This is a continuation of Ralph's Dual Accruals A. Ralph's actions are unobservable, production is subject to moral hazard and a delicate coordination exercise arises (this was suppressed in part A). In other words, how can Alice supply motivate Ralph to perform as she desires? Alice offers Ralph a performance-based contract utilizing available contractible information (namely the cash flow history and possibly accruals). In addition to the cash flows, Alice and Ralph mutually observe other information y_t that is informative of Ralph's action (plus noise μ_t) and contractible.

$$y_t = a_t + \mu_t$$

The error terms (e_t , ε_t , and μ_t) are jointly normally distributed with mean zero, common variance $\sigma^2 = 1$ and are mutually stochastically independent.

Ralph has outside employment opportunities that pay reservation wage RW = 0. Ralph is risk averse with utility for payments s and actions a, $U(s,a) = -\exp(-r[s-c(a)])$ where c(a) is Ralph's personal cost of action a and r = 1 is a measure of the degree of Ralph's risk aversion. Ralph supplies either $a_{\rm H} = 1$ or $a_{\rm L} = 0$ and Ralph's personal cost is c(a) = 0.5 a. Ralph is compensated based on a linear function of the contractible variables, $cf_{\rm t}$, $y_{\rm t}$, and past cash flows with Ralph's contribution $a_{\rm t-k}^*$ removed $\{cf_1 - a_1^*, \dots, cf_{\rm t-1} - a_{\rm t-1}^*\}$. As accruals (income excluding Ralph's compensation s and Ralph's equilibrium contribution to production a^*) can summarize past cash flows, the linear payment can be expressed as

 $s_{t} = \delta + \theta_{1}y_{t} + \theta_{2}(cf_{t} - accrual_{t-1})$

where δ is a fixed wage, the remainder represents incentive payments, and (from part A) $accruals_t = F_{2t}/F_{2t+1} (cf_t - a_t^*) + F_{2t-1}/F_{2t+1} accruals_{t-1}$ with $accruals_0 = m_0$.

Details can be reduced via two simplifications. First, Ralph's expected utility can be rewritten in certainty equivalent form as $E[s_t] - \frac{1}{2}r \operatorname{Var}[s_t] - c(a_t)$ where E[] is the expectation operator and Var[] is the variance operator. The fixed portion of wages is $\delta = RW - \{E[\theta_1y_t + \theta_2(cf_t - accrual_{t-1}) \mid a_H] - r/2 \operatorname{Var}[s] - c(a_H)\}$. Second, the incentive payments (payments excluding the fixed wage δ) for period t are

$$s_{t} - \delta_{t} = 0.5 \{ F_{2t+1} / L_{2t} y_{t} + F_{2t-1} / L_{2t} (cf_{t} - accruals_{t-1}) \},\$$

where $L_{n} = L_{n-2} + L_{n-1}$, $L_{0} = 2$, and $L_{1} = 1$ (the Lucas series).²

Required:

1. Find δ and the θ 's for Alice's first period employment contract with Ralph.

(Hint:
$$\delta = RW - \{ E[\theta_1 y_t + \theta_2(cf_t - accrual_{t-1}) \mid a_H] - \frac{1}{2} r \operatorname{Var}[s_t] - c(a_H) \}$$
. Var $[s_1]$
= 0.25 Var $[\hat{a}_1]$; Var $[\hat{a}_1]$ is to be identified in question 3 below.)

Verify that incentive compatibility is satisfied.

(Hint: $E[s_1 | a_H] - \frac{1}{2} r Var[s_1] - c(a_H) \ge E[s_1 | a_L] - \frac{1}{2} r Var[s_1] - c(a_L)$.)

2. Repeat question 1 for Alice's second period employment contract with Ralph.

3. Derive first period incentive payments via least squares and identify the variance of payments.

Are the payments equal to $s_t - \delta_t = 0.5\{F_{2t+1}/L_{2t} y_t + F_{2t-1}/L_{2t} (cf_t - accruals_{t-1})\}$ as claimed above (for t = 1)?

(Hint: Employ the least squares estimator for period one's act, \hat{a}_1 = the second

element of
$$[(H_1^{a})^T H_1^{a}]^{-1} (H_1^{a})^T w_1$$
 where $H_1^{a} = \begin{bmatrix} -1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$ and $w_1 = \begin{bmatrix} -m_0 \\ cf_1 \\ y_1 \end{bmatrix}$ (ignore the

first element of the resultant vector). Scale \hat{a}_1 by 0.5. Also, $\operatorname{Var}[\hat{a}_1] =$ the second row and column element of $\sigma^2[(H_1^{a})^T H_1^{a}]^{-1}$ and $\operatorname{Var}[s_1] = 0.25 \operatorname{Var}[\hat{a}_1] = 0.25$ $F_{2_{1+1}}/L_{2_1} \sigma^2$.)

4. Repeat question 3 for second period incentive payments.

Are the payments equal to $s_t - \delta_t = 0.5\{F_{2t+1}/L_{2t} y_t + F_{2t-1}/L_{2t} (cf_t - accruals_{t-1})\}$ as claimed above (for t = 2)?

² The Lucas series is very similar to the Fibonacci series but with a different starting point. Interestingly, their relation is summarized via $L_n = F_{n-1} + F_{n+1}$.

(Hint: Employ the least squares estimator for period two's act, \hat{a}_2 = the third

element of
$$[(H_2^{a})^T H_2^{a}]^{-1} (H_2^{a})^T w_2$$
 where $H_2^{a} = \begin{bmatrix} -1 & 0 & 0 \\ 1 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$ and $w_2 = \begin{bmatrix} -m_0 \\ cf_1 - a_1^{*} \\ 0 \\ cf_2 \\ y_2 \end{bmatrix}$

(ignore the first two elements). Scale \hat{a}_2 by 0.5. Also, $\operatorname{Var}[\hat{a}_2] =$ the third row and column element of $\sigma^2[(H_2^{a})^T H_2^{a}]^{-1}$ and $\operatorname{Var}[s_2] = 0.25 \operatorname{Var}[\hat{a}_2] = 0.25 F_{2t+1}/L_{2t}$ σ^2 .)

5. This example explores the statistical role of accruals for both valuation and evaluation. Accrual accounting competes with other information providers for resources. Briefly explain why/how accruals may help an organization manage uncertainty and private information.