Ralph's Dual Accruals B

This is a continuation of Ralph's Dual Accruals A. Ralph's actions are unobservable, production is subject to moral hazard and a delicate coordination exercise arises (this was suppressed in part A). In other words, how can Alice supply motivate Ralph to perform as she desires? Alice offers Ralph a performance-based contract utilizing available contractible information (namely the cash flow history and possibly accruals). In addition to the cash flows, Alice and Ralph mutually observe other information y_{t} that is informative of Ralph's action (plus noise μ_{t}) and contractible.

$$
y_{\mathrm{t}}=a_{\mathrm{t}}+\mu_{\mathrm{t}}
$$

The error terms $\left(e_{\mathrm{t}}, \varepsilon_{\mathrm{t}}\right.$, and $\left.\mu_{\mathrm{t}}\right)$ are jointly normally distributed with mean zero, common variance $\sigma^{2}=1$ and are mutually stochastically independent.

Ralph has outside employment opportunities that pay reservation wage $R W=0$. Ralph is risk averse with utility for payments s and actions $a, \mathrm{U}(s, a)=-\exp (-r[s-\mathrm{c}(a)])$ where $\mathrm{c}(a)$ is Ralph's personal cost of action a and $r=1$ is a measure of the degree of Ralph's risk aversion. Ralph supplies either $a_{\mathrm{H}}=1$ or $a_{\mathrm{L}}=0$ and Ralph's personal cost is $\mathrm{c}(a)=0.5 a$. Ralph is compensated based on a linear function of the contractible variables, $c f_{\mathrm{t}}, y_{\mathrm{t}}$, and past cash flows with Ralph's contribution $a_{\mathrm{t}-\mathrm{k}}{ }^{*}$ removed $\left\{c f_{1}-a_{1}{ }^{*}, \ldots, c f_{\mathrm{t}-1}-a_{\mathrm{t}-1}{ }^{*}\right\}$. As accruals (income excluding Ralph's compensation s and Ralph's equilibrium contribution to production a^{*}) can summarize past cash flows, the linear payment can be expressed as

$$
s_{\mathrm{t}}=\delta+\theta_{1} y_{\mathrm{t}}+\theta_{2}\left(c f_{\mathrm{t}}-\text { accrual }_{\mathrm{t}-1}\right)
$$

where δ is a fixed wage, the remainder represents incentive payments, and (from part A) accruals $_{\mathrm{t}}=F_{2 \mathrm{t}} / F_{2 t+1}\left(c f_{\mathrm{t}}-a_{\mathrm{t}}^{*}\right)+F_{2 \mathrm{t}-1} / F_{2 t+1}$ accruals $_{\mathrm{t}-1}$ with accruals $_{0}=m_{0}$.

Details can be reduced via two simplifications. First, Ralph's expected utility can be rewritten in certainty equivalent form as $\mathrm{E}\left[s_{\mathrm{t}}\right]-1 / 2 r \operatorname{Var}\left[s_{\mathrm{t}}\right]-\mathrm{c}\left(a_{\mathrm{t}}\right)$ where E[] is the expectation operator and $\operatorname{Var}[]$ is the variance operator. The fixed portion of wages is $\delta=$ $R W-\left\{\mathrm{E}\left[\theta_{1} y_{\mathrm{t}}+\theta_{2}\left(c f_{\mathrm{t}}-\right.\right.\right.$ accrual $\left.\left.\left._{\mathrm{t}-1}\right) \mid a_{\mathrm{H}}\right]-r / 2 \operatorname{Var}[s]-\mathrm{c}\left(a_{\mathrm{H}}\right)\right\}$. Second, the incentive payments (payments excluding the fixed wage δ) for period t are

$$
s_{\mathrm{t}}-\delta_{\mathrm{t}}=0.5\left\{F_{2 \mathrm{t}+1} / L_{2 \mathrm{t}} y_{\mathrm{t}}+F_{2 \mathrm{t}-1} / L_{2 \mathrm{t}}\left(c f_{\mathrm{t}}-\text { accrual }_{\mathrm{t}-1}\right)\right\},
$$

where $L_{\mathrm{n}}=L_{\mathrm{n}-2}+L_{\mathrm{n}-1}, L_{0}=2$, and $L_{1}=1$ (the Lucas series). ${ }^{2}$

Required:

1. Find δ and the θ 's for Alice's first period employment contract with Ralph.
(Hint: $\delta=R W-\left\{\mathrm{E}\left[\theta_{1} y_{\mathrm{t}}+\theta_{2}\left(c f_{\mathrm{t}}-\right.\right.\right.$ accrual $\left.\left.\left._{\mathrm{t}-1}\right) \mid a_{\mathrm{H}}\right]-1 / 2 r \operatorname{Var}\left[s_{\mathrm{t}}\right]-\mathrm{c}\left(a_{\mathrm{H}}\right)\right\} . \operatorname{Var}\left[s_{1}\right]$ $=0.25 \operatorname{Var}\left[\hat{a}_{1}\right] ; \operatorname{Var}\left[\hat{a}_{1}\right]$ is to be identified in question 3 below.)
Verify that incentive compatibility is satisfied.
(Hint: $\left.\mathrm{E}\left[s_{1} \mid a_{\mathrm{H}}\right]-1 / 2 r \operatorname{Var}\left[s_{1}\right]-\mathrm{c}\left(a_{\mathrm{H}}\right) \geq \mathrm{E}\left[s_{1} \mid a_{\mathrm{L}}\right]-1 / 2 r \operatorname{Var}\left[s_{1}\right]-\mathrm{c}\left(a_{\mathrm{L}}\right).\right)$
2. Repeat question 1 for Alice's second period employment contract with Ralph.
3. Derive first period incentive payments via least squares and identify the variance of payments.

Are the payments equal to $s_{\mathrm{t}}-\delta_{\mathrm{t}}=0.5\left\{F_{2 \mathrm{t}+1} / L_{2 \mathrm{t}} y_{\mathrm{t}}+F_{2 \mathrm{t}-1} / L_{2 \mathrm{t}}\left(c f_{\mathrm{t}}-\right.\right.$ accruals $\left.\left._{\mathrm{t}-1}\right)\right\}$ as claimed above (for $\mathrm{t}=1$)?
(Hint: Employ the least squares estimator for period one's act, $\hat{a}_{1}=$ the second element of $\left[\left(H_{1}^{\mathrm{a}}\right)^{\mathrm{T}} H_{1}^{\mathrm{a}}\right]^{-1}\left(H_{1}^{\mathrm{a}}\right)^{\mathrm{T}} w_{1}$ where $H_{1}^{\mathrm{a}}=\left[\begin{array}{cc}-1 & 0 \\ 1 & 1 \\ 0 & 1\end{array}\right]$ and $w_{1}=\left[\begin{array}{c}-m_{0} \\ c f_{1} \\ y_{1}\end{array}\right]$ (ignore the
first element of the resultant vector). Scale \hat{a}_{1} by 0.5 . Also, $\operatorname{Var}\left[\hat{a}_{1}\right]=$ the second row and column element of $\sigma^{2}\left[\left(H_{1}{ }^{\text {a }}\right)^{\mathrm{T}} H_{1}{ }^{\mathrm{a}}\right]^{-1}$ and $\operatorname{Var}\left[s_{1}\right]=0.25 \operatorname{Var}\left[\hat{a}_{1}\right]=0.25$

$$
\left.F_{2 t+1} / L_{2 t} \sigma^{2} .\right)
$$

4. Repeat question 3 for second period incentive payments.

Are the payments equal to $s_{\mathrm{t}}-\delta_{\mathrm{t}}=0.5\left\{F_{2 \mathrm{tt1}} / L_{2 \mathrm{t}} y_{\mathrm{t}}+F_{2 \mathrm{t}-1} / L_{2 \mathrm{t}}\left(c f_{\mathrm{t}}-\right.\right.$ accruals $\left.\left._{\mathrm{t}-1}\right)\right\}$ as claimed above (for $\mathrm{t}=2$)?

[^0](Hint: Employ the least squares estimator for period two's act, $\hat{a}_{2}=$ the third element of $\left[\left(H_{2}\right)^{\mathrm{a}} \mathrm{T}^{\mathrm{T}} H_{2}^{\mathrm{a}}\right]^{-1}\left(H_{2}\right)^{\mathrm{a}} w^{\mathrm{T}} w_{2}$ where $H_{2}{ }^{\mathrm{a}}=\left[\begin{array}{ccc}-1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $w_{2}=\left[\begin{array}{c}-m_{0} \\ c f_{1}-a_{1}^{*} \\ 0 \\ c f_{2} \\ y_{2}\end{array}\right]$
(ignore the first two elements). Scale \hat{a}_{2} by 0.5 . Also, $\operatorname{Var}\left[\hat{a}_{2}\right]=$ the third row and column element of $\sigma^{2}\left[\left(H_{2}{ }^{\mathrm{a}}\right)^{\mathrm{T}} H_{2}{ }^{\mathrm{a}}\right]^{-1}$ and $\operatorname{Var}\left[s_{2}\right]=0.25 \operatorname{Var}\left[\hat{a}_{2}\right]=0.25 F_{2 t+1} / L_{2 \mathrm{t}}$ σ^{2}.)
5. This example explores the statistical role of accruals for both valuation and evaluation. Accrual accounting competes with other information providers for resources. Briefly explain why/how accruals may help an organization manage uncertainty and private information.

[^0]: ${ }^{2}$ The Lucas series is very similar to the Fibonacci series but with a different starting point. Interestingly, their relation is summarized via $L_{\mathrm{n}}=F_{\mathrm{n}-1}+F_{\mathrm{n}+1}$.

