Ralph's discrete choice

Ralph observes a binary choice, D, and wishes to assess the choice probability conditional on background conditions described by X. It is clear to Ralph the unconditional $\operatorname{Pr}(D=1)=0.5$ as he believes his sample is representative of the unknown population. Ralph believes the conditional probability follows a logistic distribution such that $\operatorname{Pr}\left(D_{j}=1 \mid X\right)=1 /\left(1+\exp \left[-X_{j}^{T} g\right]\right)$ where X is a matrix with two columns (one and x) and g is a two element vector of parameters (g_{0} and g_{l}). Ralph's sample from the data generating process $(D G P)$ is tabulated below.

D	one	x
1	1	2
1	1	2
1	1	0
0	1	-1
0	1	0
0	1	1

After some consideration, Ralph determines the conditional probability assessment is a maximum likelihood problem. The log-likelihood function is

$$
\log -L=\sum_{j=1}^{n} D_{j}^{*} \log \left\{1 /\left(1+\exp \left[-X_{j}^{T} g\right]\right)\right\}+\left(1-D_{j}\right) * \log \left\{1 /\left(1+\exp \left[X_{j}^{T} g\right]\right)\right\}
$$

Required:

1. Find $g=\left[\begin{array}{ll}g_{0} & g_{l}\end{array}\right]^{T}$ that maximizes the log-likelihood or minimizes the negative loglikelihood.
2. Find $\operatorname{Pr}\left(D_{j}=1 \mid X_{j}\right)$ for $\mathrm{j}=1, \ldots, 6$. (Hint: repeated values of X_{j} have the same conditional probabilities.)
