Ralph's Implicit Incentives¹

Ralph, a risk neutral individual, manages two products. Ralph and others who value his services (the market, also risk neutral) understand he impacts production as follows.

$$q_1 = \alpha_1 \theta + \beta_1 e + \varepsilon_1$$

$$q_2 = \alpha_2 \theta + \beta_2 e + \varepsilon_2$$

where q_i is production of product *i*, θ represents Ralph's permanent skill contribution, e represents Ralph's transitory effort, ε_i represents mean zero normally distributed variation in production (variance σ_{ε}^2) with precision $\tau_{\varepsilon} = \frac{1}{\sigma_{\varepsilon}^2}$, and α_i represents product *i*'s sensitivity to skill while β_i represents product *i*'s sensitivity to effort (for simplicity, α_i and β_i are each normalized to sum to one; $\alpha_1 + \alpha_2 = 1$ and $\beta_1 + \beta_2 = 1$). Production is observable to all parties but not contractible as it is not mutually verifiable. Hence, Ralph does not have a pay-for-performance (explicit incentives) employment contract. Alternatively, Ralph is paid a market wage that reflects his perceived (permanent or skill) value.²

However, since production bundles skill and effort contributions, Ralph may try to finesse the market's perception of his skill by increasing effort. The market recognizes such posturing motives and conjectures effort \hat{e} . Given this conjecture, evidence regarding Ralph's skill from observed production is

$$\Im\left(\theta\right) = \frac{q_i - \beta_i \widehat{e}}{\alpha_i}$$

Prior to first period production, Ralph's wage, w_1 , is equal to the market's prior beliefs (with precision τ_{θ}) regarding Ralph's skill, $\overline{\theta}$. After production is reported, Ralph's wage, w_2 , reflects revised beliefs regarding Ralph's skill. Importantly, production reports can be aggregated, $q_1 + q_2$, or disaggregated, (q_1, q_2) . The market's updated expectation of Ralph's skill given aggregate production and conjectured effort, \hat{e} , is

$$E\left[\theta \mid q_1 + q_2, \widehat{e}\right] = \frac{\tau_{\theta}\overline{\theta} + \tau_{\varepsilon}/2\left(q_1 + q_2 - \widehat{e}\right)}{\tau_{\theta} + \tau_{\varepsilon}/2}$$

Similarly, the market's updated expectation of Ralph's skill given disaggregate production and conjectured effort, \hat{e} , is

$$E\left[\theta \mid q_1, q_2, \widehat{e}\right] = \frac{\tau_{\theta}\overline{\theta} + \tau_{\varepsilon}\alpha_1^2 \left(q_1 - \beta_1\widehat{e}\right)/\alpha_1 + \tau_{\varepsilon}\alpha_2^2 \left(q_2 - \beta_2\widehat{e}\right)/\alpha_2}{\tau_{\theta} + \tau_{\varepsilon}\alpha_1^2 + \tau_{\varepsilon}\alpha_2^2}$$

Ralph's expected utility for discounted (at rate δ) expected continuation wages, w_2 , based on aggregate production is

$$EU = \delta E \left[\theta \mid q_1 + q_2, \hat{e} \right] - v \left(e \right)$$

¹Adapted from Arya and Mittendorf, "The benefits of aggregate performance metrics in the presence of career concerns." ²Recall flat wages are ineffective in supplying incentives for transitory inputs like effort.

where $v(e) = \frac{1}{2}e^2$ represents Ralph's personal cost of effort. Ralph, of course, chooses e and the first order condition for the maximization problem is

$$\frac{\delta \tau_{\varepsilon}/2}{\tau_{\theta} + \tau_{\varepsilon}/2} = \frac{dv(e)}{de}$$
$$\frac{\delta \tau_{\varepsilon}/2}{\tau_{\theta} + \tau_{\varepsilon}/2} = e^{A}$$

 $e^A = \hat{e}^A$ is the (rational expectations) equilibrium for aggregate production.

Likewise, Ralph's expected utility for discounted expected continuation wages, w_2 , based on disaggregate production is

$$EU = \delta E \left[\theta \mid q_1, q_2, \hat{e} \right] - v \left(e \right)$$

The first order condition for the disaggregate production maximization problem is

$$\begin{array}{lll} \displaystyle \frac{\delta \tau_{\varepsilon} \left(\alpha_{1} \beta_{1} + \alpha_{2} \beta_{2} \right)}{\tau_{\theta} + \tau_{\varepsilon} \alpha_{1}^{2} + \tau_{\varepsilon} \alpha_{2}^{2}} & = & \displaystyle \frac{dv \left(e \right)}{de} \\ \\ \displaystyle \frac{\delta \tau_{\varepsilon} \left(\alpha_{1} \beta_{1} + \alpha_{2} \beta_{2} \right)}{\tau_{\theta} + \tau_{\varepsilon} \alpha_{1}^{2} + \tau_{\varepsilon} \alpha_{2}^{2}} & = & e^{D} \end{array}$$

 $e^D = \hat{e}^D$ is the (rational expectations) equilibrium for disaggregate production. The sequence of events is summarized in the following timeline.

Ralph is	Ralph	labor market	labor market
offered an	exerts	learns	determines
in initial	effort \boldsymbol{e}	either	Ralph's
wage, w_1		$x_1 + x_2$ or	continuation
		(x_1, x_2)	wage, w_2

$\operatorname{timeline}$

Suppose common knowledge parameters are

$$\alpha_1 = \frac{2}{3} \quad \alpha_2 = \frac{1}{3}$$
$$\beta_1 = \frac{1}{3} \quad \beta_2 = \frac{2}{3}$$
$$\overline{\theta} = \frac{1}{2} \quad \tau_\theta = \frac{1}{3}$$
$$\tau_\varepsilon = \frac{1}{2}$$
$$\delta = 1$$

While only Ralph knows his skill is $\theta = \frac{5}{11}.^3$

³You might find it interesting to contrast your results with $\theta = \frac{6}{11}$ or $\theta = \overline{\theta}$.

Required:

1. For aggregate production, find Ralph's equilbrium effort level e^A , expected continuation wage $E\left[\theta \mid q_1 + q_2, \hat{e}^A\right]$, and EU where $q_1 + q_2 = E\left[q_1 + q_2 \mid \theta\right]$.

2. For disaggregate production, find Ralph's equilbrium effort level e^D , expected continuation wage $E\left[\theta \mid q_1, q_2, \hat{e}^D\right]$, and EU where $q_1 = E\left[q_1 \mid \theta\right]$ and $q_2 = E\left[q_2 \mid \theta\right]$.

3. Expected surplus is $EU(Ralph) + EU(employer) = \{E[wage] - v(e)\} + \{E[q_1 + q_2] - E[wage]\} = E[q_1 + q_2] - v(e).^4$ Is aggregate or disaggregate production more efficient (greater expected surplus)? For which features of this setting might accounting play a role?

4. Suppose $\alpha_1 = \beta_1 = \frac{2}{3}$ and $\alpha_2 = \beta_2 = \frac{1}{3}$, repeat questions 1-3.

$$\frac{dE\left[q_1+q_2\right]}{de} = \frac{dv\left(e\right)}{de}$$
$$1 = e$$

⁴First-best marginal expected surplus in effort is

Appendix

Here we illustrate belief updating with one signal — aggregate and disaggregate belief updating is analogous. Prior beliefs regarding skill are

$$\theta = \overline{\theta} + \varepsilon_{\theta}$$

where

$$\varepsilon_{\theta} \sim N\left(0, \sigma_{\theta}^2\right)$$

Production evidence is

$$q = \alpha \theta + \beta e + \varepsilon$$

where

$$\varepsilon \sim N\left(0, \sigma_{\varepsilon}^2\right).$$

Taking α , β , and e as known constants, we have

$$q \sim N\left(\alpha \overline{\theta} + \beta e, \alpha^2 \sigma_{\theta}^2 + \sigma_{\varepsilon}^2\right)$$

Hence,

$$\begin{bmatrix} \theta \\ q \end{bmatrix} \sim N\left(\begin{bmatrix} \overline{\theta} \\ \alpha \overline{\theta} + \beta e \end{bmatrix}, \begin{bmatrix} \sigma_{\theta}^2 & \alpha \sigma_{\theta}^2 \\ \alpha \sigma_{\theta}^2 & \alpha^2 \sigma_{\theta}^2 + \sigma_{\varepsilon}^2 \end{bmatrix} \right)$$

Then, posterior beliefs regarding skill given production evidence is

$$(\theta \mid q = q_0) \sim N \left(E \left[\theta \mid q = q_0 \right], Var \left[\theta \mid q \right] \right)$$

where

$$E\left[\theta \mid q = q_{0}\right] = \overline{\theta} + \frac{\alpha \sigma_{\theta}^{2}}{\alpha^{2} \sigma_{\theta}^{2} + \sigma_{\varepsilon}^{2}} \left(q_{0} - \alpha \overline{\theta} - \beta e\right)$$
$$= \frac{\overline{\theta} \sigma_{\varepsilon}^{2} + \alpha \sigma_{\theta}^{2} \left(q_{0} - \beta e\right)}{\alpha^{2} \sigma_{\theta}^{2} + \sigma_{\varepsilon}^{2}}$$

and

$$Var\left[\theta \mid q\right] = \sigma_{\theta}^{2} - \frac{\left(\alpha \sigma_{\theta}^{2}\right)^{2}}{\alpha^{2} \sigma_{\theta}^{2} + \sigma_{\varepsilon}^{2}}$$
$$= \frac{\sigma_{\theta}^{2} \sigma_{\varepsilon}^{2}}{\alpha^{2} \sigma_{\theta}^{2} + \sigma_{\varepsilon}^{2}}.$$

Write prior and evidence precision as $\tau_{\theta} = \frac{1}{\sigma_{\theta}^2}$ and $\tau_{\varepsilon} = \frac{1}{\sigma_{\varepsilon}^2}$. Then, we can rewrite posterior parameters in terms of weighted precisions.

$$E\left[\theta \mid q = q_0\right] = \frac{\theta \tau_{\theta} + \alpha \tau_{\varepsilon} \left(q_0 - \beta e\right)}{\tau_{\theta} + \alpha^2 \tau_{\varepsilon}}$$

and

$$Var\left[\theta \mid q\right] = \frac{1}{\tau_{\theta} + \alpha^2 \tau_{\varepsilon}}.$$