
Ralph’s Excess
Ralph owns a production facility comprised of two complementary business

units, each with its own manager. Managerial specialization is important to or-
ganizational success as is coordination between business units to create and take
advantage of synergies. Ralph and the managers realize that production resembles
a Cobb-Douglas input-output relation. That is, many inputs are necessary to pro-
duce any outputs (for example, production halts if only managerial input is utilized)
but there is sufficient flexibility to exploit economic efficiencies as they arise (pro-
duction accommodates substitution of inputs at the margin). However, production
technology is quite dynamic and inherently uncertain. Any measurements (say,
of organizational or individual performance evaluation) are likely to interfere with
production and potentially mute synergy. Incorporation of these features into the
Cobb-Douglas frame is inelegant, so Ralph considers an alternative frame. Drawing
on quantum information theory, Ralph imagines a quantum production technology
frame for his organization.

First, some background on quantum information theory. Then, we consider
Ralph’s quantum production technology. There are four quantum axioms govern-
ing the behavior of quantum probabilities (see Nielsen and Chuang [2002]). The
axioms are outlined in standard quantum bit (qubit) form.

1 Quantum information axioms

1.1 The superposition axiom:

A quantum unit (qubit) is specified by a two element vector, say





, with ||2+

||2 = 1.

Let | 





=  |0+  |1,1 | =





†
where † is the adjoint (conju-

gate transpose) operation.

1Dirac notation is a useful descriptor, as |0 =

1
0


and |1 =


0
1


.
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1.2 The transformation axiom:
A transformation of a quantum unit is accomplished by unitary (length-preserving)
matrix multiplication. The Pauli matrices provide a basis of unitary operators.

I =


1 0
0 1


X =


0 1
1 0



Y =


0 i
i 0


Z =


1 0
0 1



where i =

1. The operations work as follows: I






=






, X






=






, Y






=


i
i


, and Z






=






. Other useful single qubit

transformations are H = 1
2


1 1
1 1


and  =


ei 0
0 1


. Examples of these

transformations, in Dirac notation are

H |0 =
|0+ |1

2

; H |1 =
|0  |1

2

 |0 = ei |0 ;  |1 = |1

1.3 The measurement axiom:
Measurement of a quantum state is accomplished by a linear projection from a
set of projection matrices which add to the identity matrix.2 The probability of a
particular measurement occurring is the squared absolute value of the projection.
(An implication of the axiom not explicitly used here is that the post-measurement
state is the projection appropriately normalized; this effectively rules out multiple
measurement.)

For example, let the projection matrices beM0 = |0 0| =

1 0
0 0


andM1 =

|1 1| =

0 0
0 1


. Note that M0 projects onto the |0 vector and M1 projects

onto the |1 vector. Also note that M †
0M0 +M

†
1M1 = M0 +M1 = I . For | =

2More precisely, the projection matrices satisfy the completeness condition,

m
M†
mMm = I ,

whereM†
m is the adjoint (conjugate transpose) of projection matrixMm.
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 |0 +  |1, the projection of | onto |0 isM0 |. The probability of |0 being
the result of the measurement is |M0 | = ||

2.

1.4 The combination axiom:
Qubits are combined by tensor multiplication. For example, two |0 qubits are

combined as |0  |0 =





1
0
0
0



 denoted |00. It is often useful to transform one

qubit in a combination and leave another unchanged; this can also be accomplished
by tensor multiplication. Let H1 denote a Hadamard transformation on the first

qubit. Then applied to a two qubit system, H1 = H  I = 1
2





1 0 1 0
0 1 0 1
1 0 1 0
0 1 0 1





and H1 |00 = |00+|10
2
.

Another important two qubit transformation is the controlled not operator,

Cnot =





1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





Entangled two qubit states or Bell states are defined as follows,

|00 = Cnot H1 |00 =
|00+ |11


2

and more generally,
ij


= Cnot H1 |ij for i, j = 0, 1

The four two qubit Bell states form an orthonormal basis.

2 Quantum production technology
Next, Ralph describes his frame for quantum production technology.
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2.1 Production technology
Productivity is represented by a two qubit interferometer (transformation function)
and its application to a two qubit state: the pure synergy state is represented by
|00 while the no synergy state is represented by |00. The transformation function
is  = H22H2H11H1. where the managers each supply input i  {l, h}.

Given the no synergy |00 setting, productivity is

 |00 = H22H2H11
|00+ |10


2

= H22H2H1
ei1 |00+ |10


2

= H22H2
ei1 |00+ ei1 |10+ |00  |10

2

= H22
[ei1 + 1][|00+ |01] + [ei1  1][|10+ |11]

2

2

= H2
[ei1 + 1][ei2 |00+ |01] + [ei1  1][ei2 |10+ |11]

2

2

=
[ei1 + 1][ei2(|00+ |01) + (|00  |01)]

4

+
[ei1  1][ei2(|10+ |11) + (|10  |11)]

4

=
[ei1 + 1][(ei2 + 1) |00+ (ei2  1) |01]

4

+
[ei1  1][(ei2 + 1) |10+ (ei2  1) |11]

4
. (A1)

Similarly, given the pure synergy |00 setting, productivity is

 |00 = H22H2H11
|00+ |10+ |01  |11

2

= H22H2H1
ei1 |00+ |10+ ei1 |01  |11

2

= H22H2
[ei1 + 1][|00+ |11] + [ei1  1][|10+ |01]

2

2

= H22
ei1 [|00+ |10] + |01  |11

2

= H2
ei1ei2 [|00+ |10] + |01  |11

2

=
[ei1ei2 + 1] |00+ [ei1ei2  1] |01

2
. (A2)

4



2.2 Projection matrices for measurement
The projection matrices are defined as the sum of the outer product of success vec-
tors. Individual measurement reports a "success" or "failure" signal for each man-
ager’s production. For manager one, the success vectors are |10 and |11; and the
failure vectors are |00 and |01. The projection matrices for manager one are,

MS1 = |10 10|+ |11 11| =





0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1



 , and (A3)

MF1 = |00 00|+ |01 01| =





1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



 . (A4)

Similarly, for manager two, the success vectors are |01 and |11; and the failure
vectors are |00 and |10. The projection matrices for manager two are,

MS2 = |01 01|+ |11 11| =





0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1



 , and (A5)

MF2 = |00 00|+ |10 10| =





1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0



 . (A6)

Note,M †
S1MS1 +M

†
F1MF1 = I , andM †

S2MS2 +M
†
F2MF2 = I .

Group measurement reports a "success" or "failure" signal for both managers.
The success vectors are |01 and |11; and the failure vectors are |00 and |10.
The projection matrices are,

MS = |01 01|+ |11 11| =





0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0



 , and (A7)

MF = |00 00|+ |10 10| =





1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



 . (A8)
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Note,M †
SMS +M

†
FMF = I .

2.3 Measure success probabilities
Project  |00 or  |00 onto success matrices (MS1 or MS).3 The probability of
success is the squared length of the projection vectors. Under individual measure-
ment with no synergy,

prob(success|IN, 1, 2) = 00|†MS1 |00 = MS1 |00
2

=



1

4





0
0

(ei1  1)(ei2 + 1)
(ei1  1)(ei2  1)







2

=
1 cos 1

2
= sin2

1
2
. (A9)

Similarly, under individual measurement with synergy,

prob(success|IS, 1, 2) = 00|
†MS1 |00 = MS1 |00

2

=



1

2

2





0
0

ei1ei2  1
ei1ei2 + 1







2

=
1

2
. (A10)

Under group measurement with no synergy,

prob(success|GN, 1, 2) = 00|†MS |00 = MS |00
2

=



1

4





0
(ei1 + 1)(ei2  1)
(ei1  1)(ei2 + 1)

0







2

= sin2
1
2
cos2

2
2
+ cos2

1
2
sin2

2
2
. (A11)

3Manager 1’s success probability is described here. Parallel results apply to manager 2 ifMS1

is replaced byMS2.

6



Under group measurement with synergy,

prob(success|GS, 1, 2) = 00|
†MS |00 = MS |00

2

=



1

2

2





0
ei1ei2  1
ei1ei2  1

0







2

= sin2
1 + 2
2

. (A12)

where i  {l = 0, h = 
3
}.

2.4 Observables and expected payoffs
Measurements involve real values drawn from observables — in this production
setting these values correspond to the payoffs. The individual measure observable
for manager or process one is

PI1 =





10 0 0 0
0 10 0 0
0 0 35 0
0 0 0 35





= 10 |00 00| 10 |01 01|+ 35 |10 10|+ 35 |11 11|

The expected payoff is

PI1 = 00|†PI1 |00
= 10 00|† |00 00| |00  10 00|† |01 01| |00

+35 00|† |10 10| |00+ 35 00|† |11 11| |00
= 10 00|†MF1 |00+ 35 00|MS1 |00

In other words,10 times the probability the first measure is a failure plus 35 times
the probability measure one is a success.

The individual measure observable for manager or process two is

PI2 =





10 0 0 0
0 35 0 0
0 0 10 0
0 0 0 35





= 10 |00 00|+ 35 |01 01| 10 |10 10|+ 35 |11 11|
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The expected payoff is

PI2 = 00|†PI2 |00
= 10 00|† |00 00| |00+ 35 00|† |01 01| |00

10 00|† |10 10| |00+ 35 00|† |11 11| |00
= 10 00|†MF2 |00+ 35 00|MS2 |00

In other words, 10 times the probability the second measure is a failure plus 35
times the probability measure two is a success. The expected payoff for individual
measures is PI1+ PI2.

On the other hand, the group measure observable is

PG =





30 0 0 10
0 55 15 0
0 15 55 0
10 0 0 30





= 20 |00 00|+ 70 |01 01| 40 |10 10|+ 40 |11 11|

The expected payoff is

PG = 00|
†PG |00

= 20 00|
† |00 00| |00+ 70 00|

† |01 01| |00
40 00|

† |10 10| |00+ 40 00|
† |11 11| |00

= 20 00|
†MF |00+ 70 00|

†MS |00

In other words, 20 times the probability the group measure is failure eigenstate
|00 plus 70 times the probability the group measure is success eigenstate |01
minus 40 times the probability the group measure is failure eigenstate |10 plus 40
times the probability the group measure is success eigenstate |11. Since the latter
two probabilities are equal to zero only values 20 and 70 are observed.
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Required: Throughout the analysis below hold manager two’s input at h = 
3
.

Part A: Synergy

1. To gain some "comfort" with quantum information, verify expressions A9
through A12.

2. With a no synergy initial state |00 and individual measurement of each man-
ager’s productivity, what is the probability of productive success if manager
one supplies input l = 0? h = 

3
? Determine the expected payoff if the

managers each supply h = 
3
.

3. With a pure synergy initial state |00 and individual measurement of each
manager’s productivity, what is the probability of productive success if man-
ager one supplies input l = 0? h = 

3
? Determine the expected payoff if

the managers each supply h = 
3
.

4. With a no synergy initial state |00 and group measurement of productivity,
what is the probability of productive success if manager one supplies input
l = 0? h = 

3
?

5. With a pure synergy initial state |00 and group measurement of productivity,
what is the probability of productive success if manager one supplies input
l = 0? h = 

3
?

6. If Ralph and the managers can choose or design the initial state, synergy or
no synergy, in combination with the production transformation function, F ,
which will they select?

7. In what sense does individual measurement destroy productive synergy? Can
we have too many or excessive measures? What are the implications of influ-
ence activities which culminate in demand for more measures?

8. Productivity measurement is often treated as if it is benign. Comment.
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Required: Throughout the analysis below hold manager two’s input at h = 
3
.

Part B: Performance evaluation

Suppose each of the managers has CARA utility,

U (S, a) =  exp [0.01 (S  c (a))]

reservation wage, RW = 0, and personal cost for input l, c (l = 0) = 0, and
for input h, c


h =


3


= 10. Both managers and Ralph recognize the information

structure identified in A9 through A12. From the above it’s clear Ralph desires both
managers supply h = 

3
and Ralph’s expected cost of supplying incentives to the

managers involves a standard performance-based compensation contract for each
manager i.

min
Sf ,Ss

E [Si | i = h]

s.t CE (h)  RW = 0 (IR)
CE (h)  CE (l) (IC)

where Sf is the manager’s compensation if measurement indicates a production
failure, Ss is the manager’s compensation if measurement indicates a production
success, and CE (·) is the manager’s certain equivalent. Incentives are supplied to
each manager. That is, Ralph assumes when supplying incentives to one manager
the other manager is motivated to supply the desired input, h. This serves to stack
the deck in favor of individual measures as group measures consider the input of
both managers simultaneously (this treatment reduces the spread in likelihoods be-
tween l and h for group measures) while individual measures effectively ignore
the other manager’s input.

1. If it’s possible for Ralph to supply incentives, find the optimal performance-
based payments, Sf and Ss, and Ralph’s expected compensation cost for the
case of no synergy (initial state |00) and individual measurement of each
manager’s productivity. If not, indicate why it’s not possible to supply incen-
tives.

2. If it’s possible for Ralph to supply incentives, find the optimal performance-
based payments, Sf and Ss, and Ralph’s expected compensation cost for the
case of pure synergy (initial state |00) and individual measurement of each
manager’s productivity. If not, indicate why it’s not possible to supply incen-
tives.
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3. If it’s possible for Ralph to supply incentives, find the optimal performance-
based payments, Sf and Ss, and Ralph’s expected compensation cost for the
case of no synergy (initial state |00) and group measurement of productivity.
If not, indicate why it’s not possible to supply incentives.

4. If it’s possible for Ralph to supply incentives, find the optimal performance-
based payments, Sf and Ss, and Ralph’s expected compensation cost for the
case of pure synergy (initial state |00) and group measurement of produc-
tivity. If not, indicate why it’s not possible to supply incentives.

5. If Ralph and the managers can "design" the productivity setting, which would
they select?

6. Often group measures and relative performance evaluation measures are plagued
by the potential of manager collusion. Does this pose a concern for the case
of pure synergy (initial state |00) and group measurement of productiv-
ity? How do the managers’ certainty equivalents compare to their reservation
wage if they conspire to both supply l?

7. In a performance evaluation setting we don’t think of measurement as benign.
In what sense is it harmful to employ too many or excessive performance
measures?
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