{2}-Z_{1} T_{2}
$$

where the subscript refers to the qubit on which the transformation operates, $S=-\frac{1}{\sqrt{2}}(X+Z)$ and $T=-\frac{1}{\sqrt{2}}(X-Z)$.

Required:

1. Find the expected value of A with respect to the state of the system $\left|\beta_{11}\right\rangle$. That is, evaluate $\langle A\rangle=\left\langle\beta_{11}\right| A\left|\beta_{11}\right\rangle$.
2. Each component of $A(X, Z, S$, and $T)$ has eigenvalues ± 1, what is the maximum value of $A=X(S+T)+Z(S-T)$ from a classical perspective? (Hint: either $S+T$ or $S-T$ is 0 .) How does this compare with your result in 1 ? What does this suggest about the power or synergy of entanglement?
