Ralph's heterogeneous partnership ${ }^{1}$

Part A:

Alice and Ralph are contemplating a partnership venture in which each dollar invested returns an uncertain amount y. They can borrow any amount a and repay $h a=1.02 a$ such that the payoff is $x=a y-1.02 a$. Alice assigns y a normal distribution with mean $m_{A}=50$ and variance $v=1,000$ while Ralph assigns y a normal distribution with mean $m_{R}=60$ and variance $v=1,000$. Alice's preferences are represented by $U_{A}(x)=-\exp \left[-\frac{x}{\tau_{A}}\right]=-\exp [-0.008 x]$ and Ralph's preferences are represented by $U_{R}(x)=-\exp \left[-\frac{x}{\tau_{R}}\right]=-\exp [-0.002 x]$.

Suggested:

1. Suppose Alice and Ralph each pursue the investment opportunity on their own. Determine the optimal amount of borrowing a (in other words, the scale of the operation) and the corresponding certainty equivalent for each. (Hint: the certainty equivalent with exponential utility, linear payoffs with a normal distribution is $C E=E[x]-\frac{1}{2 \tau} \operatorname{Var}[x]$ where τ is risk tolerance or inverse of risk aversion $\frac{1}{\rho}$).

The following efficient risk sharing rules for the partnership are Pareto optimal or efficient.

$$
\begin{aligned}
s_{A}= & x \frac{\tau_{A}}{T}+ \\
& \left(\frac{1}{\tau_{A}}+\frac{1}{\tau_{R}}\right)^{-1} \frac{1}{2}\left[-\frac{\left(y-m_{A}\right)^{2}}{v}+\frac{\left(y-m_{R}\right)^{2}}{v}+2 \log \frac{\alpha_{A}}{1-\alpha_{A}}\right] \\
= & x \frac{\tau_{A}}{T}+ \\
& \left(\frac{1}{\tau_{A}}+\frac{1}{\tau_{R}}\right)^{-1}\left[\frac{\left(y-\left(m_{A}+m_{R}\right) / 2\right)\left(m_{A}-m_{R}\right)}{v}+\log \frac{\alpha_{A}}{1-\alpha_{A}}\right]
\end{aligned}
$$

and

$$
\begin{aligned}
s_{R}= & x \frac{\tau_{R}}{T}+ \\
& \left(\frac{1}{\tau_{A}}+\frac{1}{\tau_{R}}\right)^{-1} \frac{1}{2}\left[-\frac{\left(y-m_{R}\right)^{2}}{v}+\frac{\left(y-m_{A}\right)^{2}}{v}+2 \log \frac{1-\alpha_{A}}{\alpha_{A}}\right] \\
= & x \frac{\tau_{R}}{T}+ \\
& \left(\frac{1}{\tau_{A}}+\frac{1}{\tau_{R}}\right)^{-1}\left[\frac{\left(y-\left(m_{R}+m_{A}\right) / 2\right)\left(m_{R}-m_{A}\right)}{v}+\log \frac{1-\alpha_{A}}{\alpha_{A}}\right]
\end{aligned}
$$

[^0]where $T=\tau_{A}+\tau_{R}, s_{A}+s_{R}=x$, and $\alpha_{A}\left(\alpha_{R}=1-\alpha_{A}\right)$ is the weight on Alice's (Ralph's) expected utility to form the partnership's preference measure.
$$
E_{0}\left[U_{0}(x)\right]=\alpha_{A} E_{A}\left[U_{A}\left(s_{A} x\right)\right]+\left(1-\alpha_{A}\right) E_{R}\left[U_{R}\left(s_{R} x\right)\right]
$$

Assigning the following parameters gives a consistent partnership normal probability distribution over y with variance mean $m_{0}=v\left(\frac{\tau_{A} m_{A}}{T v_{A}}+\frac{\tau_{R} m_{R}}{T v_{R}}\right)$. Then, the partnership's certainty equivalent is

$$
C E_{0}=a m_{0}-1.02 a_{0}-\frac{1}{2 T} v a_{0} h^{2}
$$

and the partnership's optimal borrowing (scale of production) chooses a_{0} to maximize $C E$.

$$
a_{0}^{*}=T \frac{m_{0}-1.02}{v}
$$

2. Find the partnership's optimal borrowing a_{0}^{*}.
3. If $\alpha_{A}=0.36823$, determine Alice's and Ralph's certainty equivalents associated with forming the partnership and operating at a_{0}^{*}. (Hint: the sharing rules $s_{A}=b_{A}+d_{A} y$ and $s_{R}=b_{R}+d_{R} y$ result in linear sharing arrangements where $b_{A}+b_{R}=-1.02 a_{0}$ and $d_{A}+d_{R}=a_{0}$.) How does this compare with Alice and Ralph pursuing the project on their own? Compare $\frac{d_{A}}{a_{0}}$ with $\frac{a_{A}}{a_{0}}$ and $\frac{d_{R}}{a_{0}}$ with $\frac{a_{R}}{a_{0}}$.
4. Suppose only Alice or Ralph or collectively as partners can pursue the project (without substantially impairing its attractiveness), who should own it Alice, Ralph, or the partnership? (Hint: you might explore Alice's and Ralph's certainty equivalent operating at a_{0}^{*}.)

Part B:

Suppose beliefs and preferences remain as above except Ralph assigns variance of y equal to $v_{R}=1,200$ (on the other hand, Alice continues to assign variance equal to $v_{A}=1,000$). This added heterogeneity of beliefs results in modified Pareto efficient sharing rules.

$$
\begin{aligned}
s_{A}= & x \frac{\tau_{A}}{T}+ \\
& \left(\frac{1}{\tau_{A}}+\frac{1}{\tau_{R}}\right)^{-1} \frac{1}{2}\left[-\frac{\left(y-m_{A}\right)^{2}}{v_{A}}+\frac{\left(y-m_{R}\right)^{2}}{v_{R}}-\log \frac{v_{A}}{v_{R}}+2 \log \frac{\alpha_{A}}{1-\alpha_{A}}\right]
\end{aligned}
$$

and
$s_{R}=x \frac{\tau_{R}}{T}+$

$$
\left(\frac{1}{\tau_{A}}+\frac{1}{\tau_{R}}\right)^{-1} \frac{1}{2}\left[-\frac{\left(y-m_{R}\right)^{2}}{v_{R}}+\frac{\left(y-m_{A}\right)^{2}}{v_{A}}-\log \frac{v_{R}}{v_{A}}+2 \log \frac{1-\alpha_{A}}{\alpha_{A}}\right]
$$

As the sharing rules produce quadratic rather than linear payments in y, the partner's certainty equivalent is modified (on the other hand, operating individually the payoffs continue to be linear in y). Let a partner's payments be

$$
c_{0}^{j}+c_{1}^{j} y+c_{2}^{j} y^{2}, \quad j=A, R
$$

then the partner's certainty equivalent is
$C E_{j}=\tau_{j}\left\{\frac{v_{j}\left(4 c_{0} c_{2}-c_{1}^{2}\right)+2 \tau_{j}\left(c_{0}+c_{1} m_{j}+c_{2} m_{j}^{2}\right)}{2 \tau_{j}\left(2 c_{2} v_{j}+\tau_{j}\right)}+\frac{1}{2} \log \left(1+\frac{2 c_{2} v_{j}}{\tau_{j}}\right)\right\}$
for $j=A, R$
and the partnership's probability measure has variance

$$
v_{0}=\left(\frac{\tau_{A}}{T v_{A}}+\frac{\tau_{R}}{T v_{R}}\right)^{-1}
$$

and mean

$$
m_{0}=v_{0}\left(\frac{\tau_{A} m_{A}}{T v_{A}}+\frac{\tau_{R} m_{R}}{T v_{R}}\right)
$$

Expanding and simplifying the sharing rules gives

$$
\begin{aligned}
s_{A}= & c_{0}^{A}+c_{1}^{A} y+c_{2}^{A} y^{2} \\
= & \frac{\tau_{A}}{2 T v_{A} v_{R}} \times \\
& {\left[\tau_{R}\left(m_{R}^{2} v_{A}-m_{A}^{2} v_{R}\right)-2 a_{0} h v_{A} v_{R}+\tau_{R} v_{A} v_{R}\left(2 \log \frac{\alpha_{A}}{\alpha_{R}}-\log \frac{v_{A}}{v_{R}}\right)\right] } \\
& +\tau_{A} \frac{\tau_{R}\left(m_{A} v_{R}-m_{R} v_{A}\right)+a_{0} v_{A} v}{T v_{A} v_{R}} y \\
& +\frac{\tau_{A} \tau_{R}\left(v_{A}-v_{R}\right)}{2 T v_{A} v_{R}} y^{2}
\end{aligned}
$$

and

$$
\begin{aligned}
s_{R}= & c_{0}^{R}+c_{1}^{R} y+c_{2}^{R} y^{2} \\
= & \frac{\tau_{R}}{2 T v_{A} v_{R}} \times \\
& {\left[\tau_{A}\left(m_{A}^{2} v_{R}-m_{R}^{2} v_{A}\right)-2 a_{0} h v_{A} v_{R}+\tau_{A} v_{A} v_{R}\left(2 \log \frac{\alpha_{R}}{\alpha_{A}}-\log \frac{v_{R}}{v_{A}}\right)\right] } \\
& +\tau_{R} \frac{\tau_{A}\left(m_{R} v_{A}-m_{A} v_{R}\right)+a_{0} v_{A} v_{R}}{T v_{A} v_{R}} y \\
& +\frac{\tau_{A} \tau_{R}\left(v_{R}-v_{A}\right)}{2 T v_{A} v_{R}} y^{2}
\end{aligned}
$$

where $\alpha_{R}=1-\alpha_{A}$.

Suggested:

1. Suppose Alice and Ralph each pursue the investment opportunity on their own. Determine the optimal amount of borrowing a (in other words, the scale of the operation) and the corresponding certainty equivalent for each.
2. Find the partnership's optimal borrowing a_{0}^{*}.
3. If $\alpha_{A}=0.437421$, determine Alice's and Ralph's certainty equivalents associated with forming the partnership and operating at a_{0}^{*}.
4. Should Alice, Ralph, or the partnership own the project? Explain.

[^0]: ${ }^{1}$ This example draws from Wilson, 1968, "The theory of syndicates," Econometrica 36 no. 1, 119-132.

